An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review
Abstract
:1. Introduction
2. Background on Upper Limb Prosthetics Socket Design and Manufacturing
2.1. Importance of ULP Socket Design and Manufacturing
2.2. Traditional Methods and Limitations
3. Advantages, Limitations and Challenges in a 3D Printing Focused Approach
3.1. Advantages of 3D Printing in ULP Socket Design and Manufacturing
3.1.1. Customization and Personalization
3.1.2. Rapid Prototyping and Reduced Fitting Time
3.1.3. Cost-Effectiveness and Material Efficiency
3.1.4. Material Selection
3.1.5. Collaboration and Knowledge Sharing
3.1.6. Accessibility and Remote Fabrication
3.2. Current Limitations and Challenges
3.2.1. Material Properties and Durability
3.2.2. Post-Processing and Finishing
3.2.3. Quality Control and Standardization
3.2.4. Skill and Training Requirements
3.2.5. Regulatory and Reimbursement Issues
3.2.6. Cost Considerations and Material Limitations
4. Implementation of Mass Customization in ULP Field
4.1. Concept and Implementation of Mass Customization
4.2. Concept and Implementation of Mass Customization and Its Benefits for Prosthetic Socket Design
4.3. Challenges in Integrating Mass Customization into Prosthetics
5. Enable Interdisciplinary Collaboration for Upper Limb Prosthetic
5.1. Examples of Opportunities for Interdisciplinary Research in ULP Socket Design and Manufacturing
5.2. Challenges and Opportunities for Interdisciplinary Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ten Kate, J.; Smit, G.; Breedveld, P. 3D-Printed Upper Limb Prostheses: A Review. Disabil. Rehabil. Assist. Technol. 2017, 12, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.; Hean, S. Why We Need Theory to Help Us Better Understand the Nature of Interprofessional Education, Practice and Care. J. Interprof. Care 2013, 27, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, P. Smoothing the Waters: Observations on the Process of Cross-Disciplinary Research Collaboration. Soc. Stud. Sci. 2003, 33, 539–562. [Google Scholar] [CrossRef]
- Klein, J.T. Evaluation of Interdisciplinary and Transdisciplinary Research: A Literature Review. Am. J. Prev. Med. 2008, 35, S116–S123. [Google Scholar] [CrossRef]
- Rhoten, D.; Pfirman, S. Women in Interdisciplinary Science: Exploring Preferences and Consequences. Res. Policy 2007, 36, 56–75. [Google Scholar] [CrossRef]
- Stokols, D.; Misra, S.; Moser, R.P.; Hall, K.L.; Taylor, B.K. The Ecology of Team Science: Understanding Contextual Influences on Transdisciplinary Collaboration. Am. J. Prev. Med. 2008, 35, S96–S115. [Google Scholar] [CrossRef]
- Murray, C.D.; Patchick, E.L.; Caillette, F.; Howard, T.; Pettifer, S. Can Immersive Virtual Reality Reduce Phantom Limb Pain? Stud. Health Technol. Inform. 2006, 119, 407–412. [Google Scholar] [PubMed]
- Bruce, A.; Lyall, C.; Tait, J.; Williams, R. Interdisciplinary Integration in Europe: The Case of the Fifth Framework Programme. Futures 2004, 36, 457–470. [Google Scholar] [CrossRef]
- Olsen, J.; Day, S.; Dupan, S.; Nazarpour, K.; Dyson, M. 3D-Printing and Upper-Limb Prosthetic Sockets: Promises and Pitfalls. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Muriel, J.; Romero-Sánchez, F.; Alonso-Sánchez, F.J.; Rodríguez Salgado, D. Advances in Orthotic and Prosthetic Manufacturing: A Technology Review. Materials 2020, 13, 295. [Google Scholar] [CrossRef]
- Binedell, T.; Subburaj, K. Design for Additive Manufacturing of Prosthetic and Orthotic Devices. In Revolutions in Product Design for Healthcare; Subburaj, K., Sandhu, K., Ćuković, S., Eds.; Design Science and Innovation; Springer: Singapore, 2022; pp. 75–99. ISBN 9789811694547. [Google Scholar]
- Kyberd, P.J.; Hill, W. Survey of Upper Limb Prosthesis Users in Sweden, the United Kingdom and Canada. Prosthet Orthot. Int. 2011, 35, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Dudkiewicz, I.; Gabrielov, R.; Seiv-Ner, I.; Zelig, G.; Heim, M. Evaluation of Prosthetic Usage in Upper Limb Amputees. Disabil. Rehabil. 2004, 26, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Østlie, K.; Lesjø, I.M.; Franklin, R.J.; Garfelt, B.; Skjeldal, O.H.; Magnus, P. Prosthesis Use in Adult Acquired Major Upper-Limb Amputees: Patterns of Wear, Prosthetic Skills and the Actual Use of Prostheses in Activities of Daily Life. Disabil. Rehabil. Assist. Technol. 2012, 7, 479–493. [Google Scholar] [CrossRef]
- Zuo, K.J.; Olson, J.L. The Evolution of Functional Hand Replacement: From Iron Prostheses to Hand Transplantation. Plast Surg. 2014, 22, 44–51. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Chappell, P.H. The Southampton Hand: An Intelligent Myoelectric Prosthesis. J. Rehabil. Res. Dev. 1994, 31, 326–334. [Google Scholar] [PubMed]
- Pylatiuk, C.; Schulz, S.; Döderlein, L. Results of an Internet Survey of Myoelectric Prosthetic Hand Users. Prosthet Orthot. Int. 2007, 31, 362–370. [Google Scholar] [CrossRef]
- Asghari Oskoei, M.; Hu, H. Myoelectric Control Systems—A Survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Zuniga, J.; Katsavelis, D.; Peck, J.; Stollberg, J.; Petrykowski, M.; Carson, A.; Fernandez, C. Cyborg Beast: A Low-Cost 3d-Printed Prosthetic Hand for Children with Upper-Limb Differences. BMC Res. Notes 2015, 8, 10. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Fuh, J.Y.H.; Lu, W.F. 3D Printing and 3D Bioprinting in Pediatrics. Bioengineering 2017, 4, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, Q.; Pu, F.; Boone, D.; Zhang, M. A Review of the Application of Additive Manufacturing in Prosthetic and Orthotic Clinics from a Biomechanical Perspective. Engineering 2020, 6, 1258–1266. [Google Scholar] [CrossRef]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. Pharm. Ther. 2014, 39, 704–711. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-1-4939-2113-3. [Google Scholar]
- Paterson, A.M.; Bibb, R.; Campbell, R.I.; Bingham, G. Comparing Additive Manufacturing Technologies for Customised Wrist Splints. Rapid Prototyp. J. 2015, 21, 230–243. [Google Scholar] [CrossRef]
- Hoy, M.B. 3D Printing: Making Things at the Library. Med. Ref. Serv. Q. 2013, 32, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, C.; Grindle, G.; Salatin, B.; Dicianno, B.E. Innovations with 3-Dimensional Printing in Physical Medicine and Rehabilitation: A Review of the Literature. PM R 2016, 8, 1201–1212. [Google Scholar] [CrossRef]
- Tino, R.; Moore, R.; Antoline, S.; Ravi, P.; Wake, N.; Ionita, C.N.; Morris, J.M.; Decker, S.J.; Sheikh, A.; Rybicki, F.J.; et al. COVID-19 and the Role of 3D Printing in Medicine. 3D Print. Med. 2020, 6, 11. [Google Scholar] [CrossRef]
- An, J.; Teoh, J.E.M.; Suntornnond, R.; Chua, C.K. Design and 3D Printing of Scaffolds and Tissues. Engineering 2015, 1, 261–268. [Google Scholar] [CrossRef]
- Diment, L.E.; Thompson, M.S.; Bergmann, J.H.M. Clinical Efficacy and Effectiveness of 3D Printing: A Systematic Review. BMJ Open 2017, 7, e016891. [Google Scholar] [CrossRef]
- Piller, F.T.; Lindgens, E.; Steiner, F. Mass Customization at Adidas: Three Strategic Capabilities to Implement Mass Customization. SSRN J. 2012. [Google Scholar] [CrossRef]
- Management: Mass Customization Concept. Available online: https://studycorgi.com/management-mass-customization-concept/ (accessed on 30 April 2023).
- Gourley, L. What Is the Definition of Mass Customization. Available online: https://www.ptc.com/en/blogs/iiot/definition-of-mass-customization (accessed on 30 April 2023).
- DOLLARHIDE, M. Mass Customization: Definition, 4 Main Types, Benefits, Examples. Available online: https://www.investopedia.com/terms/m/masscustomization.asp (accessed on 30 April 2023).
- Góྷrski, F.; Zawadzki, P.; Wichniarek, R.; Kuczko, W.; Slupińska, S.; Żukowska, M. Automated Design and Rapid Manufacturing of Low-Cost Customized Upper Limb Prostheses. J. Phys. Conf. Ser. 2022, 2198, 012040. [Google Scholar] [CrossRef]
- Radu (Frenț), C.; Roșu, M.M.; Matei, L.; Ungureanu, L.M.; Iliescu, M. Concept, Design, Initial Tests and Prototype of Customized Upper Limb Prosthesis. Appl. Sci. 2021, 11, 3077. [Google Scholar] [CrossRef]
- Stephens-Fripp, B.; Jean Walker, M.; Goddard, E.; Alici, G. A Survey on What Australians with Upper Limb Difference Want in a Prosthesis: Justification for Using Soft Robotics and Additive Manufacturing for Customized Prosthetic Hands. Disabil. Rehabil. Assist. Technol. 2020, 15, 342–349. [Google Scholar] [CrossRef]
- Dhokia, V.; Bilzon, J.; Seminati, E.; Talamas, D.C.; Young, M.; Mitchell, W. The Design and Manufacture of a Prototype Personalized Liner for Lower Limb Amputees. Procedia CIRP 2017, 60, 476–481. [Google Scholar] [CrossRef]
- Ulrich, K. The Role of Product Architecture in the Manufacturing Firm. Res. Policy 1995, 24, 419–440. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive Manufacturing and Its Societal Impact: A Literature Review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Franke, N.; Piller, F. Value Creation by Toolkits for User Innovation and Design: The Case of the Watch Market. J. Prod. Innov. Manag. 2004, 21, 401–415. [Google Scholar] [CrossRef]
- Koren, Y.; Shpitalni, M. Design of Reconfigurable Manufacturing Systems. J. Manuf. Syst. 2010, 29, 130–141. [Google Scholar] [CrossRef]
- Biddiss, E.A.; Chau, T.T. Upper Limb Prosthesis Use and Abandonment: A Survey of the Last 25 Years. Prosthet Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Birtchnell, T.; Hoyle, W. 3D Printing for Development in the Global South: The 3D4D Challenge; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Salmi, M.; Paloheimo, K.S.; Tuomi, J.; Wolff, J.; Makitie, A. Accuracy of Medical Models Made by Additive Manufacturing (Rapid Manufacturing). J. Craniomaxillofac. Surg. 2013, 41, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, A. Understanding Additive Manufacturing; Strohm, C., Ed.; Hanser Publications: Cincinnat, OH, USA, 2011; p. 117. ISBN 978-1-56990-507-4. [Google Scholar]
- Nayak, C.; Singh, A.; Chaudhary, H. Topology Optimisation of Transtibial Prosthesis Socket Using Finite Element Analysis. Int. J. Biomed. Eng. Technol. 2017, 24, 323. [Google Scholar] [CrossRef]
- Mickan, S.M. Evaluating the Effectiveness of Health Care Teams. Aust. Health Rev. 2005, 29, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Bercovitz, J.; Feldman, M. The Mechanisms of Collaboration in Inventive Teams: Composition, Social Networks, and Geography. Res. Policy 2011, 40, 81–93. [Google Scholar] [CrossRef]
- Mathieu, J.; Maynard, M.T.; Rapp, T.; Gilson, L. Team Effectiveness 1997–2007: A Review of Recent Advancements and a Glimpse Into the Future. J. Manag. 2008, 34, 410–476. [Google Scholar] [CrossRef]
- LeRouge, C.; Mantzana, V.; Wilson, E.V. Healthcare Information Systems Research, Revelations and Visions. Eur. J. Inf. Syst. 2007, 16, 669–671. [Google Scholar] [CrossRef]
- Walshe, K.; Rundall, T.G. Evidence-Based Management: From Theory to Practice in Health Care. Milbank Q. 2001, 79, 429–457. [Google Scholar] [CrossRef] [PubMed]
- Sengeh, D.M.; Herr, H. A Variable-Impedance Prosthetic Socket for a Transtibial Amputee Designed from Magnetic Resonance Imaging Data. JPO J. Prosthet. Orthot. 2013, 25, 129–137. [Google Scholar] [CrossRef]
- Laszczak, P.; Jiang, L.; Bader, D.L.; Moser, D.; Zahedi, S. Development and Validation of a 3D-Printed Interfacial Stress Sensor for Prosthetic Applications. Med. Eng. Phys. 2015, 37, 132–137. [Google Scholar] [CrossRef]
- Laschowski, B.; Razavian, R.S.; McPhee, J. Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses with Energy Regeneration. IEEE Trans. Med. Robot. Bionics 2021, 3, 455–462. [Google Scholar] [CrossRef]
- McFarland, L.V.; Winkler, S.L.H.; Heinemann, A.W.; Jones, M.; Esquenazi, A. Unilateral Upper-Limb Loss: Satisfaction and Prosthetic-Device Use in Veterans and Servicemembers from Vietnam and OIF/OEF Conflicts. J. Rehabil. Res. Dev. 2010, 47, 299. [Google Scholar] [CrossRef]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- Pallari, J.H.; Dalgarno, K.W.; Woodburn, J. Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering. IEEE Trans. Biomed. Eng. 2010, 57, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Feller, I.; Ailes, C.P.; Roessner, J.D. Impacts of Research Universities on Technological Innovation in Industry: Evidence from Engineering Research Centers. Res. Policy 2002, 31, 457–474. [Google Scholar] [CrossRef]
- Bozeman, B.; Boardman, C. Managing the New Multipurpose, Multidiscipline University Research Centers: Institutional Innovation in the Academic Community; IBM Endowment for the Business of Government: Arlington, TX, USA, 2003. [Google Scholar]
- Eigenbrode, S.D.; O’Rourke, M.; Wulfhorst, J.D.; Althoff, D.M.; Goldberg, C.S.; Merrill, K.; Morse, W.; Nielsen-Pincus, M.; Stephens, J.; Winowiecki, L.; et al. Employing Philosophical Dialogue in Collaborative Science. BioScience 2007, 57, 55–64. [Google Scholar] [CrossRef]
- Graybill, J.K.; Dooling, S.; Shandas, V.; Withey, J.; Greve, A.; Simon, G.L. A Rough Guide to Interdisciplinarity: Graduate Student Perspectives. BioScience 2006, 56, 757. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Qin, S. An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review. Actuators 2023, 12, 223. https://doi.org/10.3390/act12060223
Xu K, Qin S. An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review. Actuators. 2023; 12(6):223. https://doi.org/10.3390/act12060223
Chicago/Turabian StyleXu, Kai, and Shengfeng Qin. 2023. "An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review" Actuators 12, no. 6: 223. https://doi.org/10.3390/act12060223
APA StyleXu, K., & Qin, S. (2023). An Interdisciplinary Approach and Advanced Techniques for Enhanced 3D-Printed Upper Limb Prosthetic Socket Design: A Literature Review. Actuators, 12(6), 223. https://doi.org/10.3390/act12060223