Active Flow Control by Coanda Actuators for Aerodynamic Drag Reduction in a European-Type Truck
Abstract
1. Introduction
2. Experimental Set-Up
2.1. Base Truck Model
2.2. Trailers with Coanda Effect
2.3. Force Measurements
2.4. Wind Tunnels
3. Results
3.1. Passive Flow Control
3.2. Active Flow Control: Coanda Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariram, A.; Koch, T.; Mårdberg, B.; Kyncl, J. A study in options to improve aerodynamic profile of heavy-duty vehicles in Europe. Sustainability 2019, 11, 5519. [Google Scholar] [CrossRef]
- Chowdhury, H.; Moria, H.; Ali, A.; Khan, I.; Alam, F.; Watkins, S. A study on aerodynamic drag of a semi-trailer truck. Procedia Eng. 2013, 56, 201–205. [Google Scholar] [CrossRef]
- Choi, H. Control of flow over a bluff body. In Proceedings of the Fifth International Symposium on Turbulence and Shear Flow Phenomena, Munich, Germany, 27–29 August 2007; pp. 3–10. [Google Scholar] [CrossRef]
- Cooper, K.R.; Leuschen, J. Model and full-scale wind tunnel tests of second-generation aerodynamic fuel saving devices for tractor-trailers. SAE Tech. Pap. Ser. 2005, 1, 3512. [Google Scholar] [CrossRef]
- Gilliéron, P.; Kourta, A. Aerodynamic drag reduction by vertical splitter plates. Exp. Fluids 2009, 48, 1–16. [Google Scholar] [CrossRef]
- Mohamed-Kassim, Z.; Filippone, A. Fuel savings on a heavy vehicle via aerodynamic drag reduction. Transp. Res. Part D Transp. Environ. 2010, 15, 275–284. [Google Scholar] [CrossRef]
- Aider, J.-L.; Beaudoin, J.-F.; Wesfreid, J.E. Drag and lift reduction of a 3D bluff-body using active vortex generators. Exp. Fluids 2009, 48, 771–789. [Google Scholar] [CrossRef]
- Littlewood, R.P.; Passmore, M.A. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing. Exp. Fluids 2012, 53, 519–529. [Google Scholar] [CrossRef]
- Frunzulica, F.; Ionescu, T. Mathematical Modelling and Numerical Investigations on the Coanda Effect. In Nonlinearity, Bifurcation and Chaos—Theory and Applications; IntechOpen: London, UK, 2012; Chapter 5. [Google Scholar] [CrossRef]
- Parks, E.; Petersen, R. Analysis of a “Coanda” type flow. AIAA J. 1968, 6, 4–7. [Google Scholar] [CrossRef]
- Cerutti, J.J.; Sardu, C.; Cafiero, G.; Iuso, G. Active flow control on a square-back road vehicle. Fluids 2020, 5, 55. [Google Scholar] [CrossRef]
- Barros, D.; Borée, J.; Noack, B.R.; Spohn, A.; Ruiz, T. Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech. 2016, 805, 422–459. [Google Scholar] [CrossRef]
- Geropp, D.; Odenthal, H.-J. Drag reduction of motor vehicles by active flow control using the Coanda effect. Exp. Fluids 2000, 28, 74–85. [Google Scholar] [CrossRef]
- Nishino, T.; Hahn, S.; Shariff, K. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil. Phys. Fluids 2010, 22, 125105. [Google Scholar] [CrossRef]
- El Halal, Y.; Marques, C.H.; Rocha, L.A.O.; Isoldi, L.A.; Lemos, R.d.L.; Fragassa, C.; dos Santos, E.D. Numerical Study of Turbulent Air and Water Flows in a Nozzle Based on the Coanda Effect. J. Mar. Sci. Eng. 2019, 7, 21. [Google Scholar] [CrossRef]
- Connolly, M.G.; Ivankovic, A.; O’Rourke, M.J. Drag Reduction Technology and devices for road vehicles—A comprehensive review. Heliyon 2024, 10, e33757. [Google Scholar] [CrossRef] [PubMed]
- Aultman, M.; Wang, Z.; Auza-Gutierrez, R.; Duan, L. Evaluation of CFD methodologies for prediction of flows around simplified and complex automotive models. Comput. Fluids 2022, 236, 105297. [Google Scholar] [CrossRef]
- Landman, D.; Cragun, M.; McCormick, M.; Wood, R. Drag Reduction of a Modern Straight Truck. SAE Int. J. Commer. Veh. 2011, 4, 256–262. [Google Scholar] [CrossRef]
- Manosalvas, D.E.; Economon, T.; Palacios, F.; Jameson, A. Techniques for the Design of Active Flow Control Systems in Heavy Vehicles. In Proceedings of the 33rd AIAA Applied Aerodynamics Conference AIAA Aviation, Dallas, TX, USA, 22–26 June 2015. [Google Scholar] [CrossRef][Green Version]
- Choi, H.; Lee, J.; Park, H. Aerodynamics of Heavy vehicles. Annu. Rev. Fluid Mech. 2014, 46, 441–468. [Google Scholar] [CrossRef]
- Phan, T.L. Optimal configuration of passive flow control devices to reduce the aerodynamics drag of a tractor-trailer model. Results Eng. 2024, 23, 102425. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, S.; Kim, M.; You, D.; Lee, S.L. Salient drag reduction of a heavy vehicle using modified cab-roof fairings. J. Wind. Eng. Ind. Aerodyn. 2017, 164, 138–151. [Google Scholar] [CrossRef]
- Lim, H.C.; Castro, I.P.; Hoxey, R.P. Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. J. Fluid Mech. 2007, 571, 97–118. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kahler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Adrian, R.J.; Westerweel, J. Particle Image Velocimetry; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Prasad, A.K. Particle image velocimetry. Curr. Sci. Assoc. 2000, 79, 51–60. [Google Scholar]
- Adrian, R.J. Particle-imaging techniques for Experimental Fluid Mechanics. Annu. Rev. Fluid Mech. 1991, 23, 261–304. [Google Scholar] [CrossRef]













| AFC Case | B1 | B2 | B3 | |||
|---|---|---|---|---|---|---|
| Module | ||||||
| CS | 4.84 | 9.92 | 19.17 | |||
| CL | 2.74 | 7.35 | 13.60 | |||
| CSL | 1.27 | 5.33 | 7.91 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardera, R.; Matías-García, J.C.; Barroso-Barderas, E.; Fernández-Antón, J.; Rodríguez-Sevillano, A.A. Active Flow Control by Coanda Actuators for Aerodynamic Drag Reduction in a European-Type Truck. Actuators 2025, 14, 556. https://doi.org/10.3390/act14110556
Bardera R, Matías-García JC, Barroso-Barderas E, Fernández-Antón J, Rodríguez-Sevillano AA. Active Flow Control by Coanda Actuators for Aerodynamic Drag Reduction in a European-Type Truck. Actuators. 2025; 14(11):556. https://doi.org/10.3390/act14110556
Chicago/Turabian StyleBardera, R., J. C. Matías-García, E. Barroso-Barderas, J. Fernández-Antón, and A. A. Rodríguez-Sevillano. 2025. "Active Flow Control by Coanda Actuators for Aerodynamic Drag Reduction in a European-Type Truck" Actuators 14, no. 11: 556. https://doi.org/10.3390/act14110556
APA StyleBardera, R., Matías-García, J. C., Barroso-Barderas, E., Fernández-Antón, J., & Rodríguez-Sevillano, A. A. (2025). Active Flow Control by Coanda Actuators for Aerodynamic Drag Reduction in a European-Type Truck. Actuators, 14(11), 556. https://doi.org/10.3390/act14110556

