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Abstract: In this paper, we analyze the behavior of a single pad system in the presence of dry
friction. The goal is to investigate the path that leads a stable mechanical system to unstable behavior.
In doing so, we studied the behavior of a discrete three DOF model, a continuous model and a finite
element model of the pad. The numerical results are consistent with the experimental investigation
conducted on a brake disk for railway application.

Keywords: dry friction; friction-induced vibration; mode coupling; stability analysis; transient analysis

1. Introduction

The aim of this study is to investigate the influence of dry friction on the emergence of forms of
instability for stable systems. The presence of friction can lead a stable mechanical system to unstable
behavior due to geometrical instability. Geometrically-induced instability or kinematic instability
emphasizes the physical parameters of the system along with the coefficient of friction as the reason for
the squeal phenomenon. Such instability can result in unwanted vibration, e.g., squeal noise for disk
brakes, or wanted vibration, e.g., musical string instruments. Since the early 20th century, many
investigators have examined the problem with experimental, analytical and computational techniques,
but there is still no definitive solution to eliminate this phenomenon [1].

1.1. Automotive Brake Squeal

In recent experimental work, it has been observed that the position of the center of pressure at
the brake pad/disc contact area has an influence on the onset of brake squeal [2]. The effects of the
main parameters such as the coefficient of friction and the attack angle are studied to understand their
influences on the stability of the system. In fact, for a given formulation, disc pad porosity can affect
friction, wear and squeal [3]. Based on customer’s needs for noise-free brakes, car manufactures are
increasingly installing damping kits in their braking systems. However, the installation of the damping
kits may excessively increase softness in the brake system, by loosening the stroke feeling of a brake
pedal and increasing compressibility over durability [4]. Brake shims are widely used to reduce the
squeal occurrence rate. In particular, laminated shims can effectively suppress squeal via viscoelastic
damping of an adhesive layer [5]. According to studies conducted by Festjens, shims are almost
uniquely in their normal direction in brake systems. The studies that focus on the added damping and
stiffening induced by the viscoelastic materials reveal that certain eigenmodes of the viscoelastic shims
can reveal instabilities that would not exist without them [6]. Fulco underlined the importance of the
contact stiffness between the baking plate and the piston or caliper on the squeal noise generation and
how the shim improves this factor [7]. It has however been shown by Spelsberg-Korspeter, analytically
and experimentally, that the stiffness properties of the disc are important and that splitting of double
modes of the disc has a stabilizing effect [8]. For this reason, optimization studies for brake squeals are
conducted to minimize the strain energy of vibrating pads with constrained layer damping. To achieve
such an effect, finite element analysis and experiments are done, and the assumed-coupling mode
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method is used to solve such a problem [9]. In most computer-aided engineering (CAE) simulations of
brake noise, shims are modeled as thin sheets of steel or are not modeled at all. This introduces
some inaccuracy because the damping effect and flexibility of the rubber and adhesive material are
ignored [10]. Another aspect when designing mechanical assemblies is assembly tolerance design, a
very important issue that must be seriously considered by designers [11–14]. For Bonnay et al., 2015,
two kinds of geometric imperfections must be taken into account separately: the first is “disc thickness
variation” as a function of the disc, while the second is the “plateau” as a function of the friction pad.
The authors show that the introduction of both kinds of geometrical imperfections has an influence
on the dynamic behavior and on mode lock-in (through modification of the eigen-frequencies of the
system). The pad mode is mostly influenced by bumping, which modifies the contact localization [15].
Furthermore, Zhang et al., 2017, demonstrated that the pressure angle or the brake force direction have
an important influence on the unstable chatter and squeal noise: the greater the pressure angle deviates
from the wheel center, the greater the possibility of chatter and squeal noise is, and the possibility of
chatter and squeal noise is also increased along with the addition of the friction factor [16]. Zainudin
and Abu Bakar investigated squeal occurrences in a disc brake assembly without a thin plate shim
for various operating conditions using a drag-type brake dynamometer. The authors identified for
the dominant squeal frequencies several shapes of thin plate shim in order to modify the contact
pressure distribution on the brake pads [17]. Shimizu et al., 2014, investigated the effects of grease
on brake squeal. The results underlined that adhesive (bonded) shims were found to be effective for
high frequency squeal (pad bending mode) by increasing damping, while grease is effective for low
frequency squeal (pad rigid mode) [18]. Wagner et al., 2014, investigated the use of the asymmetry
of the brake rotor in order to split of all double eigenfrequencies of the brake rotor to stabilize the
system [19].

1.2. Modal Coupling Effects on Brake Squeal

For Lv and Zhang (2013), disc brake squeal is mainly dependent on modal coupling and
influenced by both the friction coefficient and the disc surface run-out (SRO). When disc brake
squeal occurs, the time history of sound pressure is consistent with that of the disc vibration [20].
Zhang et al., 2018, studied a flexible pin-on-disk system used to simulate how squeal noise can
be generated in frictional contact. The time-varying frictional squeal reappears by introducing
a periodic frictional coefficient generated from rotation [21]. Charroyer et al. [22] paid special
attention to the role of damping and the associated destabilization paradox in mode-coupling
instabilities with planar and rectilinear friction assumptions. The dynamics can become unstable
when two modes couple due to the normal and tangential components of the frictional force.
A solution is presented by applying shims to brake pads that, as reported by Esgandari and
Olatunbosun [10], are capable of suppressing high frequency noise in disc brake units, by adding more
damping to the system in the brake pad area, reducing energy transfer between the components, which
would cause modal coupling. Overall, the main theories that describe squeal phenomenon ascribe
the increase of vibration amplitudes to the stick-slip mechanism or to the geometrical instability of
the brake assembly. Both approaches agree that the squeal phenomenon depends, above all, on the
variation of the friction force. It was therefore decided to study the behavior of a conservative system
in the presence of friction using several models to study the pathways that lead to instability. The form
of instability, due to friction, most easily verified is the one associated with squeal occurrence in disk
brakes. Therefore, we decided to study the behavior of a simple pin on a circular track. Numerical
analyses that can be used to predict instabilities are complex modal analysis [23] and transient
dynamic analysis [24]. The authors’ goal is to replicate, through the use of a simplified model,
the instability phenomena found during an experimental activity conducted on a disc brake for railway
applications [25]. This paper is organized as follows. In Section 2, the scheme of the discrete system is
reported with the equation of motion used to study the behavior of the pad system. Section 3 describes
the continuous model of the pad and the longitudinal and transversal forms of instability for a varying
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friction parameter. In Section 4, we report a modal analysis and a transient analysis conducted with
Ansys Workbench software on the finite element model of the pad system. Finally, our conclusions
about the simulations conducted on our model are presented.

2. Discrete Model Behavior in the Presence of Dry Friction

To understand how geometrical instabilities influence the behavior of a mechanical system, we
decided to study the system reported in Figure 1, a system that recalls a friction pad. The model is a
discrete three-degree of freedom system, subjected to dry friction, free to move in the x and y direction
and to rotate around its center of gravity (CG). There are three elastic force-fields at the ends of
the horizontal cantilever, while at the contact point of the vertical beam with the ground, there is a
force-field due to friction. The assumptions made for this model are no dynamic slip-stick behavior
and constant dynamic friction coefficient f . In Equation (1), the equation of motion of the system has
been reported. M and IG represent respectively the mass and the moment of inertia of the system,
and K1, K2 and K3 are the stiffness of the three springs.M 0 0

0 M 0
0 0 IG


Ẍ

Ÿ
θ̈

+

K1 0 0
0 K2 + K3 −K2a + K3b
0 −K2a + K3b K2a2 + K3b2


X

Y
θ

 =

 Fa

0
Fah

 . (1)

The friction force-field, as shown in Equation (2), is a function of the dynamic friction coefficient,
which is independent of contact relative velocity and of the closing force.

Fa = − f [(K2 + K3)Y + (K3b− K2a) θ] . (2)

Therefore, the equation of motion can be rewritten as:[
M 0 0
0 M 0
0 0 IG

] [
Ẍ
Ÿ
θ̈

]
+

[
K1 f (K2 + K3) f (K3b− K2a)
0 K2 + K3 −K2a + K3b
0 −K2a + K3b + f (K2 + K3) h K2a2 + K3b2 + f (K3b− K2a) h

] [
X
Y
θ

]
=

[
0
0
0

]
. (3)

considering a new stiffness matrix. As can be seen from Equation (3), friction coefficient f is present
within the new stiffness matrix K. For this reason, to prevent the occurrence of instability phenomena,
we should verify the influence of the parameter f h on the eigenvalues of the stiffness matrix, evaluating
for which values of the parameter the stiffness matrix will become a non-positive defined matrix.

(K1 − λ)(λ2 + λ(−K2 − K3 − K2a2 − K3b2 + K2a f h− K3b f h)) + K2K3a2 + + K2K3b2 + 2K2K3ab = 0. (4)

From Equation (4), the equation of eigenvalues of the stiffness matrix K, we achieve Equation (5),
which will be verified when one or more eigenvalues of the matrix become negative.

K2(1 + a2) + K3(1 + b2)

(K3b− K2a)
< − f h. (5)

From Equation (5), we note that for specific combinations of physical and geometrical parameters,
the system can turn unstable. To assess the influence of these parameters and their combination on
the eigenvalues of the system, a preliminary study has been conducted by varying the ratio of the
stiffness of the two springs K2/K3 and the position of the vertical element with respect to the horizontal
bar a/L.

The values used are reported in Table 1. As is easy to understand, f h must be always a positive
number. When the parameter has a non-positive value, Equation (5) is not verified, and the stiffness
matrix will be definite positive.
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Figure 1. Discrete mechanical model.

Table 1. Values of the f h parameter for several combinations K2/K3 and a/L parameters.

a/L = 0 a/L = 0.25 a/L = 0.5 a/L = 0.75 a/L = 1

K2/K3 = 0.01 −5.3 −6.9 −10.3 −20.9 505.2
K2/K3 = 1 −10.2 −20.2 · · · 20.3 10.2

K2/K3 = 100 −505.2 20.9 10.3 6.9 5.3

In Figure 2, the eigenvalues of the stiffness matrix are plotted against the friction coefficient values.
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Figure 2. Eigenvalues of stiffness matrix K for K2/K3 = 100 and a/L = 1. (a) Real part of the
eigenvalues; (b) imaginary part of the eigenvalues.

As is easy to see from Figure 2a, for the case shown, for f h = 5.3, eigenvalues λ2 and λ3 collide to a
single value. Furthermore, increasing the value, it is possible to see how the eigenvalues become
definitively negative, certifying the unstable behavior of the system. From Figure 2b, we can appreciate
how the imaginary part of the collided eigenvalue splits in two.

3. Continuous Model Behavior in the Presence of Dry Friction

Having analyzed the behavior of the three-degree of freedom system, we decided to study the
same system by analyzing it as a continuous system. In Figure 3, we report the dimensions used for the
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continuous model. For the beam simply supported at both ends by a rotational joint, independently
from the instant considered, both the transverse displacements and the bending moment at the
extremes must be null as reported in Equations (6) and (7).

[w (ξ, t)]ξ=0 = 0→ Ψb (0) = 0;

[w (ξ, t)]ξ=L1
= 0→ Ψb (L1) = 0;

(6)

[M]ξ=0 = EI
[

∂2w
∂ξ2

]
ξ=0

= 0→
[

∂2Ψb (ξ)

∂ξ2

]
ξ=0

= 0;

[M]ξ=L1
= EI

[
∂2w
∂ξ2

]
ξ=L1

= 0→
[

∂2Ψb (ξ)

∂ξ2

]
ξ=L1

= 0.
(7)

  s

L L1

L
2

s 0.02 m
L 0.05 m
L1 0.3 m
L2 0.1 m
ρ 7870 kg/m2

E 2 × 1011 N/m2

ν 0.33
I 1

12 Ls3m4

Figure 3. Properties for the continuous model.

From the theory of continuous systems, analyzing longitudinal and transverse vibrations for a
beam, we wrote the equations of motion in matrix form of the continuous system as follows:

[M]u q̈ + [K]u q = 0. (8)

[M]w q̈ + [K]w q = 0. (9)

where Mu and Ku for Equation (8) and Mw and Kw for Equation (9) are the mass and stiffness matrix
for the longitudinal and transversal motion of the beam derived from the theory of continuous systems.
In case of external forcing, to the equations of motion, we must consider the term that contains
Lagrangian components of the active forces. The equations of motion in principal coordinates become:

Mq̈ + Kq = Q. (10)

with Q Lagrangian components of the active forces, due to forcing agents on the system related to
the vibration mode considered. Virtual work of the external forces applied to the system is expressed
as a function of the physical coordinates w (ξ, t) or u (ξ, t). Considering the vertical appendix rigid,
we can consider the frictional force applied to the center of the horizontal beam. Therefore, at ξ = L/2,
we consider a frictional force Fa in the longitudinal direction and a moment Ma = FaL2. Thus,
separating the longitudinal vibrations from the transversal ones, we obtain:

δLu = Faδu
(
ξ = L/2

)
. (11)

δLw = Maδ
∂w
∂ξ

(
ξ = L/2

)
. (12)

Expressing the virtual displacement and virtual rotation in principal coordinates, we obtain:

δu
(
ξ
)
= φ

u

(
ξ
)T

δq. (13)
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δ
∂w
∂ξ

(
ξ
)
= φ′

w

(
ξ
)T

δq. (14)

Therefore, the work performed by the active forces will become:

δLu = Faφ
u

(
ξ
)T

δq = QT
l δq. (15)

δLw = Maφ′
w

(
ξ
)T

δq = QT
t δq. (16)

Equations (17) and (18) are the generic Lagrangian components Qi representing the work that
the friction is able to introduce in the generic mode of vibration for the displacement of the single
coordinate qi.

Qu = − f φu (L/2)T (−φw (L/2)Ku) . (17)

Qw = − f φ′w (L/2)T (−φu (L/2)Kw) . (18)

Substituting these matrices in the equations of motion of the system, a new stiffness matrix can be
detected as shown in Equations (19) and (20).

Mu q̈ + (Ku −Qu) q = 0. (19)

Mw q̈ + (Kw −Qw) q = 0. (20)

In Figures 4 and 5, we reported the trend of the eigenvalues of ωu and ωw, respectively, for a
varying friction coefficient.
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Figure 4. Longitudinal motion eigenvalues. (a) Real part of the eigenvalues; (b) imaginary part of
the eigenvalues.

Examining Figure 4a, in which is reported the real part of the eigenvalue for the longitudinal
vibration of the system against the frictional coefficient, we can observe that the first eigenvalue λ1

becomes negative for a f = 0.55, indicating that the first longitudinal mode of vibration becomes
unstable for that value of friction. The other eigenvalues, being positive, do not lead the system
to instability.

Regarding the transverse vibrations, from Figure 5, we can recognize a typical form of dynamical
instability. In fact, for f = 0.12, we can recognize flutter instability in Figure 5b. Two eigenvalues,
λ2 and λ3, collide into a single value, while the real part of the eigenvalue, reported in Figure 5a,
assumes the same value, yet of opposite sign. From the results, it is clear that the vertical length
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of the appendix, closely linked to the value of Ma, will have a strong influence on the tendency to
instability of the analyzed system.
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Figure 5. Transversal motion eigenvalues. (a) Real part of the eigenvalues; (b) imaginary part of
the eigenvalues.

4. Analysis of the Finite Element Model

Subsequently, we carried out a finite element method analysis on the model. In this section,
we compared the results obtained for a 2D simplified model with those obtained from a 3D model of
the pad. Also in this case, the aim is to simulate the interaction between the system and a belt in
presence of dry friction. The analyses that allow us to evaluate the forms of instability as a function of
friction coefficient are complex modal analysis and transient structural analysis.

4.1. Modal Analysis

For the first analysis, we use data obtained from a previous static analysis to assess the initial
state of the system. For the static analysis, the system is bonded at the extremes of the horizontal beam,
ensuring a closing force between the vertical beam. In the contact zone between the rigid beam and
the rigid disk, dry friction is modeled as Coulomb friction.

The study of the eigenvalues by performing a modal analysis allows us to determine the
eigenfrequencies and the damping ratio for each mode as criteria for stability and squealing. In Design
Modeller, the CAD environment of Ansys Workbench, we created the geometry for the modal and
transient structural analysis reported after meshing in Figure 6. Material properties, used for the pin
and track, were taken from the Engineering Data section.

For both simulations, we considered the track rigid and the pin flexible. Both ends of the horizontal
beam were fixed. For the contact zone between the pin and the track, the contact type was changed to
frictional. Due to the rigid behavior selected for the track compared to the flexible behavior of the pin,
an asymmetric behavior for the frictional contact setting was selected.

The formulation used for the contact setting was augmented Lagrange and a hybrid
formulation between pure penalty and normal stiffness. The normal forced push-back is evaluated as
Fn = knxn + λ, where kn is the normal stiffness of the contact region and λ is the contact pressure.
We performed a pre-stressed modal analysis to ensure closing force to the system. The first investigation
involved several complex modal analyses of the free vibration modes of the system in the presence of
dry friction.
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Node A

Figure 6. Meshed system.

The complex eigenvector has been obtained by using the QRDAMP eigensolver that uses
the reduced modal damped matrix to calculate complex damped frequencies damped eigenvalue
extraction method. The only parameter forced to vary was the friction coefficient, while the angular
velocity value of the track rotating around the vertical axis was considered constant. In Figure 7,
the real part and the imaginary part of the eigenvalues of the flexible to rigid system are reported.
In particular, only the first five eigenvalues have been reported.

Figure 7. Complex eigenvalues of the pin-track system under dry friction.

4.2. Transient Analysis

After the modal analysis, we conducted two transient analyses for the finite element system for
two friction coefficients. The behavior of the system has been evaluated for values of friction lower
and higher than the value for which there is modal coupling, thus resulting in a stable and unstable
response of the system, respectively. In Figure 8 is reported the caliper closing motion on the disk.
The pads are first placed on the disk in order to guarantee contact , and then, the disk is rotated with a
constant angular speed.

In Figure 9a,b, the horizontal and vertical displacement of the node is reported for the stable
case with a friction coefficient lower than the critical value. The vibrations of the node tend to fade
after being excited by the rotation of the disc. In Figure 9c,d, instead, for friction higher than the
critical value, the system’s response is not mitigated, but tends to amplify over time as reported by
the graph. In the graphs, it is possible to notice the clamping of the pads on the disk at 0.1 s and
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the emergence of stick-slip phenomena with the following rotation of the disk. In Figure 10, instead,
is reported the power spectrum of the displacements reported previously of node A, which describes
the distribution of power into frequency components composing the vibration recorded, showing the
different amplitudes reached by the unstable frequencies. The frequencies found are actually different
from those found in the modal analysis conducted on the pad-disk system and reported in Table 2.
This difference is due to the non-linear nature of the system due to friction, which emerges in the
transient analysis. For this simulation, the system was not pre-stressed.
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Figure 9. Displacement time history of node A. (a) Stable case; (b) stable case; (c) unstable case;
(d) unstable case.
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Figure 10. Power spectral density estimate of the displacement of node A. (a) Stable case; (b) stable case;
(c) unstable case; (d) unstable case.

Table 2. First 10 modes for the two cases of study reported.

Stable Case (µ = 0.05) Unstable Case (µ = 0.1)

Mode Frequency (Hz) Stability Frequency (Hz) Stability

1 1080.4 0 1080.4 0
2 1572 0 1574.8 0
3 2729.5 0 2729.7 0
4 4390,7 0 4389.8 0
5 4582.7 0 4582.6 0
6 4745.9 0 4747.2 0
7 6618.8 0 6624.9 12.684
8 6631.9 0 6624.9 −12.684
9 7536.5 0 7536.5 0
10 7943.2 0 7943.1 0
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5. Conclusions

The research of the authors is finalized with the development of new methods for performing
accurate analytic modeling [26–30], numerical parameter identification using experimental data [31–35],
finite element analysis in the presence of dry friction [36–45] and control optimization for dynamic
models of retrofitted mechanical systems [46–60]. The main theories that describe the squeal
phenomenon ascribe the increase of vibration amplitudes to the stick-slip mechanism or to the
geometrical instability of the brake assembly. Either way, both approaches agree that the squeal
phenomenon depends, above all, on the variation of the friction force, which affects the vibration
modes of the system. Therefore, in order to reduce or eliminate the squeal phenomenon, it is very
important to understand the coupling mechanism so that the key components can be modified
accordingly. The aim of this work is to describe the squeal noise mechanism incurred on a disk brake
for railway applications studied previously. For this reason, we decided to study the behavior of an
ideal mechanical system in the presence of dry friction using a discrete, 1D continuous beam model
and a 3D continuous model, both solved by discrete numerical methods. The three cases analyzed in
this paper demonstrate how the geometric and friction parameters influence the dynamic behavior of a
system. In the discrete case, it is possible to see how the geometry can contrast or support, depending
on the needs, the onset of instabilities. On the other hand, the one-dimensional and three-dimensional
continuous models show how the coefficient of friction can facilitate the coupling of the vibrational
modes of the system, once again leading to forms of instability. The numerical results obtained, despite
the simple geometry considered, reproduce the results obtained by analyzing a disk brake used in
railway applications well and demonstrate how an appropriate design of the device can counteract the
onset of this phenomenon.
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