Magnetically Actuated Transport Pipeline with Self-Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Process
2.3. Characterization
3. Results and Discussion
3.1. Mechanic–Electric Coupling Property of the MSP
3.2. Electrothermal Behavior of the MSP
3.3. Magnetic-Electric Behavior of the MSP
3.4. Magnetic–Electric Behavior of the MSP
4. Conclusions
- The sensor film shows good sensitivity, and the ∆R/R0 of the MSP is 142.8% at 4 mm compression displacement.
- Moreover, the heater film can be continuously heated for 15,000 s to maintain the temperature at 55.8 °C, which demonstrates good electrothermal stability.
- Furthermore, the MSP shows great magnetic-electric response performance, and the ∆R/R0 of the MSP reaches to 66.5% under 125 mT magnetic field density.
- Notably, the excellent mechanical–magnetic–electric coupling response properties endow the MSP with the magnetically actuated deformation capability and in situ sensing behavior. The actuated transportation process can be completed within 0.8 s and the ∆R/R0 of the MSP is about 22.6%.
- Clearly, the MSP possesses good magnetic actuate transportation-sensing coupling performance. The ink in the MSP cavity can flow rapidly and continuously under the real-time attraction of the magnetic field.
- Recently, magnetic soft robots are increasingly attractive in the biomedical field. Zang JF et al. proposed magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner [34]. However, the systematic methods to perceive the real-time motion of magnetic soft-pipeline robots are still scarce. The as-prepared MSP shows great magnetically actuated transport-self-sensing perception coupling performance. As a result, the research and applications of smart magnetic soft-pipeline robots in the biomedical and drug transportation field will be a main focus in the future.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Mei, D.; Tang, G.; Zhao, C.; Wang, J.; Luo, M.; Li, L.; Wang, Y. Strain and pressure sensors based on MWCNT/PDMS for human motion/perception detection. Polymers 2023, 15, 1386. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Choi, Y.W.; Shanmugasundaram, A.; Jeong, Y.J.; Park, J.; Oyunbaatar, N.E.; Kim, E.S.; Choi, M.; Lee, D.W. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nat. Commun. 2020, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhang, Y.; Zeng, Y.; Balogun, M.S.; Mai, K.; Zhang, Z.; Lu, X.; Tong, Y. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 2014, 26, 4724–4729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yun, G.; Jin, S.; Chen, Z.; Tang, S.Y.; Lu, H.; Du, H.; Li, W. Silver nanoflakes-enhanced anisotropic hybrid composites for integratable pressure sensors. Nanomaterials 2022, 12, 4018. [Google Scholar] [CrossRef] [PubMed]
- Yim, C.J.; Choy, J.Y.; Youi, H.K.; Hwang, J.H.; Jo, E.B.; Lee, J.H.; Kim, H.S. Dilute polymerization of aniline on PDMS substrate via surface modification using (3-Aminopropyl) Triethoxysilane for stretchable strain sensor. Sensors 2022, 22, 2741. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lei, X.; Xu, J.; Li, Y.; Wu, W.; Guo, X.; Ren, T.; Liu, F. High-performance porous PDMS-based piezoresistive sensor prepared by a modified microwave irradiation process. ACS Appl. Electron. Mater. 2022, 4, 5498–5505. [Google Scholar] [CrossRef]
- Varghese, H.; Hakkeem, H.M.A.; Chauhan, K.; Thouti, E.; Pillai, S.; Chandran, A. A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 2022, 98, 107339. [Google Scholar] [CrossRef]
- Zhou, B.; Aouraghe, M.A.; Chen, W.; Jiang, Q.; Xu, F. Highly responsive soft electrothermal actuator with high-output force based on polydimethylsiloxane (PDMS)-coated carbon nanotube (CNT) sponge. Nano Lett. 2023, 23, 6504–6511. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, X.; Zhang, Z.; Li, T.; Zhao, T.; Li, X.; Zhang, J. PDMS-based capacitive pressure sensor for flexible transparent electronics. J. Sens. 2019, 2019, 1418374. [Google Scholar] [CrossRef]
- Tas, M.O.; Baker, M.A.; Masteghin, M.G.; Bentz, J.; Boxshall, K.; Stolojan, V. Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Appl. Mater. Inter. 2019, 11, 39560–39573. [Google Scholar] [CrossRef]
- Lei, X.; Guo, D.; Ye, L.; Xu, L.; Yu, S.; Tong, L.; Zhao, Y.; Li, Y.; Yi, L.; Liu, F. Highly sensitive, ultrawide range, and multimodal flexible pressure sensor with hierarchical microstructure prepared by a one-step laser printing process. Adv. Mater. Technol. 2023, 8, 2202065. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Fan, B.; Wu, B.; Guo, X. Printed flexible strain sensor array for bendable interactive surface. Adv. Funct. Mater. 2020, 30, 2003214. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, X.; Song, R.; Fang, C.; Wang, Z.; Wang, C.; Huang, Y. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem. Eng. J. 2021, 404, 126940. [Google Scholar] [CrossRef]
- Fan, H.; Li, K.; Li, Q.; Hou, C.; Zhang, Q.; Li, Y.; Jin, W.; Wang, H. Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 2017, 5, 9778–9785. [Google Scholar] [CrossRef]
- Gong, X.; Yu, H.; Chen, X.; Xu, P.; Wang, H. Superhydrophobic PDMS/PPy-Ag/Graphene/PET films with highly efficient electromagnetic interference shielding, UV shielding, self-cleaning and electrothermal deicing. Mater. Today Phys. 2023, 34, 101076. [Google Scholar] [CrossRef]
- Shu, Q.; Liao, G.J.; Liu, S.; Deng, H.X.; Pang, H.M.; Xu, Z.B.; Gong, X.L.; Xuan, S.H. An electrothermal and magnetic dual-modal actuator toward soft self-sensing robots. Adv. Mater. Technol. 2023, 8, 2300019. [Google Scholar] [CrossRef]
- Xie, J.; Wei, S.; Lu, W.; Wu, S.; Zhang, Y.; Wang, R.; Zhu, N.; Chen, T. Environment-interactive programmable deformation of electronically innervated synergistic fluorescence-color/shape changeable hydrogel actuators. Small 2023, 19, 2304204. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, W.; Liu, S.; Huang, X.; Li, Y.; Li, Z.; Wu, H.; Yin, Z. Grab and heat: Highly responsive and shape adaptive soft robotic heaters for effective heating of objects of three-dimensional curvilinear surfaces. ACS Appl. Mater. Interfaces 2019, 11, 47476–47484. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.; Liu, G.H.; Liu, S.; Wu, Y.; Xuan, S.H.; Wang, S.; Xuan, S.Y.; Jiang, W.Q.; Gong, X.L. Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chem. Eng. J. 2021, 414, 128883. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, T.H.; Lee, S.H.; Pang, C.; Bae, J.W.; Kim, S.Y. Beyond human hand: Shape-adaptive and reversible magnetorheological elastomer-based robot gripper skin. ACS Appl. Mater. Interfaces 2020, 12, 44147–44155. [Google Scholar] [CrossRef]
- Christie, M.D.; Sun, S.S.; Ning, D.H.; Du, H.; Zhang, S.W.; Li, W.H. A torsional MRE joint for a C-shaped robotic leg. Smart Mater Struct. 2017, 26, 015002. [Google Scholar] [CrossRef]
- Hong, S.; Um, Y.; Park, J.; Park, H.W. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot. Sci. Robot. 2022, 7, eadd1017. [Google Scholar] [CrossRef]
- Sun, C.L.; Cao, X.F.; Zhou, X.L.; Gong, X.L.; Xuan, S.H. Deformation dependent sound absorption property of a novel magnetorheological membrane sound absorber. Front. Mater. 2020, 30, 598973. [Google Scholar] [CrossRef]
- Tang, S.Y.; Zhang, X.; Sun, S.; Yuan, D.; Zhao, Q.; Yan, S.; Deng, L.; Yun, G.; Zhang, J.; Zhang, S.W.; et al. Versatile microfluidic platforms enabled by novel magnetorheological elastomer microactuators. Adv. Funct. Mater. 2018, 28, 1705484. [Google Scholar] [CrossRef]
- Cao, X.F.; Xuan, S.H.; Sun, S.S.; Xu, Z.B.; Li, J.; Gong, X.L. 3D printing magnetic actuators for biomimetic applications. ACS Appl. Mater. Interfaces 2021, 13, 30127–30136. [Google Scholar] [CrossRef]
- Hu, T.; Xuan, S.H.; Ding, L.; Gong, X.L. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Design 2018, 156, 528–537. [Google Scholar] [CrossRef]
- Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H.J.; Algadi, H.; Al-Sayari, S.; Kim, D.E.; et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121. [Google Scholar] [CrossRef]
- Chae, W.H.; Patil, J.J.; Grossman, J.C. Conformal encapsulation of silver nanowire transparent electrodes by nanosized reduced graphene oxide leading to improved all-round stability. ACS Appl. Mater. Interfaces 2022, 14, 34997–35009. [Google Scholar] [CrossRef]
- Wang, Y.; Du, D.; Yang, X.; Zhang, X.; Zhao, Y. Optoelectronic and electrothermal properties of transparent conductive silver nanowires films. Nanomaterials 2019, 9, 904. [Google Scholar] [CrossRef]
- Gao, Q.; Kopera, B.A.F.; Zhu, J.; Liao, X.; Gao, C.; Retsch, M.; Agarwal, S.; Greiner, A. Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Adv. Funct. Mater. 2020, 30, 1907555. [Google Scholar] [CrossRef]
- Piedrahita-Bello, M.; Zan, Y.; Enriquez-Cabrera, A.; Molnár, G.; Tondu, B.; Salmon, L.; Bousseksou, A. Effect of the spin crossover filler concentration on the performance of composite bilayer actuators. Chem. Phys. Lett. 2022, 793, 139438. [Google Scholar] [CrossRef]
- Cao, X.F.; Xuan, S.H.; Hu, T.; Gong, X.L. 3D printing-assistant method for magneto-active pulse pump: Experiment, simulation, and deformation theory. Appl. Phys. Lett. 2020, 117, 241901. [Google Scholar] [CrossRef]
- Yang, C.; Gu, H.; Lin, W.; Yuen, M.M.; Wong, C.P.; Xiong, M.; Gao, B. Silver nanowires: From scalable synthesis to recyclable foldable electronics. Adv. Mater. 2011, 23, 3052–3056. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Xiang, Y.; Liao, F.; Li, N.; Li, J.; Wang, J.; Wu, Q.; Zhou, C.; Yang, Y.; et al. Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 2024, 9, eadh2479. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Q.; Ge, S.; Li, Y.; Xuan, S. Magnetically Actuated Transport Pipeline with Self-Perception. Actuators 2024, 13, 199. https://doi.org/10.3390/act13060199
Shu Q, Ge S, Li Y, Xuan S. Magnetically Actuated Transport Pipeline with Self-Perception. Actuators. 2024; 13(6):199. https://doi.org/10.3390/act13060199
Chicago/Turabian StyleShu, Quan, Shaolin Ge, Yanfang Li, and Shouhu Xuan. 2024. "Magnetically Actuated Transport Pipeline with Self-Perception" Actuators 13, no. 6: 199. https://doi.org/10.3390/act13060199
APA StyleShu, Q., Ge, S., Li, Y., & Xuan, S. (2024). Magnetically Actuated Transport Pipeline with Self-Perception. Actuators, 13(6), 199. https://doi.org/10.3390/act13060199