Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne’s Disease)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Collection and Protein Sequence Retrieving
4.2. Epitopes Prediction
4.3. Epitope Sequences Alignment
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- de Silva, K.; Plain, K.; Purdie, A.; Begg, D.; Whittington, R. Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Vet. Immunol. Immunopathol. 2018, 195, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Begg, D.J.; de Silva, K.; Di Fiore, L.; Taylor, D.L.; Bower, K.; Zhong, L.; Kawaji, S.; Emery, D.; Whittington, R.J. Experimental infection model for Johne’s disease using a lyophilised, pure culture, seedstock of Mycobacterium avium subspecies paratuberculosis. Vet. Microbiol. 2010, 141, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Purdie, A.C.; Plain, K.M.; Begg, D.J.; de Silva, K.; Whittington, R.J. Gene expression profiles during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can predict disease outcome. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N.; et al. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet. Res. 2019, 15, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windsor, P.A. Paratuberculosis in sheep and goats. Vet. Microbiol. 2015, 181, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, R.W.; Collins, M.T.; Koets, A.P.; Mcguirk, S.M.; Roussel, A.J. Paratuberculosis (Johne’s Disease) in Cattle and Other Susceptible Species. J. Vet. Intern. Med. 2012, 26, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.J.; Reddacliff, L.A.; Marsh, I.; McAllister, S.; Saunders, V. Temporal patterns and quantification of excretion of Mycobacterium avium subsp paratuberculosis in sheep with Johne’s disease. Aust. Vet. J. 2000, 78, 34–37. [Google Scholar] [CrossRef]
- Manning, E.J.B.; Collins, M.T. Mycobacterium avium subsp. paratuberculosis: Pathogen, pathogenesis and diagnosis. OIE Rev. Sci. Tech. 2001, 20, 133. [Google Scholar] [CrossRef]
- Piras, C.; Soggiu, A.; Greco, V.; Alloggio, I.; Bonizzi, L.; Roncada, P. Peptidomics in veterinary science: Focus on bovine paratuberculosis. Peptidomics 2015. [Google Scholar] [CrossRef]
- Wynne, J.W.; Bull, T.J.; Seemann, T.; Bulach, D.M.; Wagner, J.; Kirkwood, C.D.; Michalski, W.P. Exploring the zoonotic potential of mycobacterium avium subspecies paratuberculosis through comparative genomics. PLoS ONE 2011, 6, e22171. [Google Scholar] [CrossRef] [Green Version]
- McNees, A.L.; Markesich, D.; Zayyani, N.R.; Graham, D.Y. Mycobacterium paratuberculosis as a cause of crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.S. Could Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease, ulcerative colitis⋯and colorectal cancer? Infect. Agents Cancer 2018, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Bülte, M.; Gerlach, G.F.; Goethe, R.; Hornef, M.W.; Köhler, H.; Meens, J.; Möbius, P.; Roeb, E.; Weiss, S. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int. J. Med. Microbiol. 2014, 304, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Feller, M.; Huwiler, K.; Stephan, R.; Altpeter, E.; Shang, A.; Furrer, H.; Pfyffer, G.E.; Jemmi, T.; Baumgartner, A.; Egger, M. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2007, 6, 607–613. [Google Scholar] [CrossRef]
- Sewell, G.W.; Marks, D.J.; Segal, A.W. The immunopathogenesis of Crohn’s disease: A three-stage model. Curr. Opin. Immunol. 2009, 21, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Sechi, L.A.; Dow, C.T. Mycobacterium avium ss. paratuberculosis Zoonosis—The Hundred Year War-Beyond Crohn’s Disease. Front. Immunol. 2015, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Vaerewijck, M.J.M.; Huys, G.; Palomino, J.C.; Swings, J.; Portaels, F. Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiol. Rev. 2005, 29, 911–934. [Google Scholar] [CrossRef]
- Piras, C.; Soggiu, A.; Bonizzi, L.; Greco, V.; Ricchi, M.; Arrigoni, N.; Bassols, A.; Urbani, A.; Roncada, P. Identification of immunoreactive proteins of Mycobacterium avium subsp. paratuberculosis. Proteomics 2015, 15, 813–823. [Google Scholar] [CrossRef]
- Smeed, J.A.; Watkins, C.A.; Rhind, S.M.; Hopkins, J. Differential cytokine gene expression profiles in the three pathological forms of sheep paratuberculosis. BMC Vet. Res. 2007, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Dennis, M.M.; Reddacliff, L.A.; Whittington, R.J. Longitudinal study of clinicopathological features of Johne’s disease in sheep naturally exposed to Mycobacterium avium subspecies paratuberculosis. Vet. Pathol. 2011, 48, 565–575. [Google Scholar] [CrossRef]
- Stabel, J.R.; Bannantine, J.P. Divergent antigen-specific cellular immune responses during asymptomatic subclinical and clinical states of disease in cows naturally infected with Mycobacterium avium subsp. paratuberculosis. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- Purdie, A.C.; Plain, K.M.; Begg, D.J.; de Silva, K.; Whittington, R.J. Expression of genes associated with the antigen presentation and processing pathway are consistently regulated in early Mycobacterium avium subsp. paratuberculosis infection. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Carlos, P.; Roupie, V.; Holbert, S.; Ascencio, F.; Huygen, K.; Gomez-Anduro, G.; Branger, M.; Reyes-Becerril, M.; Angulo, C. In silico epitope analysis of unique and membrane associated proteins from Mycobacterium avium subsp. paratuberculosis for immunogenicity and vaccine evaluation. J. Theor. Biol. 2015, 384, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Rub, A.; Akhter, Y. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: A holistic approach. J. Mol. Recognit. 2015, 28, 506–520. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 2020. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Musella, V.; Britti, D.; Sanguinetti, M.; Urbani, A.; Roncada, P. Molecular basis of COVID-19 relationships in different species: A one health perspective. Microbes Infect. 2020. [Google Scholar] [CrossRef]
- Raoufi, E.; Hemmati, M.; Eftekhari, S.; Khaksaran, K.; Mahmodi, Z.; Farajollahi, M.M.; Mohsenzadegan, M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review. Int. J. Pept. Res. Ther. 2020. [Google Scholar] [CrossRef]
- Behl, J.D.; Verma, N.K.; Tyagi, N.; Mishra, P.; Behl, R.; Joshi, B.K. The Major Histocompatibility Complex in Bovines: A Review. ISRN Vet. Sci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Vigneron, N.; Stroobant, V.; Chapiro, J.; Ooms, A.; Degiovanni, G.; Morel, S.; Van Der Bruggen, P.; Boon, T.; Van Den Eynde, B.J. An Antigenic Peptide Produced by Peptide Splicing in the Proteasome. Science 2004, 304, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Gyles, C.L.; Prescott, J.F.; Songer, J.G.; Thoen, C.O. Pathogenesis of Bacterial Infections in Animals, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; ISBN 9780813812373. [Google Scholar]
- Bannantine, J.; Stabel, J.; Lippolis, J.; Reinhardt, T. Membrane and Cytoplasmic Proteins of Mycobacterium avium subspecies paratuberculosis that Bind to Novel Monoclonal Antibodies. Microorganisms 2018, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.T.; Lisby, G.; Moser, C.; Chicks, D.; Christensen, S.; Reichelderfer, M.; Høiby, N.; Harms, B.A.; Thomsen, O.; Skibsted, U.; et al. Results of multiple diagnostic tests for Mycobacterium avium subsp. paratuberculosis in Patients with inflammatory bowel disease and in controls. J. Clin. Microbiol. 2000, 38, 4373–4381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnaiah, G.; Zinniel, D.K.; Bannantine, J.P.; Stabel, J.R.; Gröhn, Y.T.; Collins, M.T.; Barletta, R.G. Pathogenesis, molecular genetics, and genomics of Mycobacterium avium subsp. paratuberculosis, the etiologic agent of Johne’s disease. Front. Vet. Sci. 2017, 4, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Munir, S.; Bannantine, J.P.; Sreevatsan, S.; Kanjilal, S.; Kapur, V. Rapid expression of Mycobacterium avium subsp. paratuberculosis recombinant proteins for antigen discovery. Clin. Vaccine Immunol. 2007, 14, 102–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, H.; Gyra, H.; Zimmer, K.; Dräger, K.G.; Burkert, B.; Lemser, B.; Hausleithner, D.; Cußler, K.; Klawonn, W.; Heß, R.G. Immune reactions in cattle after immunization with a Mycobacterium paratuberculosis vaccine and implications for the diagnosis of M. paratuberculosis and M. bovis infections. J. Vet. Med. Ser. B 2001, 48, 185–195. [Google Scholar] [CrossRef]
- Schönbach, C.; Ranganathan, S.; Brusic, V. Immunoinformatics; Springer Science & Business Media: Berlin, Germany, 2008; ISBN 9780387729688. [Google Scholar]
- Tomar, N.; De, R.K. Immunoinformatics: A brief review. Methods Mol. Biol. 2014, 1184, 23–55. [Google Scholar] [CrossRef] [PubMed]
- Backert, L.; Kohlbacher, O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 2015, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.W.; Chen, I.J.; Cheng, T.C.; Tung, Y.C.; Chu, P.Y.; Chuang, C.H.; Hsieh, Y.C.; Huang, C.C.; Wang, Y.T.; Kao, C.H.; et al. A secondary antibody-detecting molecular weight marker with mouse and rabbit IgG Fc linear epitopes for Western Blot analysis. PLoS ONE 2016, 11, e160418. [Google Scholar] [CrossRef]
- Greco, V.; Piras, C.; Pieroni, L.; Ronci, M.; Putignani, L.; Roncada, P.; Urbani, A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev. Proteom. 2018, 15, 683–696. [Google Scholar] [CrossRef]
- Coussens, P.M. Model for immune responses to Mycobacterium avium subspecies paratuberculosis in cattle. Infect. Immun. 2004, 72, 3089–3096. [Google Scholar] [CrossRef] [Green Version]
- Mortier, R.A.R.; Barkema, H.W.; De Buck, J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev. Vet. Med. 2015, 121, 189–198. [Google Scholar] [CrossRef]
- Murphy, J.T.; Sommer, S.; Kabara, E.A.; Verman, N.; Kuelbs, M.A.; Saama, P.; Halgren, R.; Coussens, P.M. Gene expression profiling of monocyte-derived macrophages following infection with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies paratuberculosis. Physiol. Genom. 2006, 28, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.C.; Park, Y.H.; Hamilton, M.J.; Barrington, G.M.; Davies, C.J.; Kim, J.B.; Dahl, J.L.; Waters, W.R.; Davis, W.C. Analysis of the immune response to Mycobacterium avium subsp. paratuberculosis in experimentally infected calves. Infect. Immun. 2004, 72, 6870–6883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewari, D.; Hovingh, E.; Linscott, R.; Martel, E.; Lawrence, J.; Wolfgang, D.; Griswold, D. Mycobacterium avium subsp. paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp. paratuberculosis-infected cattle herds vaccinated against Johne’s disease. Clin. Vaccine Immunol. 2014, 21, 698–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yum, D.Y.; Lee, Y.P.; Pan, J.G. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J. Bacteriol. 1997, 179, 6566–6572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.S.; Hawley, S.A.; Zong, Y.; Li, M.; Wang, Z.; Gray, A.; Ma, T.; Cui, J.; Feng, J.W.; Zhu, M.; et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017, 548, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.J.; Lebherz, H.G. Fructose-bisphosphate aldolases: An evolutionary history. Trends Biochem. Sci. 1992, 17, 110–113. [Google Scholar] [CrossRef]
- Tunio, S.A.; Oldfield, N.J.; Berry, A.; Ala’Aldeen, D.A.A.; Wooldridge, K.G.; Turner, D.P.J. The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: Surface localization and role in host cell adhesion. Mol. Microbiol. 2010, 76, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Elsohaby, I.; Mweu, M.M.; Mahmmod, Y.S.; McClure, J.T.; Keefe, G.P. Diagnostic performance of direct and indirect methods for assessing failure of transfer of passive immunity in dairy calves using latent class analysis. Prev. Vet. Med. 2019, 164, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Connelley, T.; Ternette, N. Improved Prediction of Bovine Leucocyte Antigens (BoLA) Presented Ligands by Use of Mass-Spectrometry-Determined Ligand and in Vitro Binding Data. J. Proteome Res. 2018, 17, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J. Proteome Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bannantine, J.P.; Radosevich, T.J.; Stabel, J.R.; Berger, S.; Griffin, J.F.T.; Paustian, M.L. Production and characterization of monoclonal antibodies against a major membrane protein of Mycobacterium avium subsp. paratuberculosis. Clin. Vaccine Immunol. 2007, 14, 312–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdellrazeq, G.S.; Elnaggar, M.M.; Bannantine, J.P.; Park, K.T.; Souza, C.D.; Backer, B.; Hulubei, V.; Fry, L.M.; Khaliel, S.A.; Torky, H.A.; et al. A Mycobacterium avium subsp. paratuberculosis relA deletion mutant and a 35 kDa major membrane protein elicit development of cytotoxic T lymphocytes with ability to kill intracellular bacteria. Vet. Res. 2018, 49, 53. [Google Scholar] [CrossRef] [Green Version]
- Bannantine, J.P.; Huntley, J.F.J.; Miltner, E.; Stabel, J.R.; Bermudez, L.E. The Mycobacterium avium subsp. paratuberculosis 35kDa protein plays a role in invasion of bovine epithelial cells. Microbiology 2003, 149, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, B.; Reynisson, B.; Barra, C.; Buus, S.; Ternette, N.; Connelley, T.; Andreatta, M.; Nielsen, M. NNAlign_MA.; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions. Mol. Cell. Proteom. 2019, 18, 2459–2477. [Google Scholar] [CrossRef] [Green Version]
- Bazmara, S.; Shadmani, M.; Ghasemnejad, A.; Aghazadeh, H.; Pooshang Bagheri, K. In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches. Med. Hypotheses 2019, 130, 109267. [Google Scholar] [CrossRef]
- Hye, C.K.; Yong, H.P.; Ahn, J.; Waters, W.R.; Hamilton, M.J.; Barrington, G.; Mosaad, A.A.; Palmer, M.V.; Shin, S.; Davis, W.C. New latex bead agglutination assay for differential diagnosis of cattle infected with Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis. Clin. Diagn. Lab. Immunol. 2004, 11, 1070–1074. [Google Scholar] [CrossRef] [Green Version]
- Coetsier, C.; Vannuffel, P.; Blondeel, N.; Denef, J.F.; Cocito, C.; Gala, J.L. Duplex PCR for differential identification of Mycobacterium bovis, M. avium, and M. avium subsp. paratuberculosis in formalin-fixed paraffin-embedded tissues from cattle. J. Clin. Microbiol. 2000, 38, 3048–3054. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.E.P.; Lund, O.; Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class i system. Bioinformatics 2016, 32, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Gurung, R.B.; Purdie, A.C.; Begg, D.J.; Whittington, R.J. In silico identification of epitopes in Mycobacterium avium subsp. paratuberculosis proteins that were upregulated under stress conditions. Clin. Vaccine Immunol. 2012, 19, 855–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.K. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 2005, 272, 5101–5109. [Google Scholar] [CrossRef] [PubMed]
Former GI | New Accession | Peptide Sequence | Match (%) | Position | E-value |
---|---|---|---|---|---|
41410034 | CAA52630.1 | GYISGYFVTDAER | 100 | 196–208 | 1.58 × 10−8 |
DETTIVEGAGDSDAIAGR | 100 | 326–343 | 2.53 × 10−12 | ||
41408639 | P61976.1 | LASGSLLGPDRPIELR | 100 | 25–40 | 1.57 × 10−10 |
DGDWTIVQGLEIDEFSR | 100 | 290–306 | 2.71 × 10−13 | ||
41409105 | Q73VK6.1 | WNLQLSNAVIFR | 100 | 225–236 | 5.26 × 10−8 |
LIDTAAAYGNEAAVGR | 100 | 49–64 | 2.22 × 10−10 | ||
41407484 | AAS03703.1 | MADTSRPDHLPNLR.D | 100 | 1–15 | 4.69 × 10−11 |
LGGATGPAAAREPYE | 100 | 216–230 | 2.08 × 10−9 | ||
41408219 | AZP81686.1 | QGVVGLFQPGLVGEQAPGLSVR | 100 | 243–264 | 2.40 × 10−16 |
AEAGAGSEEPLPQTYVDYETSPR | 100 | 66–88 | 2.35 × 10−18 | ||
41409159 | AAS05609.1 | EAADAVLDEINER | 100 | 30–42 | 4.52 × 10−8 |
DDGMHGSDVVQTGWALAR | 100 | 90–107 | 8.24 × 10−14 | ||
41406421 | AAS02640.1 | DAGLAVTEAGASFPYR | 93.75 | 368–383 | 2.46 × 10−9 |
41410345 | Q73S29.1 | YLRHLSK | 100 | 158–164 | 0.028 |
41410406 | ETA93906.1 | IITSPAFTGDR | 100 | 73–83 | 5.48 × 10−6 |
414109790 | AJK73649.1 | VVVVGTTPDAAAGPHER | 100 | 119–135 | 1.68 × 10−11 |
EHHGGHADILVNNAGITR | 100 | 283–300 | 2.28 × 10−13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilocca, B.; Soggiu, A.; Greco, V.; Piras, C.; Arrigoni, N.; Ricchi, M.; Britti, D.; Urbani, A.; Roncada, P. Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne’s Disease). Pathogens 2020, 9, 705. https://doi.org/10.3390/pathogens9090705
Tilocca B, Soggiu A, Greco V, Piras C, Arrigoni N, Ricchi M, Britti D, Urbani A, Roncada P. Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne’s Disease). Pathogens. 2020; 9(9):705. https://doi.org/10.3390/pathogens9090705
Chicago/Turabian StyleTilocca, Bruno, Alessio Soggiu, Viviana Greco, Cristian Piras, Norma Arrigoni, Matteo Ricchi, Domenico Britti, Andrea Urbani, and Paola Roncada. 2020. "Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne’s Disease)" Pathogens 9, no. 9: 705. https://doi.org/10.3390/pathogens9090705
APA StyleTilocca, B., Soggiu, A., Greco, V., Piras, C., Arrigoni, N., Ricchi, M., Britti, D., Urbani, A., & Roncada, P. (2020). Immunoinformatic-Based Prediction of Candidate Epitopes for the Diagnosis and Control of Paratuberculosis (Johne’s Disease). Pathogens, 9(9), 705. https://doi.org/10.3390/pathogens9090705