Influence of Hydraulics on Electric Drive Operational Characteristics in Pump-Controlled Actuators
Abstract
:1. Introduction
2. System Description
2.1. Test Rig Description
2.2. Modeling
3. Model Validation
4. Simulation Study
4.1. Stability Analysis
4.2. PWM Influence with Zero Payload
4.3. Influence of 20 kg Payload
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | Alternative Current |
DC | Direct Current |
DDH | Direct-Driven Hydraulics |
EM | Electric Motor |
FC | Frequency Converter |
FOC | Field-Oriented Control |
ICE | Internal Combustion Engine |
IGBT | Insulated-Gate Bipolar Transistor |
NRMM | Non-road mobile machinery |
PMSM | Permanent Magnet Synchronous Machine |
PWM | Pulse Width Modulation |
THD | Total Harmonic Distortion |
References
- Zakharov, V.; Minav, T. Analysis of Field Oriented Control of Permanent Magnet Synchronous Motor for a Valveless pump-Controlled Actuator. Proceedings 2020, 64, 19. [Google Scholar] [CrossRef]
- Minav, T.; Sainio, P.; Pietola, M. Efficiency of Direct driven hydraulic setup in arctic conditions. In Proceedings of the 14th Scandinavian International Conference on Fluid Power, SICFP15, Tampere, Finland, 20–22 May 2015. [Google Scholar]
- Pedersen, H.C.; Andersen, T.O.; Hansen, M. Load Sensing Systems—A Review of the Research Contributions throughout the Last Decades. In Proceedings of the 4th IFK Workshop, Dresden, Germany, 24–26 March 2004. [Google Scholar]
- Siebert, J.; Wydra, M.; Geimer, M. Efficiency Improved Load Sensing System—Reduction of System Inherent Pressure Losses. Energies 2017, 10, 941. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Kong, X.; Yu, B. Review and Development Trend of Digital Hydraulic Technology. Appl. Sci. 2020, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Jiang, J.; Su, X.; Karimi, H.R. Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail. Sci. World J. 2013, 2013, 560694. [Google Scholar] [CrossRef] [PubMed]
- Wydra, M.; Geimer, M.; Weiss, B. An Approach to Combine an Independent Metering System with an Electro-Hydraulic Flow-on-Demand Hybrid-System. In Proceedings of the 15th Scandinavian International Conference on Fluid Power, SICFP 17, Linköping, Sweden, 7–9 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Lee, C.O. Speed Control of an Overcentered Variable-Displacement Hydraulic Motor with a Load-torque Observer. Control Eng. Pract. 1996, 4, 1563–1570. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, J.; Huang, J. Simulation Analysis and Experiment of Variable-Displacement Asymmetric Axial Piston pump. Appl. Sci. 2017, 7, 328. [Google Scholar] [CrossRef] [Green Version]
- Imam, A.; Rafiq, M.; Jalayer, E.; Sepehri, N. A Pump-controlled Circuit for Single-Rod Cylinders that Incorporates Limited Throttling Compensating Valves. Actuators 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Quan, L.; Helduser, S.; Neubert, T. Dynamic performance of electro-hydraulic servo system with speed variable pump. Chin. J. Mech. Eng. 2003, 39, 13–17. [Google Scholar] [CrossRef]
- Wang, L.K.; Book, W.J.; Huggins, J.D. A hydraulic circuit for single-rod cylinders. J. Dyn. Syst. Meas. Control 2012, 134, 011019. [Google Scholar] [CrossRef] [Green Version]
- Quan, Z.; Quan, L.; Zhang, J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology. Renew. Sustain. Energy Rev. 2014, 35, 336–346. [Google Scholar] [CrossRef]
- Ho, T.H.; Kyoung-Kwan, A. Saving energy control of cylinder drive using hydraulic transformer combined with an assisted hydraulic circuit. In Proceedings of the ICCAS-SICE 2009, Fukuoka, Japan, 18–21 August 2009. [Google Scholar]
- Jangnoi, T.; Pinsopon, U. Velocity Control of Electro-hydraulic pump Control System Using Gear pump. Int. J. Innov. Comput. Inf. Control. 2018, 14, 2307–2323. [Google Scholar] [CrossRef]
- Yongming, B.; Jiange, Y.; Jixiang, Y. Study of Gear pump/motor Efficiency for Variable-speed pump-controlled Motor System. In Proceedings of the 2019 International Conference on Advances in Construction Machinery and Vehicle Engineering, Changsha, China, 14–16 May 2019. [Google Scholar] [CrossRef]
- Minav, T.; Heikkinen, J.; Pietola, M. Direct driven hydraulic drive for new powertrain topologies for non-road mobile machinery. Electr. Power Syst. Res. 2017, 152, 390–400. [Google Scholar] [CrossRef]
- Yao, J.; Wang, P.; Donga, Z. A novel architecture of electro-hydrostatic actuator with digital distribution. Chin. J. Aeronaut. 2021, 34, 224–238. [Google Scholar] [CrossRef]
- Deraz, S.A.; Azazi, H.Z. Impact of distorted voltage on three-phase induction motor performance. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017. [Google Scholar] [CrossRef]
- Minav, T.; Sainio, P.; Pietola, M. Direct-driven hydraulic drive without conventional oil tank. In Proceedings of the ASME/BATH 2014 Symposium on Fluid Power & Motion Control, Bath, UK, 10–12 September 2014. [Google Scholar] [CrossRef]
- Holmes, D.G.; Lipo, T.A. Pulse width Modulation for Power Converters. Principles and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 978-0-471-20814-3. [Google Scholar]
- Boldea, I.; Nasar, S.A. Vector Control of AC Drives; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Zawarczyński, Ł.; Stefański, T. Parametric Identification of PMSM Mathematical Model. In Proceedings of the 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 26–29 August 2019. [Google Scholar] [CrossRef]
- Liu, T.; Tan, Y.; Wu, G.; Wang, S. Simulation of PMSM Vector Control System Based on Matlab/Simulink. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 11–12 April 2009. [Google Scholar] [CrossRef]
- Zakharov, V.; Minav, T. Analysis of Frequency adjustable control of Permanent Magnet Synchronous Motor for pump-controlled actuators. In Proceedings of the 2020 IEEE Global Fluid Power Society PhD Symposium, Online, 19–21 October 2020. [Google Scholar]
#1 Hydr. Cylinder | #3 Hydr. Pump/Motor 1 | #4 Hydr. Pump/Motor 2 | #2 Hydr. Accumulator |
---|---|---|---|
MIRO C-10-60/30 × 400 | XV-2M/14 | XV-2M/22 | HAD0.7-250-1X/80G04A |
Max pressure 190 bar | Max pressure 250 bar | Max pressure 200 bar | Max pressure 350 bar |
Area A 0.0028 mm | Disp. 14.4 cm/rev | Disp. 22.8 cm/rev | Precharge pressure 10 bar |
Area B 0.0021 mm | Vol. efficiency 97.22% | Vol. efficiency 96.49% | Volume 0.7 L |
Stroke length 0.4 m | Max. rot. speed 3500 rpm | Max. rot. speed 3000 rpm | Type: Hydro-pneumatic |
Rated/Peak Torque, [Nm] | Inertia, [kg cm] | Rated/Max Speed, [rpm] | Rated Current, [A] | Voltage, [VAC] |
---|---|---|---|---|
9.4/37.6 | 9.0 | 3000/4800 | 5.9 | 380/480 |
Rise Time, [s] | Transient Process Time, [s] | Overshoot, [%] | Steady-State Value Difference, [%] |
---|---|---|---|
0.051 | 0.13 | 0.53 | 0.16 |
Frequency, Hz | Lifting | Lowering |
---|---|---|
10,000 | 5.1 rpm/0.17% | 6.4 rpm/0.213% |
7500 | 6.3 rpm/0.21% | 7.8 rpm/0.26% |
5000 | 4.0 rpm/0.133% | 5.5 rpm/0.183% |
Movement | Sim. Speed Difference, [%] | Torque Fluct., [%] | Friction Force, [N] | Current Ampl., [A] |
---|---|---|---|---|
Lifting | 0.05 | 5.77 | 932 | 4.8 |
Movement | Sim. Speed Difference, [%] | Torque Fluct., [%] | Friction Force, [N] | Current Ampl., [A] |
Lowering | 0.05 | 11.2 | 1021 | 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharov, V.; Minav, T. Influence of Hydraulics on Electric Drive Operational Characteristics in Pump-Controlled Actuators. Actuators 2021, 10, 321. https://doi.org/10.3390/act10120321
Zakharov V, Minav T. Influence of Hydraulics on Electric Drive Operational Characteristics in Pump-Controlled Actuators. Actuators. 2021; 10(12):321. https://doi.org/10.3390/act10120321
Chicago/Turabian StyleZakharov, Viacheslav, and Tatiana Minav. 2021. "Influence of Hydraulics on Electric Drive Operational Characteristics in Pump-Controlled Actuators" Actuators 10, no. 12: 321. https://doi.org/10.3390/act10120321
APA StyleZakharov, V., & Minav, T. (2021). Influence of Hydraulics on Electric Drive Operational Characteristics in Pump-Controlled Actuators. Actuators, 10(12), 321. https://doi.org/10.3390/act10120321