Improvement in the Accuracy and Efficiency of Smoothed Particle Hydrodynamics: Point Generation and Adaptive Particle Refinement/Coarsening Algorithms
Abstract
:1. Introduction
2. Mathematical Model
3. Numerical Methodology
3.1. Initial Point Generation
3.2. SPH Adaptive Algorithm
3.2.1. Particle Refinement Algorithm
3.2.2. Particle Coarsening Algorithm
3.2.3. APR Technology
4. Results and Discussion
4.1. A Viscous Flow Passing around a Rectangular Cylinder
4.2. A Free Body Sinking in a Fluid
5. Conclusions
- (1)
- A novel point generation algorithm based on the accelerated ray method is proposed, where the boundary is parameterized using Catmull–Rom cubic splines, and background Cartesian points are composed of particles within the flow field. The new point generation algorithm accelerates the discretization of the flow field into particles.
- (2)
- An improved dynamic particle refinement/coarsening algorithm based on the APR technique has been developed to solve the computational dispersion problem at the boundary between regions with different particle resolutions.
- (3)
- The shifting algorithm was improved in this work to ensure the particles are always well distributed during numerical calculations and, thus, efficiently facilitate the adaptive particle refinement/coarsening processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Wei, Z.; Zhou, H.; Yao, B.; Lian, L. Numerical Study on the Water Entry of a Freely Falling Unmanned Aerial-Underwater Vehicle. J. Mar. Sci. Eng. 2023, 11, 552. [Google Scholar] [CrossRef]
- Zang, Z.; Fang, Z.; Qiao, K.; Zhao, L.; Zhou, T. Numerical Study on Wave Dissipation and Mooring Force of a Horizontal Multi-Cylinder Floating Breakwater. J. Mar. Sci. Eng. 2024, 12, 449. [Google Scholar] [CrossRef]
- Díaz Ojeda, H.R.; Oyuela, S.; Sosa, R.; Otero, A.D.; Pérez Arribas, F. Fishing Vessel Bulbous Bow Hydrodynamics—A Numerical Reverse Design Approach. J. Mar. Sci. Eng. 2024, 12, 436. [Google Scholar] [CrossRef]
- Kim, J.W.; Woo, S.B. A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant. Renew. Energy 2023, 219, 119408. [Google Scholar] [CrossRef]
- Børve, S.; Omang, M.; Trulsen, J. Regularized smoothed particle hydrodynamics with improved multi-resolution handling. J. Comput. Phys. 2005, 208, 345–367. [Google Scholar] [CrossRef]
- Li, H.S. SPH Liquid Simulation Method Based on Adaptive Smooth Length. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2020. [Google Scholar] [CrossRef]
- Chiron, L.; Oger, G.; Leffe, M.D.; Touzé, D.L. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations. J. Comput. Phys. 2018, 354, 552–575. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Nelson, R.P.; Papaloizou, J.C. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics. Mon. Not. R. Astron. Soc. 1994, 270, 1–20. [Google Scholar] [CrossRef]
- Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P. Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 2006, 213, 803–822. [Google Scholar] [CrossRef]
- Marsh, A.; Oger, G.; Touzé, D.L.; Guibert, D. Validation of a conservative variable-resolution SPH scheme including ∇h terms. In Proceedings of the 6th international SPHERIC Workshop (SPHERIC 2011), Hambourg, Germany, 8–10 June 2011. [Google Scholar]
- Attwood, R.E.; Goodwin, S.P.; Whitworth, A.P. Adaptive smoothing lengths in SPH. Astron. Astrophys. 2007, 464, 447–450. [Google Scholar] [CrossRef]
- Kitsionas, S.; Whitworth, A.P. Smoothed Particle Hydrodynamics with particle splitting, applied to self-gravitating collapse. Mon. Not. R. Astron. Soc. 2002, 330, 129–136. [Google Scholar] [CrossRef]
- Olejnik, M.; Szewc, K.; Pozorski, J. SPH with dynamical smoothing length adjustment based on the local flow kinematics. J. Comput. Phys. 2017, 348, 23–44. [Google Scholar] [CrossRef]
- Qiang, H.F.; Gao, W.R. SPH method with fully variable smoothing lengths and implementation. Chin. J. Comput. Phys. 2008, 5, 569–575. [Google Scholar] [CrossRef]
- Yang, X.F.; Kong, S.C. Adaptive resolution for multiphase smoothed particle hydrodynamics. Comput. Phys. Commun. 2019, 239, 112–125. [Google Scholar] [CrossRef]
- Feldman, J.; Bonet, J. Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Meth. Eng. 2007, 72, 295–324. [Google Scholar] [CrossRef]
- Vacondio, R.; Rogers, B.D.; Stansby, P.K.; Mignosa, P.; Feldman, J. Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Method. Appl. M. 2013, 256, 132–148. [Google Scholar] [CrossRef]
- Wang, L.; Xu, F.; Yang, Y.; Wang, J.Y. A dynamic particle refinement strategy in Smoothed Particle Hydrodynamics for Fluid-Structure Interaction problems. Eng. Anal. Bound. Elem. 2019, 100, 140–149. [Google Scholar] [CrossRef]
- Barcarolo, D.A.; Touzé, D.L.; Oger, G.; Vuyst, F.D. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method. J. Comput. Phys. 2014, 273, 640–657. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Xu, F.; Yang, Y.; Dai, Z.; Wang, J.Y. A GPU-accelerated adaptive particle refinement for multi-phase flow and fluid-structure coupling SPH. Ocean Eng. 2023, 279, 114514. [Google Scholar] [CrossRef]
- Li, L.; Shen, L.; Nguyen, G.D.; El-Zein, A.; Maggi, F. A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput. Mech. 2018, 62, 1071–1085. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating Free Surface Flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Ren, J.; Ouyang, J.; Jiang, T. Simulation of complex filling process based on the generalized Newtonian fluid model using a corrected SPH scheme. Comput. Mech. 2012, 49, 643–665. [Google Scholar] [CrossRef]
- Xue, B.; Wang, S.P.; Peng, Y.X.; Zhang, A.M. A novel coupled Riemann SPH–RKPM model for the simulation of weakly compressible fluid–structure interaction problems. Ocean Eng. 2022, 266, 112447. [Google Scholar] [CrossRef]
- Fürstenau, J.P.; Weißenfels, C.; Wriggers, P. Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH). Comput. Mech. 2020, 65, 487–502. [Google Scholar] [CrossRef]
- Jiang, T.; Lu, L.G.; Lu, W.G. The numerical investigation of spreading process of two viscoelastic droplets impact problem by using an improved SPH scheme. Comput. Mech. 2014, 53, 977–999. [Google Scholar] [CrossRef]
- Colagrossi, A.; Antuono, M.; Touzé, D.L. Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys. Rev. E 2009, 79, 056701. [Google Scholar] [CrossRef]
- Wang, C. Physically Based Modeling and Simulation of 1D Flexible Parts Deformation with Constraints. Master’s Thesis, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Wang, L.Q. Research on Algorithms of Computational Geometry in GIS. Master’s Thesis, Central South University, Changsha, China, 2008. [Google Scholar]
- Wang, H.J. 3D Solid Modeling and Boolean Operation Modeling Technique. Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2007. [Google Scholar]
- López, Y.R.; Roose, D. Dynamic refinement for fluid flow simulations with SPH. In Proceedings of the II International Conference on Particle-Based Methods: Fundamentals and Applications, Barcelona, Spain, 26–28 October 2011. [Google Scholar]
- López, Y.R.; Roose, D.; Morfa, C.R. Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations. Comput. Mech. 2013, 51, 731–741. [Google Scholar] [CrossRef]
- Rossi, E.; Colagrossi, A.; Durante, D.; Graziani, G. Simulating 2D viscous flow around geometries with vertices through the Diffused Vortex Hydrodynamics method. Comput. Method. Appl. Mech. Eng. 2016, 302, 147–169. [Google Scholar] [CrossRef]
- Swegle, J.W.; Hicks, D.L.; Attaway, S.W. Smoothed Particle Hydrodynamics Stability Analysis. J. Comput. Phys. 1995, 116, 123–134. [Google Scholar] [CrossRef]
- Marrone, S.; Colagrossi, A.; Antuono, M.; Colicchio, G.; Graziani, G. An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 2013, 245, 456–475. [Google Scholar] [CrossRef]
- Barcarolo, D.A. Improvement of the Precision and the Efficiency of the SPH Method: Theoretical and Numerical Study. Ph.D. Thesis, Ecole Centrale de Nantes, Nantes, France, 2013. [Google Scholar]
Cd.mean | Cl.rms | |
---|---|---|
FVM [34] | 2.090 | 0.724 |
Improved SPH | 2.140 | 0.657 |
Error | 2.39% | 9.25% |
θ(z) (rad) | xco − xc (m) | yco − yc (m) | |
---|---|---|---|
Exp. [20] | −1.57 | 0.82 | 2.60 |
SPH, L/Δx = 200–100 | −1.64 | 0.80 | 2.67 |
Error | 4.46% | 2.44% | 2.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ding, Y.; Wu, W.; Li, W.; Zhang, Z.; Jiao, Y. Improvement in the Accuracy and Efficiency of Smoothed Particle Hydrodynamics: Point Generation and Adaptive Particle Refinement/Coarsening Algorithms. Actuators 2024, 13, 174. https://doi.org/10.3390/act13050174
Zhang J, Ding Y, Wu W, Li W, Zhang Z, Jiao Y. Improvement in the Accuracy and Efficiency of Smoothed Particle Hydrodynamics: Point Generation and Adaptive Particle Refinement/Coarsening Algorithms. Actuators. 2024; 13(5):174. https://doi.org/10.3390/act13050174
Chicago/Turabian StyleZhang, Jun, Yanchao Ding, Wei Wu, Wenjie Li, Zhaoming Zhang, and Yanmei Jiao. 2024. "Improvement in the Accuracy and Efficiency of Smoothed Particle Hydrodynamics: Point Generation and Adaptive Particle Refinement/Coarsening Algorithms" Actuators 13, no. 5: 174. https://doi.org/10.3390/act13050174
APA StyleZhang, J., Ding, Y., Wu, W., Li, W., Zhang, Z., & Jiao, Y. (2024). Improvement in the Accuracy and Efficiency of Smoothed Particle Hydrodynamics: Point Generation and Adaptive Particle Refinement/Coarsening Algorithms. Actuators, 13(5), 174. https://doi.org/10.3390/act13050174