Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection and Identification of Plant Materials
2.2. Preparation of the Ethanolic Extract of C. articulatus (EECA)
2.3. Chromatographic Analysis of the EECA
2.4. Assessment of Cell Viability
2.5. Evaluation of Hemolytic Activity
2.6. Evaluation of In Vitro Antiplasmodial Activity
2.7. Selectivity Index
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laveran, A. Un nouveau parasite trouvé dans le sang de malades atteints de fièvre palustre. Origine parasitaire des accidents de l’impaludisme. Bull. Mém. Soc. Méd. Hôpitaux Paris 1881, 17, 158–164. [Google Scholar]
- Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet 2018, 391, 1608–1621. [Google Scholar] [CrossRef]
- Espinoza, J. Malaria Resurgence in the Americas: An Underestimated Threat. Pathogens 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Malaria Report 2019; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-156572-1. [Google Scholar]
- Dahmana, H.; Mediannikov, O. Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens 2020, 9, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneguetti, D.U.O.; Cunha, R.M.d.; Lima, R.A.; Oliveira, F.A.S.; de Medeiros, D.S.; Passarini, G.M.; de Medeiros, P.S.D.M.; Militão, J.S.L.T.; Facundo, V.A. Antimalarial ethnopharmacology in the Brazilian Amazon. J. Basic Appl. Pharm. Sci. 2014, 35, 385–392. [Google Scholar]
- Reiners, A.A.O.; de Azevedo, R.C.S.; Ricci, H.A.; de Souza, T.G. User adherence and reactions to malaria treatment: Implications for health education. Texto Context. Enferm. 2010, 19, 536–544. [Google Scholar] [CrossRef]
- Monteiro, E.F.; Fernandez-Becerra, C.; da Araujo, M.S.; Messias, M.R.; Ozaki, L.S.; de Duarte, A.M.R.C.; Bueno, M.G.; Catao-Dias, J.L.; Chagas, C.R.F.; da Mathias, B.S.; et al. Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 2020, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.P.; Vitorino, R.R.; de Costa, A.P.; de Mendonça, E.G.; de Oliveira, M.G.A.; Siqueira-Batista, R. Severe Plasmodium falciparum malaria. Rev. Bras. Ter. Intensiva 2011, 23, 358–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- França, T.C.C.; Dos Santos, M.G.; Figueroa-Villar, J.D. Malária: Aspectos históricos e quimioterapia. Quim. Nova 2008, 31, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Idro, R.; Marsh, K.; John, C.C.; Newton, C.R.J. Cerebral malaria: Mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr. Res. 2010, 68, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014, 505, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A.; Dhorda, M.; Fairhurst, R.M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Anderson, J.M.; Mao, S.; Sam, B.; et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. New Engl. J. Med. 2014, 371, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noisang, C.; Meyer, W.; Sawangjaroen, N.; Ellis, J.; Lee, R. Molecular Detection of Antimalarial Drug Resistance in Plasmodium vivax from Returned Travellers to NSW, Australia during 2008–2018. Pathogens 2020, 9, 101. [Google Scholar] [CrossRef] [Green Version]
- Wells, T.N.C.; van Huijsduijnen, R.H.; van Voorhis, W.C. Malaria medicines: A glass half full? Nat. Rev. Drug Discov. 2015, 14, 424–442. [Google Scholar] [CrossRef]
- Américo, Á.V.L.d.S.; Nunes, K.M.; Assis, F.F.V.; Dias, S.R.; Passos, C.T.S.; Morini, A.C.; Araújo, J.A.; Castro, K.C.F.; Escher, S.K.S.; Barata, L.E.S.; et al. Efficacy of Phytopharmaceuticals from the Amazonian Plant Libidibia ferrea for Wound Healing in Dogs. Front. Vet. Sci. 2020, 7, 244. [Google Scholar] [CrossRef]
- Calixto, J.B.; Scheidt, C.; Otuki, M.; Santos, A.R.S. Biological activity of plant extracts: Novel analgesic drugs. Expert Opin. Emerg. Drugs 2001, 6, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, D.G.; Ribeiro, D.A.; Coutinho, H.D.M.; Menezes, I.R.A.; Souza, M.M.A. Práticas terapêuticas tradicionais: Uso e conhecimento de plantas do cerrado no estado de Pernambuco (Nordeste do Brasil). Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 491–508. [Google Scholar]
- Cimanga, R.K.; Nsaka, S.L.; Tshodi, M.E.; Mbamu, B.M.; Kikweta, C.M.; Makila, F.B.M.; Cos, P.; Maes, L.; Vlietinck, A.J.; Exarchou, V.; et al. In vitro and in vivo antiplasmodial activity of extracts and isolated constituents of Alstonia congensis root bark. J. Ethnopharmacol. 2019, 242, 111736. [Google Scholar] [CrossRef]
- Zoghbi, M.D.G.B.; Andrade, E.H.A.; Carreira, L.M.M.; Rocha, E.A.S. Comparison of the main components of the essential oils of “priprioca”: Cyperus articulatus var. Articulatus, L., C. Articulatus var. Nodosus, L., C. Prolixus kunth and C. Rotundus, L. J. Essent. Oil Res. 2008, 20, 42–45. [Google Scholar] [CrossRef]
- Ngo Bum, E.; Schmutz, M.; Meyer, C.; Rakotonirina, A.; Bopelet, M.; Portet, C.; Jeker, A.; Rakotonirina, S.V.; Olpe, H.R.; Herrling, P. Anticonvulsant properties of the methanolic extract of Cyperus articulatus (Cyperaceae). J. Ethnopharmacol. 2001, 76, 145–150. [Google Scholar]
- Ahmad, A.; Khan, A.; Manzoor, N.; Khan, L.A. Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb. Pathog. 2010, 48, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hilário, F.F.; de Paula, R.C.; Silveira, M.L.T.; Viana, G.H.R.; Alves, R.B.; Pereira, J.R.C.S.; Silva, L.M.; de Freitas, R.P.; de Pilla Varotti, F. Synthesis and Evaluation of Antimalarial Activity of Oxygenated 3-alkylpyridine Marine Alkaloid Analogues. Chem. Biol. Drug Des. 2011, 78, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Bénard, J.; Douc-Rasy, S.; Ahomadegbe, J.C. TP53 family members and human cancers. Hum. Mutat. 2003, 21, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Rukunga, G.M.; Muregi, F.W.; Omar, S.A.; Gathirwa, J.W.; Muthaura, C.N.; Peter, M.G.; Heydenreich, M.; Mungai, G.M. Anti-plasmodial activity of the extracts and two sesquiterpenes from Cyperus articulatus. Fitoterapia 2008, 79, 188–190. [Google Scholar] [CrossRef]
- Weniger, H. Review of Side Effects and Toxicity of Chloroquine; World Health Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Pers, Y.M. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018, 41, 919–931. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Hsu, H.C.; Yang, W.C.; Tsai, W.J.; Chen, C.C.; Watanabe, T. α-Bulnesene, a PAF inhibitor isolated from the essential oil of Pogostemon cablin. Fitoterapia 2007, 78, 7–11. [Google Scholar] [CrossRef]
- Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 2018, 11, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.S.S.; Dolabela, M.F.; Póvoa, M.M.; Oliveira, D.J.; Müller, A.H. Estudos farmacognósticos, fitoquímicos, atividade antiplasmódica e toxicidade em Artemia salina de extrato etanólico de folhas de Montrichardia linifera (Arruda) Schott, Araceae. Braz. J. Pharmacogn. 2009, 19, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Mojarrab, M.; Emami, S.A.; Gheibi, S.; Taleb, A.M.; Heshmati Afshar, F. Evaluation of anti-malarial activity of Artemisia turcomanica and A. kopetdaghensis by cell-free β-hematin formation assay. Res. J. Pharmacogn. 2016, 3, 59–65. [Google Scholar]
- Metuge, J.A.; Nyongbela, K.D.; Mbah, J.A.; Samje, M.; Fotso, G.; Babiaka, S.B.; Cho-Ngwa, F. Anti-Onchocerca activity and phytochemical analysis of an essential oil from Cyperus articulatus L. BMC Complement. Altern. Med. 2014, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.C.d.; Gonçalves, S.F.; de Araújo, L.S.; Kasper, A.A.M.; da Fonseca, A.L.; Sartoratto, A.; Castro, K.C.F.; Moraes, T.M.P.; Baratto, L.C.; de Varotti, F.P.; et al. In vitro and in vivo antimalarial activity of the volatile oil of Cyperus articulatus (Cyperaceae). Acta Amaz. 2019, 49, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Dolabela, M.F.; Da Silva, A.R.P.; Ohashi, L.H.; Bastos, M.L.C.; Da Silva, M.C.M.; Vale, V.V. Estudo in silico das atividades de triterpenos e iridoides isolados de Himatanthus articulatus (Vahl) Woodson. Rev. Fitos 2018, 12, 227. [Google Scholar] [CrossRef]
Identification | tR (min) | Rel% |
---|---|---|
alpha-bulnesene | 15.01 | 1.18 |
cadalene | 18.95 | 8.36 |
cyperotundone | 19.34 | 2.88 |
cis-thujopsenal | 19.59 | 4.19 |
cyclocolorenone | 20.49 | 9.75 |
corymbolone | 23.32 | 14.25 |
hexadecanoic acid ethyl ester | 25.21 | 5.99 |
9,12-octadecadienic acid ethyl ester | 28.27 | 3.24 |
9-octadecenoic acid ethyl ester | 28.38 | 5.5 |
cholesta-3,5-diene | 39.63 | 4.82 |
Total identified: | 60.16 |
Compound | IC50 (µg/mL) ± SD * | Antiplasmodial Activity | LC50 (µg) | SI | ||
---|---|---|---|---|---|---|
3D7 | W2 | 3D7 | W2 | |||
Ethanolic Extract | 1.10 ± 0.06 | 1.21 ± 0.01 | Active | > 100 | > 91 | 83 |
Chloroquine | 0.46 ± 0.08 | 0.21 ± 0.01 | Active | > 100 | > 200 | > 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis, F.F.V.d.; Silva, N.C.d.; Moraes, W.P.; Barata, L.E.S.; Minervino, A.H.H. Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue. Pathogens 2020, 9, 889. https://doi.org/10.3390/pathogens9110889
Assis FFVd, Silva NCd, Moraes WP, Barata LES, Minervino AHH. Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue. Pathogens. 2020; 9(11):889. https://doi.org/10.3390/pathogens9110889
Chicago/Turabian StyleAssis, Francisco Flávio Vieira de, Nazaré Carneiro da Silva, Waldiney Pires Moraes, Lauro Euclides Soares Barata, and Antonio Humberto Hamad Minervino. 2020. "Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue" Pathogens 9, no. 11: 889. https://doi.org/10.3390/pathogens9110889
APA StyleAssis, F. F. V. d., Silva, N. C. d., Moraes, W. P., Barata, L. E. S., & Minervino, A. H. H. (2020). Chemical Composition and In Vitro Antiplasmodial Activity of the Ethanolic Extract of Cyperus articulatus var. nodosus Residue. Pathogens, 9(11), 889. https://doi.org/10.3390/pathogens9110889