Identification Algorithm for Stability Improvement of Welding Robot End-Effector
Abstract
:1. Introduction
2. Constructing Dynamical Models
3. WLS-GA Identification Algorithm
3.1. Algorithm Flow
3.2. Algorithmic Components
3.2.1. Use Least Squares to Obtain the Range of the Solution Space
3.2.2. Composition of the Initial Antibody
3.2.3. Coding
3.2.4. Adaptation Evaluation
3.2.5. Selection
3.2.6. Crossover
3.2.7. Mutation
3.2.8. Decoding
4. Experimental Validation
4.1. Experimental Equipment
4.2. Parameter Identification
4.3. Parameter Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WLS-GA | Weighted Least Squares Genetic Algorithm |
WLS | Weighted Least Squares |
GA | Genetic Algorithm |
RMS | Root Mean Square |
OLS | Ordinary Least Squares |
CLIE | Closed-loop Input Error |
VRPF | Virtual Repulsive Potential Field |
WLS-RWPSO | Weighted Least Squares and Random Weighted Particle Swarm Optimization |
WOA-GA | Whale Optimization Algorithm and Genetic Algorithm |
FADE | Fuzzy Adaptive Differential Evolution |
WMR | Wheeled Mobile Robot |
PID | Proportional Integral Derivative |
SDP | State-dependent Parameter |
RLS | Recursive Least Square |
T-S | Takagi–Sugeno |
MDMFs | Multidimensional Membership Functions |
HGA | Hierarchical Genetic Algorithm |
References
- Perrusquía, A.; Garrido, R.; Yu, W. Stable robot manipulator parameter identification: A closed-loop input error approach. Automatica 2022, 141, 110294. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, H. Control strategy based on improved fuzzy algorithm for energy control of wrist rehabilitation robot. Alex. Eng. J. 2023, 77, 634–644. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, F.; Sun, H.; Yan, R.; Tang, X.; Zhang, H. Robotic milling posture adjustment under composite constraints: A weight-sequence identification and optimization strategy. Rob. Comput. Integr. Manuf. 2024, 85, 102635. [Google Scholar] [CrossRef]
- Li, Z.; Peng, F.; Yan, R.; Tang, X.; Xin, S.; Wu, J. A virtual repulsive potential field algorithm of posture trajectory planning for accuracy improvement in robotic multi-axis milling. Robot. Comput.-Integr. Manuf. 2022, 74, 102288. [Google Scholar] [CrossRef]
- Urrea, C.; Pascal, J. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Comput. Electr. Eng. 2018, 67, 791–806. [Google Scholar] [CrossRef]
- Tang, M.; Yan, Y.; An, B.; Wang, W.; Zhang, Y. Dynamic Parameter Identification of Collaborative Robot Based on WLS-RWPSO Algorithm. Machines 2023, 11, 316. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y. Identification Modelling and fault-tolerant predictive control for industrial input nonlinear actuator system. Machines 2023, 11, 240. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Chen, J.; Chen, K.; Lin, B.; Xu, F. Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm. Adv. Eng. Softw. 2019, 135, 102684. [Google Scholar] [CrossRef]
- Al-Dabbagh, R.D.; Kinsheel, A.; Mekhilef, S.; Baba, M.S.; Shamshirband, S. System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Adv. Eng. Softw. 2014, 78, 60–66. [Google Scholar] [CrossRef]
- van Zutven, P.; Kostić, D.; Nijmeijer, H. Parameter identification of robotic systems with series elastic actuators. IFAC Proc. Vol. 2010, 43, 350–355. [Google Scholar] [CrossRef]
- West, C.; Montazeri, A.; Monk, S.D.; Taylor, C.J. A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. IFAC-PapersOnLine 2016, 49, 1261–1266. [Google Scholar] [CrossRef]
- Ali, M.A.; Radzak, M.S.; Mailah, M.; Yusoff, N.; Abd Razak, B.; Karim, M.S.A.; Ameen, W.; Jabbar, W.A.; Alsewari, A.A.; Rassem, T.H.; et al. A novel inertia moment estimation algorithm collaborated with Active Force Control scheme for wheeled mobile robot control in constrained environments. Expert Syst. Appl. 2021, 183, 115454. [Google Scholar] [CrossRef]
- Joseph, S.B.; Dada, E.G.; Abidemi, A.; Oyewola, D.O.; Khammas, B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon 2022, 8, e09399. [Google Scholar] [CrossRef]
- Son, N.N.; Kien, C.V.; Anh, H.P.H. A novel adaptive feed-forward-PID controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on neural network and modified differential evolution algorithm. Robot. Auton. Syst. 2017, 96, 65–80. [Google Scholar] [CrossRef]
- Yusof, R.; Abdul Rahman, R.Z.; Khalid, M.; Ibrahim, M.F. Optimization of fuzzy model using genetic algorithm for process control application. J. Franklin Inst. 2011, 348, 1717–1737. [Google Scholar] [CrossRef]
- West, C.; Wilson, E.D.; Clairon, Q.; Monk, S.; Montazeri, A.; Taylor, C.J. State-dependent parameter model identification for inverse dead-zone control of a hydraulic manipulator. IFAC-PapersOnLine 2018, 51, 126–131. [Google Scholar] [CrossRef]
- Mendes, J.; Araújo, R.; Souza, F. Adaptive fuzzy identification and predictive control for industrial processes. Expert Syst. Appl. 2013, 40, 6964–6975. [Google Scholar] [CrossRef]
- Alves, T.G.; Lages, W.F.; Henriques, R.V.B. Parametric Identification and Controller Design for a Differential-Drive Mobile Robot. IFAC-PapersOnLine 2018, 51, 437–442. [Google Scholar] [CrossRef]
- Agand, P.; Shoorehdeli, M.A.; Khaki-Sedigh, A. Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification. Eng. Appl. Artif. Intell. 2017, 65, 1–11. [Google Scholar] [CrossRef]
- Adánez, J.M.; Al-Hadithi, B.M.; Jiménez, A. Multidimensional membership functions in T–S fuzzy models for modelling and identification of nonlinear multivariable systems using genetic algorithms. Appl. Soft Comput. 2019, 75, 607–615. [Google Scholar] [CrossRef]
- Marie, S.; Courteille, E.; Maurine, P. Elasto-geometrical modeling and calibration of robot manipulators: Application to machining and forming applications. Mech. Mach. Theory 2013, 69, 13–43. [Google Scholar] [CrossRef]
- Xu, C. Research on Dynamic Parameter Identification and Feedforward Control of Articulated Robot. Master’s Thesis, Southeast University, Nanjing, China, 2018. [Google Scholar]
Joint i | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
165 | −10 | 90 | 350 | 120 | 360 | |
−165 | −170 | −160 | −350 | −120 | −360 | |
135 | 135 | 135 | 420 | 260 | 650 | |
135 | 135 | 200 | 200 | 200 | 200 |
Joint Number | Fourier Series Verification Trajectory RMS/N*m | Linear Validation Trajectory RMS/N*m | Circular Validation Trajectory RMS/N*m | ||||||
---|---|---|---|---|---|---|---|---|---|
WLS | OLS | WLS-GA | WLS | OLS | WLS-GA | WLS | OLS | WLS-GA | |
1 | 40.12 | 61.40 | 13.30 | 28.79 | 46.03 | 24.33 | 41.29 | 54.90 | 26.00 |
2 | 43.60 | 50.76 | 30.80 | 38.44 | 47.23 | 31.63 | 44.01 | 49.02 | 31.71 |
3 | 22.11 | 32.65 | 13.00 | 21.49 | 31.99 | 17.80 | 26.71 | 30.13 | 19.68 |
4 | 0.86 | 1.95 | 0.80 | 1.20 | 1.91 | 1.50 | 1.65 | 1.82 | 2.05 |
5 | 1.83 | 2.18 | 1.67 | 1.10 | 1.32 | 1.28 | 2.09 | 2.36 | 1.87 |
6 | 0.57 | 0.57 | 0.53 | 0.40 | 0.58 | 0.55 | 1.02 | 1.02 | 0.98 |
Joint Number | Fourier Series Validation Trajectory Accuracy Improvement/% | Linear Validation Trajectory Accuracy Improvement/% | Circular Validation Trajectory Accuracy Improvement/% | ||||||
---|---|---|---|---|---|---|---|---|---|
WLS | OLS | WLS-GA | WLS | OLS | WLS-GA | WLS | OLS | WLS-GA | |
1 | 0 | −53.04 | 66.85 | 0 | −59.88 | 15.49 | 0 | −32.96 | 37.03 |
2 | 0 | −16.42 | 29.36 | 0 | −22.87 | 17.72 | 0 | −11.38 | 27.95 |
3 | 0 | −47.67 | 41.20 | 0 | −48.86 | 17.17 | 0 | −12.80 | 26.32 |
4 | 0 | −55.90 | 6.98 | 0 | −59.17 | −25.00 | 0 | −10.30 | −30.30 |
5 | 0 | −19.13 | 8.74 | 0 | −20.00 | −16.36 | 0 | −12.92 | 10.53 |
6 | 0 | 0 | 7.02 | 0 | −45.00 | −37.50 | 0 | 0 | 3.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Y.; Wei, B.; Yang, G. Identification Algorithm for Stability Improvement of Welding Robot End-Effector. Actuators 2024, 13, 175. https://doi.org/10.3390/act13050175
Liu L, Zhang Y, Wei B, Yang G. Identification Algorithm for Stability Improvement of Welding Robot End-Effector. Actuators. 2024; 13(5):175. https://doi.org/10.3390/act13050175
Chicago/Turabian StyleLiu, Lijian, Yongkang Zhang, Bin Wei, and Guang Yang. 2024. "Identification Algorithm for Stability Improvement of Welding Robot End-Effector" Actuators 13, no. 5: 175. https://doi.org/10.3390/act13050175
APA StyleLiu, L., Zhang, Y., Wei, B., & Yang, G. (2024). Identification Algorithm for Stability Improvement of Welding Robot End-Effector. Actuators, 13(5), 175. https://doi.org/10.3390/act13050175