To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns
Abstract
1. Introduction
2. Effect of Mass Treatment on Prevalence of N. meningitidis, Meningitis Cases and AMR
2.1. Individual Level Assessment
2.2. Association between Overcrowding and N. meningitidis Prevalence/outbreaks
3. Discussion
Funding
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
PrEP | Preexposure Prophylaxis |
US | United States of America |
References
- World Health Organization. Global Health Sector Strategy on Sexually Transmitted Infections 2016–2021; Towards ending STIs; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Unemo, M.; Bradshaw, C.S.; Hocking, J.S.; de Vries, H.J.C.; Francis, S.C.; Mabey, D.; Marrazzo, J.M.; Sonder, G.J.B.; Schwebke, J.R.; Hoornenborg, E.; et al. Sexually transmitted infections: Challenges ahead. Lancet Infect. Dis. 2017, 17, e235–e279. [Google Scholar] [CrossRef]
- Kenyon, C.; Van Dijck, C.; Florence, E. Facing increased sexually transmitted infection incidence in HIV preexposure prophylaxis cohorts: What are the underlying determinants and what can be done? Curr. Opin. Infect. Dis. 2020, 33, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C. We need to consider collateral damage to resistomes when we decide how frequently to screen for chlamydia/gonorrhoea in PrEP cohorts. AIDS 2019, 33, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Wawer, M.J.; Sewankambo, N.K.; Serwadda, D.; Quinn, T.C.; Kiwanuka, N.; Li, C.; Lutalo, T.; Nalugoda, F.; Gaydos, C.A.; Moulton, L.H.; et al. Control of sexually transmitted diseases for AIDS prevention in Uganda: A randomised community trial. Lancet 1999, 353, 525–535. [Google Scholar] [CrossRef]
- Wawer, M.J.; Gray, R.H.; Sewankambo, N.K.; Serwadda, D.; Paxton, L.; Berkley, S.; McNairn, D.; Wabwire-Mangen, F.; Li, C.; Nalugoda, F.; et al. A randomized, community trial of intensive sexually transmitted disease control for AIDS prevention, Rakai, Uganda. AIDS 1998, 12, 1211–1225. [Google Scholar] [CrossRef]
- Ghys, P.D.; Diallo, M.O.; Ettiègne-Traoré, V.; Satten, G.A.; Anoma, C.K.; Maurice, C.; Kadjo, J.C.; Coulibaly, I.M.; Wiktor, S.Z.; Greenberg, A.E.; et al. Effect of interventions to control sexually transmitted disease on the incidence of HIV infection in female sex workers. AIDS 2001, 15, 1421–1431. [Google Scholar] [CrossRef]
- Olsen, G.A. Consumption of antibiotics in Greenland, 1964–1970. IV. Changes in the sensitivity of N. gonorrhoeae to antibiotics. Br. J. Vener. Dis. 1973, 49, 33–41. [Google Scholar] [CrossRef]
- Kenyon, C.; Laumen, J.; Van Dijck, C. Could intensive screening for gonorrhoea/chlamydia in PrEP cohorts select for resistance? Historical lessons from a mass treatment campaign in Greenland. Sex. Transm. Dis. 2019. [Google Scholar] [CrossRef]
- McNamara, L.A.; MacNeil, J.R.; Cohn, A.C.; Stephens, D.S. Mass chemoprophylaxis for control of outbreaks of meningococcal disease. Lancet Infect. Dis. 2018, 18, e272–e281. [Google Scholar] [CrossRef]
- Stephens, D.S.; Greenwood, B.; Brandtzaeg, P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007, 369, 2196–2210. [Google Scholar] [CrossRef]
- Ala’Aldeen, D.A.; Neal, K.R.; Ait-Tahar, K.; Nguyen-Van-Tam, J.S.; English, A.; Falla, T.J.; Hawkey, P.M.; Slack, R.C. Dynamics of meningococcal long-term carriage among university students and their implications for mass vaccination. J. Clin. Microbiol. 2000, 38, 2311–2316. [Google Scholar] [PubMed]
- Glover, J. The cerebro-spinal fever epidemic of 1917 at X depot. Epidemiol. Infect. 1918, 17, 350–365. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rotman, E.; Seifert, H.S. The genetics of Neisseria species. Annu. Rev. Genet. 2014, 48, 405–431. [Google Scholar] [CrossRef]
- Lu, Q.F.; Cao, D.M.; Su, L.L.; Li, S.B.; Ye, G.B.; Zhu, X.Y.; Wang, J. Genus-Wide Comparative Genomics Analysis of Neisseria to Identify New Genes Associated with Pathogenicity and Niche Adaptation of Neisseria Pathogens. Int. J. Genomics 2019, 2019, 6015730. [Google Scholar] [CrossRef] [PubMed]
- Tsoumanis, A.; Hens, N.; Kenyon, C.R. Is screening for chlamydia and gonorrhea in men who have sex with men associated with reduction of the prevalence of these infections? a systematic review of observational studies. Sex. Transm. Dis. 2018, 45, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Ghani, A.C.; Swinton, J.; Garnett, G.P. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex. Transm. Dis. 1997, 24, 45–56. [Google Scholar] [CrossRef]
- Garnett, G.P.; Mertz, K.J.; Finelli, L.; Levine, W.C.; St Louis, M.E. The transmission dynamics of gonorrhoea: Modelling the reported behaviour of infected patients from Newark, New Jersey. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 787–797. [Google Scholar] [CrossRef]
- Kenyon, C.; Delva, W. It’s the network, stupid: A population’s sexual network connectivity determines its STI prevalence. F1000Res. 2018, 7, 1880. [Google Scholar] [CrossRef]
- Buyze, J.; Vandenberghe, W.; Hens, N.; Kenyon, C. Current levels of gonorrhoea screening in MSM in Belgium may have little effect on prevalence: A modelling study. Epidemiol. Infect. 2018, 146, 333–338. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal quinolone resistance originated from several commensal Neisseria species. Antimicrob.Agents Chemother. 2019, 64, e01494-19. [Google Scholar] [CrossRef]
- Bowler, L.D.; Zhang, Q.Y.; Riou, J.Y.; Spratt, B.G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: Natural events and laboratory simulation. J. Bacteriol. 1994, 176, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. mBio 2018, 9, e01419-18. [Google Scholar] [CrossRef] [PubMed]
- Bash, M.C.; Matthias, K.A. Antibiotic Resistance in Neisseria. Antimicrob. Drug Res. 2017, 2, 843. [Google Scholar]
- Saez-Nieto, J.A.; Perucha, M.; Casamayor, H.; Marcen, J.J.; Llacer, A.; Garcia-Barreno, B.; Casal, J. Outbreak of infection caused by Neisseria meningitidis group C type 2 in a nursery. J. Infect. 1984, 8, 49–55. [Google Scholar] [CrossRef]
- Block, C.; Raz, R.; Frasch, C.E.; Ephros, M.; Greif, Z.; Talmon, Y.; Rosin, D.; Bogokowsky, B. Re-emergence of meningococcal carriage on three-year follow-up of a kibbutz population after whole-community chemoprophylaxis. Eur. J. Clin. Microbiol. Infect. Dis. 1993, 12, 505–511. [Google Scholar] [CrossRef]
- Jackson, L.A.; Alexander, E.R.; Debolt, C.A.; Swenson, P.D.; Boase, J.; McDowell, M.G.; Reeves, M.W.; Wenger, J.D. Evaluation of the use of mass chemoprophylaxis during a school outbreak of enzyme type 5 serogroup B meningococcal disease. Pediatr. Infect. Dis. J. 1996, 15, 992–998. [Google Scholar] [CrossRef]
- Pearce, M.C.; Sheridan, J.W.; Jones, D.M.; Lawrence, G.W.; Murphy, D.M.; Masutti, B.; McCosker, C.; Douglas, V.; George, D.; O’Keefe, A.; et al. Control of group C meningococcal disease in Australian aboriginal children by mass rifampicin chemoprophylaxis and vaccination. Lancet 1995, 346, 20–23. [Google Scholar] [CrossRef]
- Millar, J.W.; Siess, E.E.; Feldman, H.A.; Silverman, C.; Frank, P. In vivo and in vitro resistance to sulfadiazine in strains of Neisseria meningitidis. JAMA 1963, 186, 139–141. [Google Scholar] [CrossRef]
- Neal, K.; Irwin, D.; Davies, S.; Kaczmarski, E.; Wale, M. Sustained reduction in the carriage of Neisseria meningitidis as a result of a community meningococcal disease control programme. Epidemiol. Infect. 1998, 121, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Zalmanovici Trestioreanu, A.; Fraser, A.; Gafter-Gvili, A.; Paul, M.; Leibovici, L. Antibiotics for preventing meningococcal infections. Cochrane Database Syst. Rev. 2011, CD004785. [Google Scholar] [CrossRef] [PubMed]
- Stephens, D. Neisseria meningitidis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Deguchi, T.; Mizutani, K.S.; Yasuda, M.; Yokoi, S.; Ito, S.; Takahashi, Y.; Ishihara, S.; Kawamura, Y.; Ezaki, T. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob. Agents Chemother. 2005, 49, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Nakayama, H.; Huruya, K.; Konomi, I.; Irie, S.; Kanayama, A.; Saika, T.; Kobayashi, I. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int J Antimicrob Agents 2006, 27, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Furuya, R.; Onoye, Y.; Kanayama, A.; Saika, T.; Iyoda, T.; Tatewaki, M.; Matsuzaki, K.; Kobayashi, I.; Tanaka, M. Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population. J. Infect. Chemother. 2007, 13, 302–304. [Google Scholar] [CrossRef]
- Kenyon, C.; Buyze, J.; Wi, T. Antimicrobial consumption and susceptibility of Neisseria gonorrhoeae: A global ecological analysis. Front. Med. 2018, 5, 329. [Google Scholar] [CrossRef]
- Dong, H.V.; Pham, L.Q.; Nguyen, H.T.; Nguyen, M.X.B.; Nguyen, T.V.; May, F.; Le, G.M.; Klausner, J.D. Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-Using Men-who-have-sex-with-men of Hanoi, Vietnam. Clin. Infect. Dis. 2019, ciz365. [Google Scholar] [CrossRef]
- Bolan, R.K.; Beymer, M.R.; Weiss, R.E.; Flynn, R.P.; Leibowitz, A.A.; Klausner, J.D. Doxycycline Prophylaxis to Reduce Incident Syphilis among HIV-Infected Men Who Have Sex With Men Who Continue to Engage in High-Risk Sex: A Randomized, Controlled Pilot Study. Sex. Transm. Dis. 2015, 42, 98–103. [Google Scholar] [CrossRef]
- Molina, J.M.; Charreau, I.; Chidiac, C.; Pialoux, G.; Cua, E.; Delaugerre, C.; Capitant, C.; Rojas-Castro, D.; Fonsart, J.; Bercot, B.; et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: An open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect. Dis. 2017, 18, 308–317. [Google Scholar] [CrossRef]
- Knapp, J.S. Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev. 1988, 1, 415–431. [Google Scholar] [CrossRef]
- Kenyon, C. How actively should we screen for chlamydia and gonorrhoea in MSM and other high-ST-prevalence populations as we enter the era of increasingly untreatable infections? A viewpoint. J. Med. Microbiol. 2018, 68, 132–135. [Google Scholar] [CrossRef]
- Kenyon, C.; Schwartz, I.S. A combination of high sexual network connectivity and excess antimicrobial usage induce the emergence of antimicrobial resistance in Neisseria gonorrhoeae. Emerg. Infect. Dis. 2018, 24, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Dretler, A.W.; Rouphael, N.G.; Stephens, D.S. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum. Vaccin. Immunother. 2018, 14, 1146–1160. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.S.; McMillan, M.; Koehler, A.P.; Lawrence, A.; Sullivan, T.R.; MacLennan, J.M.; Maiden, M.C.J.; Ladhan, S.N.; Ramsay, M.E.; Trotter, C.; et al. Meningococcal B Vaccine and Meningococcal Carriage in Adolescents in Australia. N. Engl. J. Med. 2020, 382, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.S.; McMillan, M.; Koehler, A.; Lawrence, A.; MacLennan, J.; Maiden, M.; Ramsay, M.; Ladhani, S.N.; Trotter, C.; Borrow, R.; et al. B Part of It School Leaver protocol: An observational repeat cross-sectional study to assess the impact of a meningococcal serogroup B (4CMenB) vaccine programme on carriage of Neisseria meningitidis. BMJ Open 2019, 9, e027233. [Google Scholar] [CrossRef] [PubMed]
- Terranova, L.; Principi, N.; Bianchini, S.; Di Pietro, G.; Umbrello, G.; Madini, B.; Esposito, S. Neisseria meningitidis serogroup B carriage by adolescents and young adults living in Milan, Italy: Prevalence of strains potentially covered by the presently available meningococcal B vaccines. Hum. Vaccin. Immunother. 2018, 14, 1070–1074. [Google Scholar] [CrossRef]
- Balmer, P.; Burman, C.; Serra, L.; York, L.J. Impact of meningococcal vaccination on carriage and disease transmission: A review of the literature. Hum. Vaccin. Immunother. 2018, 14, 1118–1130. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Piccini, G.; Torelli, A.; Rappuoli, R.; Montomoli, E. An unwanted guest: Neisseria meningitidis—Carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev. Anti. Infect. Ther. 2017, 15, 689–701. [Google Scholar] [CrossRef]
- Kenyon, C. Comment on “Effectiveness of a Group B outer membrane vesicle meningococcal vaccine in preventing hospitalization from gonorrhea in New Zealand: A retrospective cohort study. Vaccines 2019, 1, 5, doi:10.3390/vaccines7010005”. Vaccines 2019, 7, 31. [Google Scholar] [CrossRef]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H.J.V. Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef]
- Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet 2017, 390, 1603–1610. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenyon, C. To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens 2020, 9, 134. https://doi.org/10.3390/pathogens9020134
Kenyon C. To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens. 2020; 9(2):134. https://doi.org/10.3390/pathogens9020134
Chicago/Turabian StyleKenyon, Chris. 2020. "To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns" Pathogens 9, no. 2: 134. https://doi.org/10.3390/pathogens9020134
APA StyleKenyon, C. (2020). To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns. Pathogens, 9(2), 134. https://doi.org/10.3390/pathogens9020134