Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation
Abstract
:1. Introduction
1.1. Background
1.2. Hybrid-Actuated Soft Robots
2. Materials and Methods
2.1. Dynamic Model of a Hybrid-Actuated Soft Robot
2.1.1. Governing Equations of Motion
2.1.2. Material Constitutive Law
2.1.3. Boundary Conditions
2.1.4. Semi-Discretization in Time for the General PDE Solution
2.2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFib | Atrial Fibrillation |
BC | Boundary Condition |
BDF | Backward Differentiation Formulas |
BVP | Boundary Value Problem |
PCC | Piecewise Constant Curvature |
PDE | Partial Differential Equation |
PV | Pulmonary Vein |
RCI | Robot-assisted Catheter Intervention |
RFA | Radio Frequency Ablation |
MAE | Mean Absolute Error |
ODE | Ordinary Differential Equation |
References
- Podrid, P.J.; Myerburg, R.J. Epidemiology and stratification of risk for sudden cardiac death. Clin. Cardiol. Int. Index. Peer-Rev. J. Adv. Treat. Cardiovasc. Dis. 2005, 28, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Cofiño-Fabres, C.; Passier, R.; Schwach, V. Towards Improved Human In Vitro Models for Cardiac Arrhythmia: Disease Mechanisms, Treatment, and Models of Atrial Fibrillation. Biomedicines 2023, 11, 2355. [Google Scholar] [CrossRef] [PubMed]
- Deedwania, P.C.; Lardizabal, J.A. Atrial fibrillation in heart failure: A comprehensive review. Am. J. Med. 2010, 123, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Perera, T.; Ganesan, A.; Sullivan, T.; Lau, D.H.; Roberts-Thomson, K.C.; Brooks, A.G.; Sanders, P. Complications of catheter ablation of atrial fibrillation: A systematic review. Circ. Arrhythmia Electrophysiol. 2013, 6, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Beinart, R.; Abbara, S.; Blum, A.; Ferencik, M.; Heist, K.; Ruskin, J.; Mansour, M. Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 2011, 22, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Akinyemi, T.; Du, W.; Ma, J.; Chen, X.; Wang, F.; Omisore, O.; Luo, J.; Wang, H.; Wang, L. Technical and Clinical Progress on Robot-Assisted Endovascular Interventions: A Review. Micromachines 2023, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- Hooshiar, A.; Najarian, S.; Dargahi, J. Haptic telerobotic cardiovascular intervention: A review of approaches, methods, and future perspectives. IEEE Rev. Biomed. Eng. 2019, 13, 32–50. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Thai, M.T.; Hoang, T.T.; Davies, J.; Phan, P.T.; Zhu, K.; Wu, L.; Brodie, M.A.; Tsai, D.; Ha, Q.P.; et al. Development of a soft robotic catheter for vascular intervention surgery. Sens. Actuators A Phys. 2023, 357, 114380. [Google Scholar] [CrossRef]
- Jolaei, M.; Hooshiar, A.; Dargahi, J.; Packirisamy, M. Toward task autonomy in robotic cardiac ablation: Learning-based kinematic control of soft tendon-driven catheters. Soft Robot. 2021, 8, 340–351. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Zhang, J.; Li, H.; Li, K.; Zhang, J. The critical technologies of vascular interventional robotic catheterization: A Review. IEEE Sens. J. 2023, 23, 30051–30069. [Google Scholar] [CrossRef]
- Thai, M.T.; Phan, P.T.; Hoang, T.T.; Wong, S.; Lovell, N.H.; Do, T.N. Advanced intelligent systems for surgical robotics. Adv. Intell. Syst. 2020, 2, 1900138. [Google Scholar] [CrossRef]
- Okumura, Y.; Johnson, S.B.; Bunch, T.J.; Henz, B.D.; O’BRIEN, C.J.; Packer, D.L. A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention. J. Cardiovasc. Electrophysiol. 2008, 19, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Roshanfar, M.; Taki, S.; Sayadi, A.; Cecere, R.; Dargahi, J.; Hooshiar, A. Hyperelastic Modeling and Validation of Hybrid-Actuated Soft Robot with Pressure-Stiffening. Micromachines 2023, 14, 900. [Google Scholar] [CrossRef] [PubMed]
- Roshanfar, M.; Sayadi, A.; Dargahi, J.; Hooshiar, A. Stiffness adaptation of a hybrid soft surgical robot for improved safety in interventional surgery. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4853–4859. [Google Scholar]
- Roshanfar, M.; Dargahi, J.; Hooshiar, A. Toward semi-autonomous stiffness adaptation of pneumatic soft robots: Modeling and validation. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS), Montreal, QC, Canada, 11–13 August 2021; pp. 1–5. [Google Scholar]
- Polygerinos, P.; Correll, N.; Morin, S.A.; Mosadegh, B.; Onal, C.D.; Petersen, K.; Cianchetti, M.; Tolley, M.T.; Shepherd, R.F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 2017, 19, 1700016. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, T. Design and Experimental Study of Cavity Structure of Pneumatic Soft Actuator. Actuators 2023, 12, 314. [Google Scholar] [CrossRef]
- Torkaman, T.; Roshanfar, M.; Dargahi, J.; Hooshiar, A. Embedded Six-DoF Force–Torque Sensor for Soft Robots With Learning-Based Calibration. IEEE Sens. J. 2023, 23, 4204–4215. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Caprio, A.; Hsue, W.; Tschabrunn, C.; Liu, C.; Mosadegh, B.; Dunham, S. Creating Stretchable Electronics from Dual Layer Flex-PCB for Soft Robotic Cardiac Mapping Catheters. Micromachines 2023, 14, 884. [Google Scholar] [CrossRef]
- Walker, J.; Zidek, T.; Harbel, C.; Yoon, S.; Strickland, F.S.; Kumar, S.; Shin, M. Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators 2020, 9, 3. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.; Galloway, K.C.; Wood, R.J.; Bertoldi, K.; Walsh, C.J. Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 2015, 31, 778–789. [Google Scholar] [CrossRef]
- Natarajan, E.; Chia, K.Y.; Faudzi, A.A.M.; Lim, W.H.; Ang, C.K.; Jafaari, A. Bio inspired salamander robot with Pneu-Net Soft actuators–design and walking gait analysis. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e137055. [Google Scholar]
- Hooshiar, A.; Sayadi, A.; Jolaei, M.; Dargahi, J. Analytical tip force estimation on tendon-driven catheters through inverse solution of cosserat rod model. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 1829–1834. [Google Scholar]
- Aloi, V.A.; Rucker, D.C. Estimating loads along elastic rods. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2867–2873. [Google Scholar]
- Till, J.; Rucker, D.C. Elastic stability of cosserat rods and parallel continuum robots. IEEE Trans. Robot. 2017, 33, 718–733. [Google Scholar] [CrossRef]
- Qin, L.; Peng, H.; Huang, X.; Liu, M.; Huang, W. Modeling and simulation of dynamics in soft robotics: A review of numerical approaches. Curr. Robot. Rep. 2023, 4, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Wang, X.; Meng, D.; Liang, B.; Xu, H. Dynamics Modeling and Verification of Parallel Extensible Soft Robot Based on Cosserat Rod Theory. In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico, 20–24 August 2022; pp. 1933–1939. [Google Scholar]
- Katzschmann, R.K.; Della Santina, C.; Toshimitsu, Y.; Bicchi, A.; Rus, D. Dynamic motion control of multi-segment soft robots using piecewise constant curvature matched with an augmented rigid body model. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Republic of Korea, 14–18 April 2019; pp. 454–461. [Google Scholar]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum robots for medical applications: A survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Till, J.; Aloi, V.; Rucker, C. Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int. J. Robot. Res. 2019, 38, 723–746. [Google Scholar] [CrossRef]
- Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Janabi-Sharifi, F.; Jalali, A.; Walker, I.D. Cosserat rod-based dynamic modeling of tendon-driven continuum robots: A tutorial. IEEE Access 2021, 9, 68703–68719. [Google Scholar] [CrossRef]
- Linn, J.; Lang, H.; Tuganov, A. Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping. Mech. Sci. 2013, 4, 79–96. [Google Scholar] [CrossRef]
- Celaya, E.A.; Anza, J.J. BDF-α: A multistep method with numerical damping control. System 2013, 500, 9. [Google Scholar]
- Hosovsky, A.; Pitel, J.; Zidek, K. Analysis of hysteretic behavior of two-DOF soft robotic arm. MM Sci. J. 2016, 18, 13–22. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Unit |
---|---|---|---|
Backbone radius | r | 6 | mm |
Air chamber diameter | 3 | mm | |
Tendon passages diameter | 1.5 | mm | |
Tendons offset | 4 | mm | |
Young’s modulus | E | 0.05 | MPa |
Density | 1070 | kg/m | |
Poisson’s ratio | 0.49 | - | |
Viscous damping coefficients (bt) [31] | Nm | ||
Viscous damping coefficients (se) [31] | Nm | ||
Drag damping coefficient [31] | kg/m | ||
Time increment [31] | s | ||
Coefficient of BDF-alpha method [31] | −0.2 | - |
Case | Pressure | Tendons’ Tensions (Sequential) | ||
---|---|---|---|---|
(kPa) | (N) | (N) | (N) | |
1 | 0 | 0–3 | 0 | 0 |
2 | 10 | 0–3 | 0–3 | 0 |
3 | 20 | 0–3 | 0 | 0–3 |
4 | 30 | 0 | 0–3 | 0–3 |
5 | 40 | 0 | 0 | 0–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshanfar, M.; Dargahi, J.; Hooshiar, A. Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation. Actuators 2024, 13, 8. https://doi.org/10.3390/act13010008
Roshanfar M, Dargahi J, Hooshiar A. Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation. Actuators. 2024; 13(1):8. https://doi.org/10.3390/act13010008
Chicago/Turabian StyleRoshanfar, Majid, Javad Dargahi, and Amir Hooshiar. 2024. "Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation" Actuators 13, no. 1: 8. https://doi.org/10.3390/act13010008
APA StyleRoshanfar, M., Dargahi, J., & Hooshiar, A. (2024). Cosserat Rod-Based Dynamic Modeling of a Hybrid-Actuated Soft Robot for Robot-Assisted Cardiac Ablation. Actuators, 13(1), 8. https://doi.org/10.3390/act13010008