Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Mathematical Model
2.2.1. Heat Transfer Model
2.2.2. Phase Transformation Model
2.2.3. Constitutive Model
2.2.4. Dynamic Model
2.3. State Estimation
2.3.1. VGESO
2.3.2. Convergence of VGESO
2.4. Controller Design and Stability Analysis
2.4.1. Controller Design
2.4.2. Stability Analysis
3. Results
3.1. Model Validation
3.2. Experimental Validation on the SMA Actuator-Based Finger Setup
3.2.1. Set-Point Tracking
3.2.2. Load Variations and Disturbance Rejection
3.3. Experiments on SMA Actuator-Based Prosthetic Hand Robot System
3.3.1. The Experimental Setup
3.3.2. Position Tracking Experiments of the Prosthetic Hand System Based on ANFTSMC
3.3.3. Grasp Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baek, H.; Khan, A.M.; Bijalwan, V.; Jeon, S.; Kim, Y. Dexterous Robotic Hand Based on Rotational Shape Memory Alloy Actuator-Joints. IEEE Trans. Med. Robot. Bionics 2023, 5, 1082–1092. [Google Scholar] [CrossRef]
- Yang, J.; Sun, S.; Yang, X.; Ma, Y.; Yun, G.; Chang, R.; Tang, S.Y.; Nakano, M.; Li, Z.; Du, H.; et al. Equipping New SMA Artificial Muscles With Controllable MRF Exoskeletons for Robotic Manipulators and Grippers. IEEE/ASME Trans. Mechatron. 2022, 27, 4585–4596. [Google Scholar] [CrossRef]
- Abondance, S.; Teeple, C.B.; Wood, R.J. A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation. IEEE Robot. Autom. Lett. 2020, 5, 5502–5509. [Google Scholar] [CrossRef]
- Deng, E.; Tadesse, Y.A. A Soft 3D-Printed Robotic Hand Actuated by Coiled SMA. Actuators 2020, 10, 6. [Google Scholar] [CrossRef]
- Tanaka, K. A Phenomenological Description on Thermomechanical Behavior of Shape Memory Alloys. J. Press. Vessel. Technol. Trans. ASME 1990, 112, 158–163. [Google Scholar] [CrossRef]
- Liang, C.; Rogers, C.A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials. J. Intell. Mater. Syst. Struct. 2013, 1, 207–234. [Google Scholar] [CrossRef]
- Ge, J.Z.; Chang, L.L.; Pérez-Arancibia, N.O. Preisach-model-based position control of a shape-memory alloy linear actuator in the presence of time-varying stress. Mechatronics 2021, 73, 102452. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, T. Modeling of Shape Memory Alloy Artificial Wrist Joint via Modified Prandtl-Ishlinskii Hysteresis Model. In Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics (ICARM), Sanya, China, 8–10 July 2023; pp. 1125–1130. [Google Scholar]
- Feng, Y.; Guo, J. Modeling for Magnetic Shape Memory Alloy Actuators Using a Modified Generalized Prandtl-Ishlinskii Model. In Proceedings of the 2023 IEEE International Conference on Development and Learning, Macau, China, 9–11 November 2023; pp. 144–149. [Google Scholar]
- Pei, Y.C.; Wang, B.H.; Wu, J.T.; Wang, C.Y.; Guan, J.H.; Lu, H.Q. Machine Learning Empowered Shape Memory Alloy Gripper With Displacement-Force-Stiffness Self-Sensing. IEEE Trans. Ind. Electron. 2023, 70, 10385–10395. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, M.; Hu, Z. Tracking Control of Shape Memory Alloy Artificial Wrist Joint Using Sliding Mode Control Strategy Based on RBF Neural Network. In Proceedings of the 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), Guilin, China, 29 November 2022; pp. 990–995. [Google Scholar]
- Qi, G.; Li, X.; Chen, Z. Problems of Extended State Observer and Proposal of Compensation Function Observer for Unknown Model and Application in UAV. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1037–1046. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, L.; Zhang, W. High-Order Generalized Integrator ESO-Based PLL Considering Time-Varying Disturbances. IEEE Trans. Power Electron. 2024, 39, 101–105. [Google Scholar] [CrossRef]
- Pu, Z.; Yuan, R.; Yi, J.; Tan, X. A Class of Adaptive Extended State Observers for Nonlinear Disturbed Systems. IEEE Trans. Ind. Electron. 2015, 62, 5858–5869. [Google Scholar] [CrossRef]
- Guo, B.Z.; Zhao, Z.L. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control. Lett. 2011, 60, 420–430. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, W.; Zhang, J.; Yi, F.; Zhang, Z.; Wu, G.; Zhang, C. A Nonlinear Active Disturbance Rejection Feedback Control Method for Proton Exchange Membrane Fuel Cell Air Supply Subsystems. Actuators 2024, 13, 268. [Google Scholar] [CrossRef]
- Ding, T.-F.; Ge, M.-F.; Liu, Z.-W.; Chi, M.; Ahn, C.K. Cluster Time-Varying Formation-Containment Tracking of Networked Robotic Systems Via Hierarchical Prescribed-Time ESO-Based Control. IEEE Trans. Netw. Sci. Eng. 2024, 11, 566–577. [Google Scholar] [CrossRef]
- Yang, H.; Sun, J.; Xia, Y.; Zhao, L. Position Control for Magnetic Rodless Cylinders with Strong Static Friction. IEEE Trans. Ind. Electron. 2018, 65, 5806–5815. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, J.; Li, Y. Generalized Variable Gain ADRC for Nonlinear Systems and Its Application to Delta Parallel Manipulators. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 921–930. [Google Scholar] [CrossRef]
- Yao, M.; Li, X.; Li, K. Backstepping Dynamic Surface Control of an SMA Actuator Based on Adaptive Neural Network. In Proceedings of the 2023 2nd International Conference on Innovations and Development of Information Technologies and Robotics (IDITR), Chengdu, China, 26–28 May 2023; pp. 70–77. [Google Scholar]
- Li, Z.; Li, J.; Weng, T.; Zheng, Z. Adaptive Backstepping Time Delay Control for Precision Positioning Stage with Unknown Hysteresis. Mathematics 2024, 12, 1197. [Google Scholar] [CrossRef]
- Nguyen, B.K.; Ahn, K.K. Feedforward Control of Shape Memory Alloy Actuators Using Fuzzy-Based Inverse Preisach Model. IEEE Trans. Control. Syst. Technol. 2009, 17, 434–441. [Google Scholar] [CrossRef]
- Nalini, D.; Nandakumar, A.; Sampath, A.; Dhanalakshmi, K. Fuzzy based active stiffness control of a synergistically compliant variable stiffness shape memory actuator. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–5. [Google Scholar]
- Feng, Y.; Huang, X. Adaptive Fractional Order Proportional Integral Derivative Control for a Shape Memory Alloy Driven Puncture Platform. In Proceedings of the 2023 IEEE International Conference on Development and Learning (ICDL), Macau, China, 9–11 November 2023; pp. 250–255. [Google Scholar]
- Xu, S. Disturbance Observer-Based Adaptive Fault Tolerant Control with Prescribed Performance of a Continuum Robot. Actuators 2024, 13, 267. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, Z.; Li, X.; Yu, H. Output-Feedback Adaptive Neural Control of a Compliant Differential SMA Actuator. IEEE Trans. Control. Syst. Technol. 2017, 25, 2202–2210. [Google Scholar] [CrossRef]
- Garriga-Casanovas, A.; Shakib, F.; Ferrandy, V.; Franco, E. Hybrid Control of Soft Robotic Manipulator. Actuators 2024, 13, 242. [Google Scholar] [CrossRef]
- Rączka, W.; Sibielak, M. Model of Shape Memory Alloy Actuator with the Usage of LSTM Neural Network. Materials 2024, 17, 3114. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.S.; Cheng, Q.; Xiao, J.C.; Hao, L.N. Performance-based data-driven optimal tracking control of shape memory alloy actuated manipulator through reinforcement learning. Eng. Appl. Artif. Intell. 2022, 114, 105060. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, X.; Nan, F. The Sliding Mode Control for Piezoelectric Tip/Tilt Platform on Precision Motion Tracking. Actuators 2024, 13, 269. [Google Scholar] [CrossRef]
- Çavuş, B.; Aktaş, M. A New Adaptive Terminal Sliding Mode Speed Control in Flux Weakening Region for DTC Controlled Induction Motor Drive. IEEE Trans. Power Electron. 2024, 39, 449–458. [Google Scholar] [CrossRef]
- Artetxe, E.; Barambones, O.; Calvo, I.; del Rio, A.; Uralde, J. Combined Control for a Piezoelectric Actuator Using a Feed-Forward Neural Network and Feedback Integral Fast Terminal Sliding Mode Control. Micromachines 2024, 15, 757. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, Z.; Fang, Q. Adaptive Backstepping Fast Terminal Sliding Mode Control With Estimated Inverse Hysteresis Compensation for Piezoelectric Positioning Stages. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1186–1190. [Google Scholar] [CrossRef]
- Yogi, S.C.; Behera, L.; Nahavandi, S. Adaptive Intelligent Minimum Parameter Singularity Free Sliding Mode Controller Design for Quadrotor. IEEE Trans. Autom. Sci. Eng. 2024, 21, 1805–1823. [Google Scholar] [CrossRef]
- Lin, F.J.; Wang, P.L.; Hsu, I.M. Intelligent Nonsingular Terminal Sliding Mode Controlled Nonlinear Time-Varying System Using RPPFNN-AMF. IEEE Trans. Fuzzy Syst. 2004, 32, 1036–1049. [Google Scholar] [CrossRef]
- Elahinia, M.H.; Ahmadian, M. An Enhanced SMA Phenomenological Model: II. The Experimental Study. Smart Mater. Struct. 2005, 14, 1309–1319. [Google Scholar] [CrossRef]
- Tanaka, K. A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior. Res. Mech. 1986, 18, 251–263. [Google Scholar]
- Li, X.; Zhang, B.; Zhang, D.; Zhao, X.; Han, J. Disturbance Compensation-based Output Feedback Adaptive Control for Shape Memory Alloy Actuator System. Int. J. Adv. Robot. Syst. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- Zou, H.M.; Zhang, G.S.; Hao, J. Nonsingular Fast Terminal Sliding Mode Tracking Control for Underwater Glider with Actuator Physical Constraints. ISA Trans. 2024, 146, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, H.; Cheng, Y.; Wen, G.; Chen, X.; Jiang, C. Position Tracking Control for Permanent Magnet Linear Motor via Fast Nonsingular Terminal Sliding Mode Control. Nonlinear Dyn. 2019, 97, 2595–2605. [Google Scholar] [CrossRef]
- Feix, T. Anthropomorphic Hand Optimization Based on a Latent Space Analysis. Ph.D. Thesis, Technical University of Vienna, Vienna, Austria, 2011. [Google Scholar]
Par. | Values | Par. | Values |
---|---|---|---|
62.26 °C | |||
h | |||
c |
Frequency (Hz) | ||
---|---|---|
1/20 | ||
1/15 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhi, W.; Shi, E.; Fan, X.; Zhao, M.; Zhang, B. Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System. Actuators 2024, 13, 367. https://doi.org/10.3390/act13090367
Li X, Zhi W, Shi E, Fan X, Zhao M, Zhang B. Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System. Actuators. 2024; 13(9):367. https://doi.org/10.3390/act13090367
Chicago/Turabian StyleLi, Xiaoguang, Wenzhuo Zhi, Enming Shi, Xiaoliang Fan, Ming Zhao, and Bi Zhang. 2024. "Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System" Actuators 13, no. 9: 367. https://doi.org/10.3390/act13090367
APA StyleLi, X., Zhi, W., Shi, E., Fan, X., Zhao, M., & Zhang, B. (2024). Adaptive Nonsingular Fast Terminal Sliding Mode Control for Shape Memory Alloy Actuated System. Actuators, 13(9), 367. https://doi.org/10.3390/act13090367