Simulated Intelligent-System Interruptions: Effects on Back-Support Exoskeleton Performance and Muscle Activation
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Repetitive Lifting Task
2.4. Distance Sensing System
2.5. BSE
2.6. Interrupting Task
2.7. Measurements
2.8. Procedure
2.9. Data Analysis
2.10. Statistical Analysis
3. Results
3.1. Muscle Activation
3.2. NASA-TLX Ratings
3.3. Lifting Performance
4. Discussion
4.1. Task Performance
4.2. Muscle Activation of Erector Spinae and Subjective Workload
4.3. Muscle Activation of Upper Trapezius
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BSE | Back-support exoskeleton |
| EMG | Electromyography |
| ES | Erector spinae |
| MVC | Maximal voluntary contraction |
| UT | Upper trapezius |
References
- Butmee, T.; Lansdown, T.C.; Walker, G.H. Alternative Options for Dealing with Automation Failures: Automated Stopping vs. Taking over Manual Control. Transp. Res. F Traffic Psychol. Behav. 2022, 88, 248–257. [Google Scholar] [CrossRef]
- Wang, J.; Fang, W.; Qiu, H.; Wang, Y. The Impact of Automation Failure on Unmanned Aircraft System Operators’ Performance, Workload, and Trust in Automation. Drones 2025, 9, 165. [Google Scholar] [CrossRef]
- van der Kleij, R.; Hueting, T.; Schraagen, J.M. Change Detection Support for Supervisory Controllers of Highly Automated Systems: Effects on Performance, Mental Workload, and Recovery of Situation Awareness Following Interruptions. Int. J. Ind. Ergon. 2018, 66, 75–84. [Google Scholar] [CrossRef]
- Katidioti, I.; Borst, J.P.; Van Vugt, M.K.; Taatgen, N.A. Interrupt Me: External Interruptions Are Less Disruptive than Self-Interruptions. Comput. Hum. Behav. 2016, 63, 906–915. [Google Scholar] [CrossRef]
- Heitmayer, M.; Lahlou, S. Why Are Smartphones Disruptive? An Empirical Study of Smartphone Use in Real-Life Contexts. Comput. Hum. Behav. 2021, 116, 106637. [Google Scholar] [CrossRef]
- Puranik, H.; Koopman, J.; Vough, H.C. Pardon the Interruption: An Integrative Review and Future Research Agenda for Research on Work Interruptions. J. Manage 2020, 46, 806–842. [Google Scholar] [CrossRef]
- Adamczyk, P.D.; Bailey, B.P. If Not Now, When? The Effects of Interruption at Different Moments within Task Execution. In Proceedings of the Conference on Human Factors in Computing Systems-Proceedings, Vienna, Austria, 24–29 April 2004; Volume 6, pp. 271–278. [Google Scholar]
- Monk, C.A.; Trafton, J.G.; Boehm-Davis, D.A. The Effect of Interruption Duration and Demand on Resuming Suspended Goals. J. Exp. Psychol. Appl. 2008, 14, 299–313. [Google Scholar] [CrossRef]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-Motor Dual-Task Interference: A Systematic Review of Neural Correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef]
- Pashler, H. Dual-Task Interference in Simple Tasks: Data and Theory. Psychol. Bull. 1994, 116, 220–244. [Google Scholar] [CrossRef]
- Gupta, A.; Li, H.; Sharda, R. Should I Send This Message? Understanding the Impact of Interruptions, Social Hierarchy and Perceived Task Complexity on User Performance and Perceived Workload. Decis. Support Syst. 2013, 55, 135–145. [Google Scholar] [CrossRef]
- Monk, C.A. The Effect of Frequent versus Infrequent Interruptions on Primary Task Resumption. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2004, 48, 295–299. [Google Scholar] [CrossRef]
- Baethge, A.; Rigotti, T.; Roe, R.A. Just More of the Same, or Different? An Integrative Theoretical Framework for the Study of Cumulative Interruptions at Work. Eur. J. Work. Organ. Psychol. 2015, 24, 308–323. [Google Scholar] [CrossRef]
- Bakker, E.W.P.; Verhagen, A.P.; van Trijffel, E.; Lucas, C.; Koes, B.W. Spinal Mechanical Load as a Risk Factor for Low Back Pain. Spine 2009, 34, E281–E293. [Google Scholar] [CrossRef] [PubMed]
- De Looze, M.P.; Kingma, I.; Thunnissen, W.; Van Wijk, M.J.; Toussaint, H.M. The Evaluation of a Practical Biomechanical Model Estimating Lumbar Moments in Occupational Activities. Ergonomics 1994, 37, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Coenen, P.; Gouttebarge, V.; van der Burght, A.S.A.M.; van Dieën, J.H.; Frings-Dresen, M.H.W.; van der Beek, A.J.; Burdorf, A. The Effect of Lifting during Work on Low Back Pain: A Health Impact Assessment Based on a Meta-Analysis. Occup. Environ. Med. 2014, 71, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef]
- de Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’Sullivan, L.W. Exoskeletons for Industrial Application and Their Potential Effects on Physical Work Load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef]
- Weston, E.B.; Alizadeh, M.; Knapik, G.G.; Wang, X.; Marras, W.S. Biomechanical Evaluation of Exoskeleton Use on Loading of the Lumbar Spine. Appl. Ergon. 2018, 68, 101–108. [Google Scholar] [CrossRef]
- Theurel, J.; Desbrosses, K.; Roux, T.; Savescu, A. Physiological Consequences of Using an Upper Limb Exoskeleton during Manual Handling Tasks. Appl. Ergon. 2018, 67, 211–217. [Google Scholar] [CrossRef]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Eskandari, A.H.; Ghezelbash, F.; Shirazi-Adl, A.; Arjmand, N.; Larivière, C. Effect of a Back-Support Exoskeleton on Internal Forces and Lumbar Spine Stability during Low Load Lifting Task. Appl. Ergon. 2025, 123, 104407. [Google Scholar] [CrossRef]
- Schrøder Jakobsen, L.; de Zee, M.; Samani, A.; Desbrosses, K.; Madeleine, P. Biomechanical Changes, Acceptance, and Usability of a Passive Shoulder Exoskeleton in Manual Material Handling. A Field Study. Appl. Ergon. 2023, 113, 104104. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Quirk, D.A.; Cherin, J.M.; Friedrich, D.; Kim, D.; Walsh, C.J. The Perceptual and Biomechanical Effects of Scaling Back Exosuit Assistance to Changing Task Demands. Sci. Rep. 2025, 15, 10929. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Seo, J.O.; Gong, Y.; Heung, K.H.L.; Khan, M.; Lei, T. Biomechanical Assessment of a Passive Back Exoskeleton Using Vision-Based Motion Capture and Virtual Modeling. Autom. Constr. 2025, 172, 106035. [Google Scholar] [CrossRef]
- Ding, S.; Reyes, F.A.; Bhattacharya, S.; Seyram, O.; Yu, H. A Novel Passive Back-Support Exoskeleton with a Spring-Cable-Differential for Lifting Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3781–3789. [Google Scholar] [CrossRef]
- Botti, L.; Melloni, R. Occupational Exoskeletons: Understanding the Impact on Workers and Suggesting Guidelines for Practitioners and Future Research Needs. Appl. Sci. 2024, 14, 84. [Google Scholar] [CrossRef]
- Alemi, M.M.; Geissinger, J.; Simon, A.A.; Chang, S.E.; Asbeck, A.T. A Passive Exoskeleton Reduces Peak and Mean EMG during Symmetric and Asymmetric Lifting. J. Electromyogr. Kinesiol. 2019, 47, 25–34. [Google Scholar] [CrossRef]
- Koopman, A.S.; Kingma, I.; de Looze, M.P.; van Dieën, J.H. Effects of a Passive Back Exoskeleton on the Mechanical Loading of the Low-Back during Symmetric Lifting. J. Biomech. 2020, 102, 109486. [Google Scholar] [CrossRef]
- Govaerts, R.; Turcksin, T.; Vanderborght, B.; Roelands, B.; Meeusen, R.; De Pauw, K.; De Bock, S. Evaluating Cognitive and Physical Work Performance: A Comparative Study of an Active and Passive Industrial Back-Support Exoskeleton. Wearable Technol. 2023, 4, e27. [Google Scholar] [CrossRef]
- van der Linden, D.; Eling, P. Mental Fatigue Disturbs Local Processing More than Global Processing. Psychol. Res. 2006, 70, 395–402. [Google Scholar] [CrossRef]
- Stirling, L.; Siu, H.C.; Jones, E.; Duda, K. Human Factors Considerations for Enabling Functional Use of Exosystems in Operational Environments. IEEE Syst. J. 2019, 13, 1072–1083. [Google Scholar] [CrossRef]
- Teo, G.; Matthews, G.; Reinerman-Jones, L.; Barber, D. Adaptive Aiding with an Individualized Workload Model Based on Psychophysiological Measures. Hum. Intell. Syst. Integr. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Eesee, A.K.; Kostolani, D.; Varga, V.; Kang, T.; Schlund, S.; Ruppert, T. Studying Dual-Task Awareness in Industrial Settings Through Reaction Times and Physiological Signals. In Proceedings of the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management, CogSIMA, Duisburg, Germany, 2–5 June 2025; Institute of Electrical and Electronics Engineers Inc.: Washington, DC, USA, 2025; pp. 151–156. [Google Scholar]
- Näf, M.B.; Koopman, A.S.; Baltrusch, S.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Front. Robot. AI 2018, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European Recommendations for Surface ElectroMyoGraphy. Roessingh Res. Dev. 1999, 8–11, 13–54. [Google Scholar]
- Al-Qaisi, S.K.; Saba, A.; Alameddine, I. Evaluation of Recommended Maximum Voluntary Contraction Exercises for Back Muscles Commonly Investigated in Ergonomics. Theor. Issues Ergon. Sci. 2021, 22, 261–273. [Google Scholar] [CrossRef]
- Schulte, E.; Kallenberg, L.A.C.; Christensen, H.; Disselhorst-Klug, C.; Hermens, H.J.; Rau, G.; Søgaard, K. Comparison of the Electromyographic Activity in the Upper Trapezius and Biceps Brachii Muscle in Subjects with Muscular Disorders: A Pilot Study. Eur. J. Appl. Physiol. 2006, 96, 185–193. [Google Scholar] [CrossRef]
- Leibman, D.; Choi, H. Going beyond the Mean in Examining the Effects of Exoskeleton Use on Motor and Attentional Task Performance. Appl. Ergon. 2025, 129, 104567. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology; Hancock, P.A., Meshkati, N., Eds.; North-Holland: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. ISBN 0166-4115. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Oxfordshire, UK, 2013; ISBN 9781134742707. [Google Scholar]
- Rodzak, K.M.; Slaughter, P.R.; Wolf, D.N.; Ice, C.C.; Fine, S.J.; Zelik, K.E. Can Back Exosuits Simultaneously Increase Lifting Endurance and Reduce Musculoskeletal Disorder Risk? Wearable Technol. 2024, 5, e17. [Google Scholar] [CrossRef]
- So, B.C.L.; Hua, C.; Chen, T.; Gao, Q.; Man, S.S. Biomechanical Assessment of a Passive Back-Support Exoskeleton during Repetitive Lifting and Carrying: Muscle Activity, Kinematics, and Physical Capacity. J. Saf. Res. 2022, 83, 210–222. [Google Scholar] [CrossRef]
- Tan, C.K.; Kadone, H.; Miura, K.; Abe, T.; Koda, M.; Yamazaki, M.; Sankai, Y.; Suzuki, K. Muscle Synergies during Repetitive Stoop Lifting with a Bioelectrically-Controlled Lumbar Support Exoskeleton. Front. Hum. Neurosci. 2019, 13, 142. [Google Scholar] [CrossRef]
- Slaughter, P.R.; Rodzak, K.M.; Fine, S.J.; Ice, C.C.; Wolf, D.N.; Zelik, K.E. Evaluation of U.S. Army Soldiers Wearing a Back Exosuit during a Field Training Exercise. Wearable Technol. 2023, 4, e20. [Google Scholar] [CrossRef]
- Reimeir, B.; Calisti, M.; Mittermeier, R.; Ralfs, L.; Weidner, R. Effects of Back-Support Exoskeletons with Different Functional Mechanisms on Trunk Muscle Activity and Kinematics. Wearable Technol. 2023, 4, e12. [Google Scholar] [CrossRef] [PubMed]
- Moya-Esteban, A.; Durandau, G.; van der Kooij, H.; Sartori, M. Real-Time Lumbosacral Joint Loading Estimation in Exoskeleton-Assisted Lifting Conditions via Electromyography-Driven Musculoskeletal Models. J. Biomech. 2023, 157, 111727. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Refai, M.I.; Moya-Esteban, A.; Van Zijl, L.; Van Der Kooij, H.; Sartori, M. Benchmarking Commercially Available Soft and Rigid Passive Back Exoskeletons for an Industrial Workplace. Wearable Technol. 2024, 5, e6. [Google Scholar] [CrossRef] [PubMed]
- Nino, V.; Claudio, D.; Monfort, S.M. Evaluating the Effect of Perceived Mental Workload on Work Body Postures. Int. J. Ind. Ergon. 2023, 93, 103399. [Google Scholar] [CrossRef]
- Joseph, C.; Beach, T.A.C.; Callaghan, J.P.; Dickerson, C.R. The Influence of Precision Requirements and Cognitive Challenges on Upper Extremity Joint Reaction Forces, Moments and Muscle Force Estimates during Prolonged Repetitive Lifting. Ergonomics 2014, 57, 236–246. [Google Scholar] [CrossRef]
- Bequette, B.; Norton, A.; Jones, E.; Stirling, L. Physical and Cognitive Load Effects Due to a Powered Lower-Body Exoskeleton. Hum. Factors 2020, 62, 411–423. [Google Scholar] [CrossRef]
- McFarlane, D.C.; Latorella, K.A. The Scope and Importance of Human Interruption in Human-Computer Interaction Design. Hum. Comput. Interact. 2002, 17, 1–61. [Google Scholar] [CrossRef]
- Westbrook, J.I.; Coiera, E.; Dunsmuir, W.T.M.; Brown, B.M.; Kelk, N.; Paoloni, R.; Tran, C. The Impact of Interruptions on Clinical Task Completion. Qual. Saf. Health Care 2010, 19, 284–289. [Google Scholar] [CrossRef]
- Foroughi, C.K.; Werner, N.E.; McKendrick, R.; Cades, D.M.; Boehm-Davis, D.A. Individual Differences in Working-Memory Capacity and Task Resumption Following Interruptions. J. Exp. Psychol. Learn. Mem. Cogn. 2016, 42, 1480–1488. [Google Scholar] [CrossRef]
- Kim, H.K.; Hussain, M.; Park, J.; Lee, J.; Lee, J.W. Analysis of Active Back-Support Exoskeleton During Manual Load-Lifting Tasks. J. Med. Biol. Eng. 2021, 41, 704–714. [Google Scholar] [CrossRef]
- Bär, M.; Luger, T.; Seibt, R.; Rieger, M.A.; Steinhilber, B. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate. Hum. Factors 2024, 66, 40–55. [Google Scholar] [CrossRef]
- Hardie, R.; Haskew, R.; Harris, J.; Hughes, G. The Effects of Bag Style on Muscle Activity of the Trapezius, Erector Spinae and Latissimus Dorsi during Walking in Female University Students. J. Hum. Kinet. 2015, 45, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, J.I.; Raban, M.Z.; Walter, S.R.; Douglas, H. Task Errors by Emergency Physicians Are Associated with Interruptions, Multitasking, Fatigue and Working Memory Capacity: A Prospective, Direct Observation Study. BMJ Qual. Saf. 2018, 27, 655–663. [Google Scholar] [CrossRef] [PubMed]




| Back-Support Exoskeleton | With | Without | ||||||
|---|---|---|---|---|---|---|---|---|
| Interruption Frequency | None | Intermittent | Frequent | Overall | None | Intermittent | Frequent | Overall |
| (a) NASA-TLX score | 54.3 ±4.0 | 54.9 ±4.1 | 61.3 ±5.0 | 56.9 ±3.4 a | 61.6 ±2.9 | 67.2 ±3.9 | 68.2 ±4.4 | 65.6 ±4.2 |
| (b) Number of lift repetitions | 16.5 ±1.0 | 16.5 ±1.0 | 16.9 ±1.0 | 16.8 ±1.0 a | 17.6 ±1.1 | 17.5 ±0.9 | 17.5 ±0.8 | 17.3 ±0.9 |
| (c) Placement accuracy | 1.2 ±0.2 | 1.3 ±0.2 | 1.2 ±0.2 | 1.3 ±0.2 | 1.3 ±0.3 | 1.1 ±0.2 | 1.1 ±0.2 | 1.2 ±0.2 |
| (d) Placement variability | 0.7 ±0.1 | 0.8 ±0.1 | 0.7 ±0.1 | 0.7 ±0.1 | 0.6 ±0.1 | 0.7 ±0.1 | 0.7 ±0.1 | 0.7 ±0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Park, J.; Park, C. Simulated Intelligent-System Interruptions: Effects on Back-Support Exoskeleton Performance and Muscle Activation. Actuators 2025, 14, 555. https://doi.org/10.3390/act14110555
Choi J, Park J, Park C. Simulated Intelligent-System Interruptions: Effects on Back-Support Exoskeleton Performance and Muscle Activation. Actuators. 2025; 14(11):555. https://doi.org/10.3390/act14110555
Chicago/Turabian StyleChoi, Jeewon, Junik Park, and Chaerim Park. 2025. "Simulated Intelligent-System Interruptions: Effects on Back-Support Exoskeleton Performance and Muscle Activation" Actuators 14, no. 11: 555. https://doi.org/10.3390/act14110555
APA StyleChoi, J., Park, J., & Park, C. (2025). Simulated Intelligent-System Interruptions: Effects on Back-Support Exoskeleton Performance and Muscle Activation. Actuators, 14(11), 555. https://doi.org/10.3390/act14110555

