Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors
Abstract
:1. Introduction
2. Materials and Methods
3. Numerical Activity
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mehla, A.; Deora, S. Use of Machine Learning and IoT in Agriculture. In EAI/Springer Innovations in Communication and Computing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 277–293. [Google Scholar] [CrossRef]
- De Simone, M.; Celenta, G.; Rivera, Z.; Guida, D. Mechanism Design for a Low-Cost Automatic Breathing Applications for Developing Countries. Lect. Notes Netw. Syst. 2022, 472, 345–352. [Google Scholar] [CrossRef]
- Vitlox, O. Technological Developments in Agricultural Machinery. Eur. J. Mech. Environ. Eng. 1983, 30, 19–25. [Google Scholar]
- Proceedings of the 11th International Symposium on Farm Machinery and Processes Management in Sustainable Agriculture, FMPMSA 2022, Bari, Italy, 13–15 June 2022; Volume 289. Lecture Notes in Civil Engineering.
- De Simone, M.; Rivera, Z.; Guida, D. Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 2018, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Olalla, E.; Cadena-Lema, H.; Domínguez Limaico, H.; Nogales-Romero, J.; Zambrano, M.; Vásquez Ayala, C. Irrigation Control System Using Machine Learning Techniques Applied to Precision Agriculture (Internet of Farm Things IoFT). Lect. Notes Netw. Syst. 2022, 512, 329–342. [Google Scholar] [CrossRef]
- Celenta, G.; De Simone, M. Retrofitting Techniques for Agricultural Machines. Lect. Notes Netw. Syst. 2020, 128, 388–396. [Google Scholar] [CrossRef]
- Casillo, M.; Colace, F.; Lorusso, A.; Marongiu, F.; Santaniello, D. An IoT-Based System for Expert User Supporting to Monitor, Manage and Protect Cultural Heritage Buildings. Stud. Comput. Intell. 2022, 1030, 143–154. [Google Scholar] [CrossRef]
- Di Filippo, A.; Lombardi, M.; Marongiu, F.; Lorusso, A.; Santaniello, D. Generative design for project optimization. In DMSVIVA; KSI Research: Pittsburgh, PA, USA, 2021; pp. 110–115. [Google Scholar]
- Casillo, M.; Gupta, B.; Lombardi, M.; Lorusso, A.; Santaniello, D.; Valentino, C. Context Aware Recommender Systems: A Novel Approach Based on Matrix Factorization and Contextual Bias. Electronics 2022, 11, 1003. [Google Scholar] [CrossRef]
- La Regina, R.; Pappalardo, C.; Guida, D. Dynamic Analysis and Attitude Control of a Minisatellite. Lect. Notes Netw. Syst. 2022, 472, 244–251. [Google Scholar] [CrossRef]
- Sato, S.; Jiang, Y.; Russell, R.; Miller, J.; Karavalakis, G.; Durbin, T.; Johnson, K. Experimental driving performance evaluation of battery-powered medium and heavy duty all-electric vehicles. Int. J. Electr. Power Energy Syst. 2022, 141, 108100. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Monsalve, G.; Cardenas, A.; Mousazadeh, H. Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles 2022, 4, 843–864. [Google Scholar] [CrossRef]
- Manrique-Escobar, C.; Pappalardo, C.; Guida, D. A multibody system approach for the systematic development of a closed-chain kinematic model for two-wheeled vehicles. Machines 2021, 9, 245. [Google Scholar] [CrossRef]
- De Simone, M.; Laiola, V.; Rivera, Z.; Guida, D. Dynamic Analysis of a Hybrid Heavy-Vehicle. Lect. Notes Netw. Syst. 2022, 472, 236–243. [Google Scholar] [CrossRef]
- Pappalardo, C.; Vece, A.; Galdi, D.; Guida, D. Developing a Reciprocating Mechanism for the Emergency Implementation of a Mechanical Pulmonary Ventilator using an Integrated CAD-MBD Procedure. FME Trans. 2022, 50, 238–247. [Google Scholar] [CrossRef]
- De Simone, M.; Ventura, G.; Lorusso, A.; Guida, D. Attitude Controller Design for Micro-satellites. Lect. Notes Netw. Syst. 2021, 233, 21–31. [Google Scholar] [CrossRef]
- Curcio, M.; Pappalardo, C.; Guida, D. Multibody Modeling and Dynamical Analysis of a Fixed-Wing Aircraft. Lect. Notes Netw. Syst. 2022, 472, 77–84. [Google Scholar] [CrossRef]
- Sicilia, M.; De Simone, M. Development of an Energy Recovery Device Based on the Dynamics of a Semi-trailer. In Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2020; pp. 74–84. [Google Scholar] [CrossRef]
- Pappalardo, C.; Lettieri, A.; Guida, D. Identification of a Dynamical Model of the Latching Mechanism of an Aircraft Hatch Door using the Numerical Algorithms for Subspace State-Space System Identification. IAENG Int. J. Appl. Math. 2021, 51, 1–14. [Google Scholar]
- Shanmugasundar, G.; Sivaramakrishnan, R.; Venugopal, S. Modeling, design and static analysis of seven degree of freedom articulated inspection robot. Adv. Mater. Res. 2013, 655–657, 1053–1056. [Google Scholar] [CrossRef]
- Menon, A.; Prabhakar, M. Intelligent IoT-Based Monitoring Rover for Smart Agriculture Farming in Rural Areas. Lect. Notes Netw. Syst. 2022, 401, 619–630. [Google Scholar] [CrossRef]
- Botta, A.; Moreno, E.; Baglieri, L.; Colucci, G.; Tagliavini, L.; Quaglia, G. Autonomous Driving System for Reversing an Articulated Rover for Precision Agriculture. Mech. Mach. Sci. 2022, 120, 412–419. [Google Scholar] [CrossRef]
- Henry, D.; Aubert, H.; Galaup, P.; Veronese, T. Dynamic Estimation of the Yield in Precision Viticulture from Mobile Millimeter-Wave Radar Systems. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4704915. [Google Scholar] [CrossRef]
- Ribeiro, J.; Gaspar, P.; Soares, V.; Caldeira, J. Computational Simulation of an Agricultural Robotic Rover for Weed Control and Fallen Fruit Collection-Algorithms for Image Detection and Recognition and Systems Control, Regulation, and Command. Electronics 2022, 11, 790. [Google Scholar] [CrossRef]
- Kuska, M.; Heim, R.; Geedicke, I.; Gold, K.; Brugger, A.; Paulus, S. Digital plant pathology: A foundation and guide to modern agriculture. J. Plant Dis. Prot. 2022, 129, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Netthonglang, C.; Jongrukchob, T.; Thongtan, T.; Bairaksa, J. Real-time and online post-processing kinematic positioning services. In Proceedings of the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Prachuap Khiri Khan, Thailand, 24–27 May 2022. [Google Scholar] [CrossRef]
- Dobretsov, R.; Dobretsova, S.; Voinash, S.; Shcherbakov, A.; Dolmatov, S.; Sokolova, V.; Taraban, V.; Alekseeva, S.; Taraban, M. Elements of the mathematical support for the design of an autonomous tractor. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032039. [Google Scholar] [CrossRef]
- Nunez-Quispe, J.; Lleren-Sernaque, J.; Lara-Chavez, E. Mechanical Design of a ROVER prototype for Exploration tasks on Mars: Structural and Transient Dynamics simulation analysis. In Proceedings of the 2021 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 8–10 October 2021. [Google Scholar] [CrossRef]
- Manrique-Escobar, C.; Pappalardo, C.; Guida, D. On the Analytical and Computational Methodologies for Modelling Two-wheeled Vehicles within the Multibody Dynamics Framework: A Systematic Literature Review. J. Appl. Comput. Mech. 2022, 8, 153–181. [Google Scholar] [CrossRef]
- Renius, K.T. Fundamentals of Tractor Design; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Cho, M.S.; Hwang, H.S.; Lee, M.H.; Kim, B.; Zinn, M.R. A screwjack mechanism based separation device driven by a piezo actuator. Int. J. Precis. Eng. Manuf. 2012, 13, 2079–2082. [Google Scholar] [CrossRef]
- Gallina, P. Vibration in screw jack mechanisms: Experimental results. J. Sound Vib. 2005, 282, 1025–1041. [Google Scholar] [CrossRef]
- Liguori, A.; Armentani, E.; Bertocco, A.; Formato, A.; Pellegrino, A.; Villecco, F. Noise reduction in spur gear systems. Entropy 2020, 22, 1306. [Google Scholar] [CrossRef]
- Cammarata, A.; Maddío, P.D. A system-based reduction method for spatial deformable multibody systems using global flexible modes. J. Sound Vib. 2021, 504, 116118. [Google Scholar] [CrossRef]
- De Simone, M.; Guida, D. Modal coupling in presence of dry friction. Machines 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Formato, A.; Ianniello, D.; Pellegrino, A.; Villecco, F. Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Noormohamed, A.; Mercan, O.; Ashasi-Sorkhabi, A. Optimal active control of structures using a screw jack device and open-loop linear quadratic gaussian controller. Front. Built Environ. 2019, 5, 43. [Google Scholar] [CrossRef]
- Formato, A.; Romano, R.; Villecco, F. A Novel Device for the Soil Sterilizing in Sustainable Agriculture. Lect. Notes Netw. Syst. 2021, 233, 858–865. [Google Scholar] [CrossRef]
- Shanmugasundar, G.; Sivaramakrishnan, R. Design and analysis of a newly developed seven degree of freedom robot for inspection. Int. J. Control Theory Appl. 2016, 9, 393–402. [Google Scholar]
- Cammarata, A.; Sinatra, R.; Maddìo, P.D. Static condensation method for the reduced dynamic modeling of mechanisms and structures. Arch. Appl. Mech. 2019, 89, 2033–2051. [Google Scholar] [CrossRef]
- Araki, Y.; Asai, T.; Kimura, K.; Maezawa, K.; Masui, T. Nonlinear vibration isolator with adjustable restoring force. J. Sound Vib. 2013, 332, 6063–6077. [Google Scholar] [CrossRef] [Green Version]
- Thesiya, D.; Srinivas, A.; Shukla, P. A novel axial foldable mechanism for a segmented primary mirror of space telescope. J. Astron. Space Sci. 2015, 32, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Kou, Z.; Wu, J.; Yahya, W.; Villecco, F. Multipoint Optimal Minimum Entropy Deconvolution Adjusted for Automatic Fault Diagnosis of Hoist Bearing. Shock Vib. 2021, 2021, 6614633. [Google Scholar] [CrossRef]
- Manuale Degli Organi Delle Macchine; Tecnologie Industriali: Padova, Italy, 2006.
- Sun, X.; Liu, H.; Song, W.; Villecco, F. Modeling of eddy current welding of rail: Three-dimensional simulation. Entropy 2020, 22, 947. [Google Scholar] [CrossRef]
TIRE SIZE | SERVICE DESCRIPTION | ADDITIONAL CHARACTERISTICS | ||||
Standard code designation | ||||||
11.5/70 - | 16 135 A6 14 PR | - | ||||
-Metric designation- | ||||||
Tire size | PR | Pattern | Diameter | Width | Max.Load (kg) | Rim size |
6.50/80-12 | 4 | KT801 | 604 | 165 | 500 | 5J12 |
Nominal electric engine speed | 5200 rpm |
Electric engine mechanical power | 1200 W |
Nominal CC supply voltage | 48 V |
Transmission Ratio | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Simone, M.C.; Veneziano, S.; Guida, D. Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors. Actuators 2022, 11, 358. https://doi.org/10.3390/act11120358
De Simone MC, Veneziano S, Guida D. Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors. Actuators. 2022; 11(12):358. https://doi.org/10.3390/act11120358
Chicago/Turabian StyleDe Simone, Marco Claudio, Salvio Veneziano, and Domenico Guida. 2022. "Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors" Actuators 11, no. 12: 358. https://doi.org/10.3390/act11120358
APA StyleDe Simone, M. C., Veneziano, S., & Guida, D. (2022). Design of a Non-Back-Drivable Screw Jack Mechanism for the Hitch Lifting Arms of Electric-Powered Tractors. Actuators, 11(12), 358. https://doi.org/10.3390/act11120358