Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Primary and Secondary MSK Injury Prevention
3.2. Enhancement of Military Activities and Tasks
3.3. Functional Rehabilitation and Social Reintegration
4. Discussion
4.1. Health Benefits
4.2. Assessment Tools
4.3. Challenges and Areas of Opportunities
4.4. Study Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molloy, J.M.; Pendergrass, T.L.; Lee, I.E.; Chervak, M.C.; Hauret, K.G.; Rhon, D.I. Musculoskeletal Injuries and United States Army Readiness Part I: Overview of Injuries and their Strategic Impact. Mil. Med. 2020, 185, e1461–e1471. [Google Scholar] [CrossRef] [PubMed]
- Mauntel, T.C.; Tenan, M.S.; Freedman, B.A.; Potter, B.K.; Provencher, M.T.; Tokish, J.M.; Lee, I.E.; Rhon, D.I.; Bailey, J.R.; Burns, T.C. The military orthopedics tracking injuries and outcomes network: A solution for improving musculoskeletal care in the military health system. Mil. Med. 2022, 187, e282–e289. [Google Scholar] [CrossRef] [PubMed]
- Sammito, S.; Hadzic, V.; Karakolis, T.; Kelly, K.R.; Proctor, S.P.; Stepens, A.; White, G.; Zimmermann, W.O. Risk factors for musculoskeletal injuries in the military: A qualitative systematic review of the literature from the past two decades and a new prioritizing injury model. Mil. Med. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Labor Statistics. Employer-Reported Workplace Injuries and Illnesses-2020. Available online: https://www.bls.gov/news.release/archives/osh_11032021.htm# (accessed on 16 May 2024).
- Songer, T.J.; LaPorte, R.E. Disabilities due to injury in the military. Am. J. Prev. Med. 2000, 18, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Rhon, D.I.; Fraser, J.J.; Sorensen, J.; Greenlee, T.A.; Jain, T.; Cook, C.E. Delayed rehabilitation is associated with recurrence and higher medical care use after ankle sprain injuries in the united states military health system. J. Orthop. Sports Phys. Ther. 2021, 51, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Dijksma, C.I.; Bekkers, M.; Spek, B.; Lucas, C.; Stuiver, M. Epidemiology and financial burden of musculoskeletal injuries as the leading health problem in the military. Mil. Med. 2020, 185, e480–e486. [Google Scholar] [CrossRef]
- Golabchi, A.; Chao, A.; Tavakoli, M. A systematic review of industrial exoskeletons for injury prevention: Efficacy evaluation metrics, target tasks, and supported body postures. Sensors 2022, 22, 2714. [Google Scholar] [CrossRef]
- Dollar, A.M.; Herr, H. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Vukobratović, M. Humanoid robotics, past, present state, future. Dir. Robot. Cent. Mihailo Pupin Inst. 2006, 11000, 13–27. [Google Scholar]
- Huo, W.; Mohammed, S.; Moreno, J.C.; Amirat, Y. Lower limb wearable robots for assistance and rehabilitation: A state of the art. IEEE Syst. J. 2014, 10, 1068–1081. [Google Scholar] [CrossRef]
- Barreca, S.; Wolf, S.L.; Fasoli, S.; Bohannon, R. Treatment interventions for the paretic upper limb of stroke survivors: A critical review. Neurorehabilit. Neural Repair 2003, 17, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Teasell, R.W.; Kalra, L. What’s new in stroke rehabilitation. Stroke 2004, 35, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Proud, J.K.; Lai, D.T.; Mudie, K.L.; Carstairs, G.L.; Billing, D.C.; Garofolini, A.; Begg, R.K. Exoskeleton application to military manual handling tasks. Hum. Factors 2022, 64, 527–554. [Google Scholar] [CrossRef] [PubMed]
- Leova, L.; Cubanova, S.; Kutilek, P.; Volf, P.; Hejda, J.; Hybl, J.; Stastny, P.; Vagner, M.; Krivanek, V. Current state and design recommendations of exoskeletons of lower limbs in military applications. In Proceedings of International Conference on Modelling and Simulation for Autonomous Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 452–463. [Google Scholar]
- Jia-Yong, Z.; Ye, L.; Xin-Min, M.; Chong-Wei, H.; Xiao-Jing, M.; Qiang, L.; Yue-Jin, W.; Ang, Z. A preliminary study of the military applications and future of individual exoskeletons. J. Phys. Conf. Ser. 2020, 1507, 102044. [Google Scholar] [CrossRef]
- Nasa, P.; Jain, R.; Juneja, D. Delphi methodology in healthcare research: How to decide its appropriateness. World J. Methodol. 2021, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.H.; Shukla, R.K.; Delbecq, A.; Walster, G.W. A comparative study of differences in subjective likelihood estimates made by individuals, interacting groups, Delphi groups, and nominal groups. Organ. Behav. Hum. Perform. 1973, 9, 280–291. [Google Scholar] [CrossRef]
- Graefe, A.; Armstrong, J.S. Comparing face-to-face meetings, nominal groups, Delphi and prediction markets on an estimation task. Int. J. Forecast. 2011, 27, 183–195. [Google Scholar] [CrossRef]
- Dalkey, N.C.; Brown, B.B.; Cochran, S. The Delphi Method: An Experimental Study of Group Opinion; Rand Corporation: Santa Monica, CA, USA, 1969; Volume 3. [Google Scholar]
- Akins, R.B.; Tolson, H.; Cole, B.R. Stability of response characteristics of a Delphi panel: Application of bootstrap data expansion. BMC Med. Res. Methodol. 2005, 5, 37. [Google Scholar] [CrossRef]
- de la Tejera, J.A.; Bustamante-Bello, R.; Ramirez-Mendoza, R.A.; Izquierdo-Reyes, J. Systematic review of exoskeletons towards a general categorization model proposal. Appl. Sci. 2020, 11, 76. [Google Scholar] [CrossRef]
- De Looze, M.P.; Bosch, T.; Krause, F.; Stadler, K.S.; O’sullivan, L.W. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 2016, 59, 671–681. [Google Scholar] [CrossRef]
- Steinhilber, B.; Luger, T.; Schwenkreis, P.; Middeldorf, S.; Bork, H.; Mann, B.; von Glinski, A.; Schildhauer, T.A.; Weiler, S.; Schmauder, M. The use of exoskeletons in the occupational context for primary, secondary, and tertiary prevention of work-related musculoskeletal complaints. IISE Trans. Occup. Ergon. Hum. Factors 2020, 8, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Bogue, R. Exoskeletons—A review of industrial applications. Ind. Robot Int. J. 2018, 45, 585–590. [Google Scholar] [CrossRef]
- Kim, S.; Srinivasan, D.; Nussbaum, M.A.; Leonessa, A. Human gait during level walking with an occupational whole-body powered exoskeleton: Not yet a walk in the park. IEEE Access 2021, 9, 47901–47911. [Google Scholar] [CrossRef]
- Satpute, S.A.; Candiotti, J.L.; Duvall, J.A.; Kulich, H.; Cooper, R.; Grindle, G.G.; Gebrosky, B.; Brown, J.; Eckstein, I.; Sivakanthan, S. Participatory Action Design and Engineering of Powered Personal Transfer System for Wheelchair Users: Initial Design and Assessment. Sensors 2023, 23, 5540. [Google Scholar] [CrossRef] [PubMed]
- Coenen, P.; Gouttebarge, V.; van der Burght, A.S.; van Dieën, J.H.; Frings-Dresen, M.H.; van der Beek, A.J.; Burdorf, A. The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occup. Environ. Med. 2014, 71, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef]
- Crea, S.; Beckerle, P.; De Looze, M.; De Pauw, K.; Grazi, L.; Kermavnar, T.; Masood, J.; O’Sullivan, L.W.; Pacifico, I.; Rodriguez-Guerrero, C. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. Wearable Technol. 2021, 2, e11. [Google Scholar] [CrossRef]
- Monica, L.; Sara Anastasi, S.; Francesco Draicchio, F. Occupational Exoskeletons: Wearable Robotic Devices to Prevent Work-Related Musculoskeletal Disorders in the Workplace of the Future; European Agency Safety Health at Work: Bilbao, Spain, 2020; pp. 1–12. [Google Scholar]
- Monica, L.; Draicchio, F.; Ortiz, J.; Chini, G.; Toxiri, S.; Anastasi, S. Occupational exoskeletons: A new challenge for human factors, ergonomics and safety disciplines in the workplace of the future. In Proceedings of Congress of the International Ergonomics Association; Springer International Publishing: Cham, Switzerland, 2021; pp. 118–127. [Google Scholar]
- Xu, R.; Zhang, C.; He, F.; Zhao, X.; Qi, H.; Zhou, P.; Zhang, L.; Ming, D. How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity. Front. Neurol. 2018, 9, 915. [Google Scholar] [CrossRef]
- Peters, M.; Wischniewski, S. The Impact of Using Exoskeletons on Occupational Safety and Health; European Agency for Safety and Health at Work: Bilbao, Spain, 2019; pp. 1–10. [Google Scholar]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J. Neuroeng. Rehabil. 2014, 11, 80. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Heimgartner, R.; Arumukhom Revi, D.; Karavas, N.; Nathanson, D.; Galiana, I.; Eckert-Erdheim, A.; Murphy, P.; Perry, D. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 2019, 365, 668–672. [Google Scholar] [CrossRef]
- Miura, K.; Kadone, H.; Koda, M.; Abe, T.; Kumagai, H.; Nagashima, K.; Mataki, K.; Fujii, K.; Noguchi, H.; Funayama, T. The hybrid assistive limb (HAL) for Care Support successfully reduced lumbar load in repetitive lifting movements. J. Clin. Neurosci. 2018, 53, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Strickland, E. Good-bye, wheelchair. IEEE Spectr. 2012, 49, 30–32. [Google Scholar] [CrossRef]
- Hartigan, C.; Kandilakis, C.; Dalley, S.; Clausen, M.; Wilson, E.; Morrison, S.; Etheridge, S.; Farris, R. Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 2015, 21, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 2012, 91, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Font-Llagunes, J.M.; Lugrís, U.; Clos, D.; Alonso, F.J.; Cuadrado, J. Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury. J. Mech. Robot. 2020, 12, 031008. [Google Scholar] [CrossRef]
- Symsack, A.; Gaunaurd, I.; Thaper, A.; Springer, B.; Bennett, C.; Clemens, S.; Lucarevic, J.; Kristal, A.; Sumner, M.; Isaacson, B. Usability assessment of the rehabilitative lower limb orthopedic accommodating device (ReLOAD) by service members and veterans with lower limb loss. Mil. Med. 2021, 186, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Prensilia. Mia Hand: 1 Device, 3 Souls. Available online: https://www.prensilia.com/mia-hand/ (accessed on 27 September 2023).
- Willsey, M.S.; Nason-Tomaszewski, S.R.; Ensel, S.R.; Temmar, H.; Mender, M.J.; Costello, J.T.; Patil, P.G.; Chestek, C.A. Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder. Nat. Commun. 2022, 13, 6899. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.B.; Cui, X.T.; Weber, D.J.; Moran, D.W. Brain-controlled interfaces: Movement restoration with neural prosthetics. Neuron 2006, 52, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Chulock, M.A.; Brown, J.D.; Grindle, G.G.; Gebrosky, B.T.; Rahman, S.; Almosnino, S.; Garamella, L.; Robin, D. Access System. U.S. Patent 20220061536A1, 3 March 2022. Available online: https://patentimages.storage.googleapis.com/b3/ac/a2/69afdaab8b9b51/US20220061536A1.pdf (accessed on 16 May 2024).
- Steinhilber, B.; Luger, T.; Schwenkreis, P.; Middeldorf, S.; Bork, H.; Mann, B.; von Glinski, A.; Schildhauer, T.A.; Weiler, S.; Schmauder, M. Einsatz von Exoskeletten im Beruflichen Kontext zur Primär-, Sekundär-, und Tertiärprävention von Arbeitsassoziierten Muskuloskelettalen Beschwerden; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Esfahani, M.I.M.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I–“Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 2018, 70, 315–322. [Google Scholar] [CrossRef]
- Rashedi, E.; Kim, S.; Nussbaum, M.A.; Agnew, M.J. Ergonomic evaluation of a wearable assistive device for overhead work. Ergonomics 2014, 57, 1864–1874. [Google Scholar] [CrossRef]
- Theurel, J.; Desbrosses, K.; Roux, T.; Savescu, A. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Appl. Ergon. 2018, 67, 211–217. [Google Scholar] [CrossRef]
- Martin, W.B.; Boehler, A.; Hollander, K.W.; Kinney, D.; Hitt, J.K.; Kudva, J.; Sugar, T.G. Development and testing of the aerial porter exoskeleton. Wearable Technol. 2022, 3, e1. [Google Scholar] [CrossRef]
- Frisoli, A.; Procopio, C.; Chisari, C.; Creatini, I.; Bonfiglio, L.; Bergamasco, M.; Rossi, B.; Carboncini, M.C. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J. Neuroeng. Rehabil. 2012, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Delgado, A.D.; Weinrauch, W.J.; Manente, N.; Levy, I.; Escalon, M.X.; Bryce, T.N.; Spungen, A.M. Exoskeletal-assisted walking during acute inpatient rehabilitation leads to motor and functional improvement in persons with spinal cord injury: A pilot study. Arch. Phys. Med. Rehabil. 2020, 101, 607–612. [Google Scholar] [CrossRef]
- Livolsi, C.; Conti, R.; Guanziroli, E.; Friðriksson, Þ.; Alexandersson, Á.; Kristjánsson, K.; Esquenazi, A.; Molino Lova, R.; Romo, D.; Giovacchini, F. An impairment-specific hip exoskeleton assistance for gait training in subjects with acquired brain injury: A feasibility study. Sci. Rep. 2022, 12, 19343. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.; Crea, S.; Parri, A.; Bastiani, L.; Faraguna, U.; McKinney, Z.; Molino-Lova, R.; Pratali, L.; Vitiello, N. Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly. Sci. Rep. 2019, 9, 7157. [Google Scholar] [CrossRef]
- Asselin, P.K.; Avedissian, M.; Knezevic, S.; Kornfeld, S.; Spungen, A.M. Training persons with spinal cord injury to ambulate using a powered exoskeleton. J. Vis. Exp. 2016, 112, e54071. [Google Scholar] [CrossRef]
- Asselin, P.; Knezevic, S.; Kornfeld, S.; Cirnigliaro, C.; Agranova-Breyter, I.; Bauman, W.A. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 2015, 52, 147. [Google Scholar] [CrossRef]
- Asselin, P.; Cirnigliaro, C.M.; Kornfeld, S.; Knezevic, S.; Lackow, R.; Elliott, M.; Bauman, W.A.; Spungen, A.M. Effect of exoskeletal-assisted walking on soft tissue body composition in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2021, 102, 196–202. [Google Scholar] [CrossRef]
- Pasquina, P.F.; Carvalho, A.J.; Murphy, I.; Johnson, J.L.; Swanson, T.M.; Hendershot, B.D.; Corcoran, M.; Ritland, B.; Miller, M.E.; Isaacson, B.M. Case series of wounded warriors receiving initial fit PowerKnee™ prosthesis. JPO J. Prosthet. Orthot. 2017, 29, 88–96. [Google Scholar] [CrossRef]
- Knezevic, S.; Asselin, P.K.; Cirnigliaro, C.M.; Kornfeld, S.; Emmons, R.R.; Spungen, A.M. Oxygen uptake during exoskeletal-assisted walking in persons with paraplegia. Arch. Phys. Med. Rehabil. 2021, 102, 185–195. [Google Scholar] [CrossRef]
- Schalk, M.; Schalk, I.; Bauernhansl, T.; Siegert, J.; Schneider, U. Influence of Exoskeleton Use on Cardiac Index. Hearts 2022, 3, 117–128. [Google Scholar] [CrossRef]
- Tröster, M.; Budde, S.; Maufroy, C.; Andersen, M.S.; Rasmussen, J.; Schneider, U.; Bauernhansl, T. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. Int. J. Environ. Res. Public Health 2022, 19, 9040. [Google Scholar] [CrossRef]
- De Bock, S.; Ghillebert, J.; Govaerts, R.; Tassignon, B.; Rodriguez-Guerrero, C.; Crea, S.; Veneman, J.; Geeroms, J.; Meeusen, R.; De Pauw, K. Benchmarking occupational exoskeletons: An evidence mapping systematic review. Appl. Ergon. 2022, 98, 103582. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.D.; Jung, M.-Y.; Park, J.-H.; Kim, J. Evaluating the Validity and Reliability of the Korean Version of Upper Extremity Performance Test for the Elderly (TEMPA). Ther. Sci. Rehabil. 2019, 8, 65–76. [Google Scholar]
- Clemens, S.M.; Gailey, R.S.; Bennett, C.L.; Pasquina, P.F.; Kirk-Sanchez, N.J.; Gaunaurd, I.A. The Component Timed-Up-and-Go test: The utility and psychometric properties of using a mobile application to determine prosthetic mobility in people with lower limb amputations. Clin. Rehabil. 2018, 32, 388–397. [Google Scholar] [CrossRef]
- Sibley, K.M.; Straus, S.E.; Inness, E.L.; Salbach, N.M.; Jaglal, S.B. Balance assessment practices and use of standardized balance measures among Ontario physical therapists. Phys. Ther. 2011, 91, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Epomedicine. Examination of Gait. Available online: https://epomedicine.com/clinical-medicine/physical-examination-gait/ (accessed on 27 September 2023).
- Kopp, V.; Holl, M.; Schalk, M.; Daub, U.; Bances, E.; García, B.; Schalk, I.; Siegert, J.; Schneider, U. Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons. Wearable Technol. 2022, 3, e22. [Google Scholar] [CrossRef]
- Yan, T.; Cempini, M.; Oddo, C.M.; Vitiello, N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 2015, 64, 120–136. [Google Scholar] [CrossRef]
- Schiebl, J.; Tröster, M.; Idoudi, W.; Gneiting, E.; Spies, L.; Maufroy, C.; Schneider, U.; Bauernhansl, T. Model-based biomechanical exoskeleton concept optimization for a representative lifting task in logistics. Int. J. Environ. Res. Public Health 2022, 19, 15533. [Google Scholar] [CrossRef] [PubMed]
- Gailey, R.S.; Kirk-Sanchez, N.; Clemens, S.; Symsack, A.; Gaunaurd, I. Evidence-based amputee rehabilitation: A systematic approach to the restoration of function in people with lower limb loss. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 17–26. [Google Scholar] [CrossRef]
- Bequette, B.; Norton, A.; Jones, E.; Stirling, L. Physical and cognitive load effects due to a powered lower-body exoskeleton. Hum. Factors 2020, 62, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Cajigas, I.; Koenig, A.; Severini, G.; Smith, M.; Bonato, P. Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Sci. Robot. 2017, 2, eaam7749. [Google Scholar] [CrossRef]
- Beck, O.N.; Shepherd, M.K.; Rastogi, R.; Martino, G.; Ting, L.H.; Sawicki, G.S. Exoskeletons need to react faster than physiological responses to improve standing balance. Sci. Robot. 2023, 8, eadf1080. [Google Scholar] [CrossRef]
- Au, S.K.; Bonato, P.; Herr, H. An EMG-position controlled system for an active ankle-foot prosthesis: An initial experimental study. In Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR, Chicago, IL, USA, 28 June–1 July 2005; pp. 375–379. [Google Scholar]
Dimension | Specification | |||||
---|---|---|---|---|---|---|
Body Part | Full Body | Upper Body | Lower Body | Specific Segment | Specific Joint | Other |
Structure | Rigid | Soft | ||||
Action | Active | Semi-Active | Passive | |||
Powered Technology | Electric Actuator | Hydraulic Actuator | Pneumatic Actuator | Hybrid | Mechanical Systems | Others |
Purpose | Rehabilitation | Assistance | ||||
Application Area | Military | Healthcare | Research | Industrial | Civilian | Other Field |
Intended Working Method | Static | Dynamic | Static and Dynamic | |||
Desired Application | Supporting Movement | Supporting Posture | Correcting Posture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooper, R.A.; Smolinski, G.; Candiotti, J.L.; Satpute, S.; Grindle, G.G.; Sparling, T.L.; Nordstrom, M.J.; Yuan, X.; Symsack, A.; Lee, C.D.; et al. Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Actuators 2024, 13, 236. https://doi.org/10.3390/act13070236
Cooper RA, Smolinski G, Candiotti JL, Satpute S, Grindle GG, Sparling TL, Nordstrom MJ, Yuan X, Symsack A, Lee CD, et al. Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Actuators. 2024; 13(7):236. https://doi.org/10.3390/act13070236
Chicago/Turabian StyleCooper, Rory A., George Smolinski, Jorge L. Candiotti, Shantanu Satpute, Garrett G. Grindle, Tawnee L. Sparling, Michelle J. Nordstrom, Xiaoning Yuan, Allison Symsack, Chang Dae Lee, and et al. 2024. "Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection" Actuators 13, no. 7: 236. https://doi.org/10.3390/act13070236
APA StyleCooper, R. A., Smolinski, G., Candiotti, J. L., Satpute, S., Grindle, G. G., Sparling, T. L., Nordstrom, M. J., Yuan, X., Symsack, A., Lee, C. D., Vitiello, N., Knezevic, S., Sugar, T. G., Schneider, U., Kopp, V., Holl, M., Gaunaurd, I., Gailey, R., Bonato, P., ... Pasquina, P. F. (2024). Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Actuators, 13(7), 236. https://doi.org/10.3390/act13070236