Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades
Abstract
:1. Introduction
2. Results
2.1. G and C Nucleotides Were Highly Enriched in PPV Genomes
2.2. Different Genome Structures Exist in Various PPVs
2.3. Population Dynamics of PPVs over the Past 20 Years
2.4. ORFV of Genera PPV Became Predominant Species in Recent Years
2.5. Evolutionary Rates and Selection Analysis of Different Gene Sequences in PPVs
3. Discussion
4. Materials and Methods
4.1. PPVs Sequences
4.2. Gene Structure and Nucleotide Composition
4.3. Compositional Change of PPV Isolates over Time
4.4. Evolution Substitution Rates
4.5. Genetic Diversity and Phylogenetic Analysis
4.6. Selection Pressures in PPVs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Becher, P.; König, M.; Müller, G.; Siebert, U.; Thiel, H.-J. Characterization of sealpox virus, a separate member of the parapoxviruses. Arch. Virol. 2002, 147, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Mercer, A.A. Parapoxvirus of Red Deer: Evidence for Its Inclusion as a New Member in the Genus Parapoxvirus. Virology 1995, 208, 812–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D. The Encyclopedia of Virology plus. Trends Biochem. Sci. 1997, 22, 34–35. [Google Scholar] [CrossRef]
- Wittek, R.; Kuenzle, C.C.; Wyler, R. High C + G content in parapoxvirus DNA. J. Gen. Virol. 1979, 43, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.; Rziha, H.-J. Parapoxviruses: From the Lesion to the Viral Genome. J. Vet Med. Ser. B 2002, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Delhon, G.; Tulman, E.R.; Afonso, C.L.; Lu, Z.; De La Concha-Bermejillo, A.; Lehmkuhl, H.D.; Piccone, M.E.; Kutish, G.F.; Rock, D.L. Genomes of the Parapoxviruses Orf Virus and Bovine Papular Stomatitis Virus. J. Virol. 2004, 78, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakhunashvili, G.; Carlson, B.F.; Power, L.; Khmaladze, E.; Tsaguria, D.; Gavashelidze, M.; Zakhashvili, K.; Imnadze, P.; Boulton, M.L.; Johnson, L.R. Parapoxvirus Infections in the Country of Georgia: A Case Series. Am. J. Trop. Med. Hyg. 2018, 98, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.; Gröters, S.; Siebert, U.; Rosenberger, T.; Driver, J.; König, M.; Becher, P.; Hetzel, U.; Baumgärtner, W. Parapoxvirus infection in harbor seals (Phoca vitulina) from the German North Sea. Vet. Pathol. 2003, 40, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roess, A.A.; Mccollum, A.M.; Gruszynski, K.; Zhao, H.; Davidson, W.; Lafon, N.; Engelmeyer, T.; Moyer, B.; Godfrey, C.; Kilpatrick, H.; et al. Surveillance of Parapoxvirus Among Ruminants in Virginia and Connecticut. Zoonoses Public Health 2013, 60, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Salinas, L.; Ramirez-Medina, E.; Bracht, A.J.; Hole, K.; Brito, B.P.; Gladue, D.; Carrillo, C. Phylodynamics of parapoxvirus genus in Mexico (2007–2011). Infect. Genet. Evol. 2018, 65, 12–14. [Google Scholar] [CrossRef]
- Hosamani, M.; Scagliarini, A.; Bhanuprakash, V.; McInnes, C.J.; Singh, R.K. Orf: An update on current research and future perspectives. Expert Rev. Anti-Infect. Ther. 2009, 7, 879–893. [Google Scholar] [CrossRef] [PubMed]
- De Sant’Ana, F.J.; Rabelo, R.E.; Vulcani, V.A.; Cargnelutti, J.F.; Flores, E.F. Bovine papular stomatitis affecting dairy cows and milkers in midwestern Brazil. J. Vet. Diagn. Investig. 2012, 24, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Nougairede, A.; Fossati, C.; Salez, N.; Cohen-Bacrie, S.; Ninove, L.; Michel, F.; Aboukais, S.; Büttner, M.; Zandotti, C.; De Lamballerie, X.; et al. Sheep-to-Human Transmission of Orf Virus during Eid al-Adha Religious Practices, France. Emerg. Infect. Dis. 2013, 19, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, M.; Muller, H.; Zobl, A.; Windisch, A.; Romani, N.; Huemer, H. Orf Virus Infection in a Hunter in Western Austria, Presumably Transmitted by Game. Acta Dermato-Venereol. 2014, 94, 212–214. [Google Scholar] [CrossRef] [Green Version]
- Osadebe, L.U.; Manthiram, K.; McCollum, A.M.; Li, Y.; Emerson, G.L.; Gallardo-Romero, N.F.; Doty, J.B.; Wilkins, K.; Zhao, H.; Drew, C.P.; et al. Novel poxvirus infection in 2 patients from the United States. Clin. Infect. Dis. 2015, 60, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Midilli, K.; Erkılıç, A.; Kuşkucu, M.; Analay, H.; Erkiliç, S.; Benzonana, N.; Yildirim, M.S.; Mülayim, K.; Acar, H.; Ergonul, O. Nosocomial outbreak of disseminated orf infection in a burn unit, Gaziantep, Turkey, October to December 2012. Eurosurveillance 2013, 18, 20425. [Google Scholar] [CrossRef] [Green Version]
- Lederman, E.R.; Green, G.M.; DeGroot, H.E.; Dahl, P.; Goldman, E.; Greer, P.W.; Li, Y.; Zhao, H.; Paddock, C.D.; Damon, I.K. Progressive Orf Virus Infection in a Patient with Lymphoma: Successful Treatment Using Imiquimod. Clin. Infect. Dis. 2007, 44, e100–e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedla, M.G.; Berhan, N.; Molla, W.; Temesgen, W.; Alemu, S. Molecular identification and investigations of contagious ecthyma (Orf virus) in small ruminants, North west Ethiopia. BMC Vet. Res. 2018, 14, 13. [Google Scholar] [CrossRef]
- Mazur, C.; Machado, R.D. Detection of contagious pustular dermatitis virus of goats in a severe outbreak. Vet. Rec. 1989, 125, 419–420. [Google Scholar] [CrossRef] [PubMed]
- McKeever, D.; Jenkinson, D.M.; Hutchison, G.; Reid, H. Studies of the pathogenesis of orf virus infection in sheep. J. Comp. Pathol. 1988, 99, 317–328. [Google Scholar] [CrossRef]
- De Sant’Ana, F.J.D.; Leal, F.A.; Rabelo, R.E.; Vulcani, V.A.; Moreira, C.A., Jr.; Cargnelutti, J.F.; Flores, E.F. Coinfection by Vaccinia virus and an Orf virus-like parapoxvirus in an outbreak of vesicular disease in dairy cows in midwestern Brazil. J. Vet. Diagn. Investig. 2013, 25, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Cargnelutti, J.; Brum, M.C.; Traesel, C.K.; Weiblen, R.; Flores, E.F. Partial sequence analysis of B2L gene of Brazilian orf viruses from sheep and goats. Vet. Microbiol. 2013, 162, 245–253. [Google Scholar] [CrossRef]
- Abrahão, J.S.; Borges, I.A.; Mazur, C.; Lobato, Z.I.P.; Ferreira, P.C.P.; Bonjardim, C.A.; Trindade, G.S.; Kroon, E.G. Looking back: A genetic retrospective study of BrazilianOrf virusisolates. Vet. Rec. 2012, 171, 476. [Google Scholar] [CrossRef]
- Cargnelutti, J.F.; Flores, M.M.; Teixeira, F.R.M.; Weiblen, R.; Flores, E.F. An outbreak of pseudocowpox in fattening calves in southern Brazil. J. Vet. Diagn. Investig. 2012, 24, 437–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.H.; Assis, F.L.; Neto, J.D.B.; Oliveira, C.M.; Lopes, C.T.D.A.; Bomjardim, H.D.A.; Vinhote, W.M.; E Silva, A.G.M.; Abrahão, J.S.; Kroon, E.G. Multifocal Cutaneous Orf Virus Infection in Goats in the Amazon Region, Brazil. Vector-Borne Zoonotic Dis. 2012, 12, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Zhao, J.; Guo-Zhong, Z.; Jin, J.-H.; Zhang, G.-Z. Evolution of infectious bronchitis virus in China over the past two decades. J. Gen. Virol. 2016, 97, 1566–1574. [Google Scholar] [CrossRef]
- Drillien, R.; Koehren, F.; Kirn, A. Host range deletion mutant of vaccinia virus defective in human cells. Virology 1981, 111, 488–499. [Google Scholar] [CrossRef]
- Moss, B.; Winters, E.; A Cooper, J. Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. J. Virol. 1981, 40, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Panicali, D.; Davis, S.W.; Mercer, S.R.; Paoletti, E. Two major DNA variants present in serially propagated stocks of the WR strain of vaccinia virus. J. Virol. 1981, 37, 1000–1010. [Google Scholar] [CrossRef] [Green Version]
- Paez, E.; Dallo, S.; Esteban, M. Generation of a dominant 8-MDa deletion at the left terminus of vaccinia virus DNA. Proc. Natl. Acad. Sci. USA 1985, 82, 3365–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallo, S.; Esteban, M. Isolation and characterization of attenuated mutants of vaccinia virus. Virology 1987, 159, 408–422. [Google Scholar] [CrossRef]
- Meyer, H.; Sutter, G.; Mayr, A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 1991, 72 Pt 5, 1031–1038. [Google Scholar] [CrossRef]
- Cottone, R.; Büttner, M.; Bauer, B.; Henkel, M.; Hettich, E.; Rziha, H.-J. Analysis of genomic rearrangement and subsequent gene deletion of the attenuated Orf virus strain D1701. Virus Res. 1998, 56, 53–67. [Google Scholar] [CrossRef]
- Lake, J.R.; Cooper, P.D. Deletions of the Terminal Sequences in the Genomes of the White Pock (u) and Host-restricted (p) Mutants of Rabbitpox Virus. J. Gen. Virol. 1980, 48, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Moyer, R.W.; Rothe, C.T. The white pock mutants of rabbit poxvirus. I. Spontaneous host range mutants contain deletions. Virology 1980, 102, 119–132. [Google Scholar] [CrossRef]
- Archard, L.C.; Mackett, M. Restriction Endonuclease Analysis of Red Cowpox Virus and its White Pock Variant. J. Gen. Virol. 1979, 45, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.J.; Cabradilla, C.D.; Nakano, J.H.; Obijeski, J.F. Intragenomic sequence transposition in monkeypox virus. Virology 1981, 109, 231–243. [Google Scholar] [CrossRef]
- Kotwal, G.J.; Moss, B. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 1988, 167, 524–537. [Google Scholar] [CrossRef]
- Archard, L.C.; Mackett, M.; Barnes, D.E.; Dumbell, K.R. The Genome Structure of Cowpox Virus White Pock Variants. J. Gen. Virol. 1984, 65, 875–886. [Google Scholar] [CrossRef]
- Pickup, D.J.; Ink, B.S.; Parsons, B.L.; Hu, W.; Joklik, W.K. Spontaneous deletions and duplications of sequences in the genome of cowpox virus. Proc. Natl. Acad. Sci. USA 1984, 81, 6817–6821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumbell, K.R.; Archard, L.C. Comparison of white pock (h) mutants of monkeypox virus with parental monkeypox and with variola-like viruses isolated from animals. Nat. Cell Biol. 1980, 286, 29–32. [Google Scholar] [CrossRef]
- Karki, M.; Kumar, A.; Arya, S.; Ramakrishnan, M.A.; Venkatesan, G. Poxviral E3L ortholog (Viral Interferon resistance gene) of orf viruses of sheep and goats indicates species-specific clustering with heterogeneity among parapoxviruses. Cytokine 2019, 120, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rziha, H.-J.; Büttner, M.; Müller, M.; Salomon, F.; Reguzova, A.; Laible, D.; Amann, R. Genomic Characterization of Orf Virus Strain D1701-V (Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Prosperi, M.C.; Ciccozzi, M.; Fanti, I.; Saladini, F.; Pecorari, M.; Borghi, V.; Di Giambenedetto, S.; Bruzzone, B.; Capetti, A.; Vivarelli, A.; et al. A novel methodology for large-scale phylogeny partition. Nat. Commun. 2011, 2, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronson, E.C.; Anderson, J.N. Nucleotide composition as a driving force in the evolution of retroviruses. J. Mol. Evol. 1994, 38, 506–532. [Google Scholar] [CrossRef]
- Shackelton, L.A.; Parrish, C.R.; Holmes, E.C. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J. Mol. Evol. 2006, 62, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Schachtel, G.A.; Bucher, P.; Mocarski, E.S.; Blaisdell, B.E.; Karlin, S. Evidence for selective evolution in codon usage in conserved amino acid segments of human alphaherpesvirus proteins. J. Mol. Evol. 1991, 33, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, W.; Kuang, Z.; Chen, D.; Liao, X.; Li, M.; Luo, S.; Hao, W. The whole genomic analysis of orf virus strain HN3/12 isolated from Henan province, central China. BMC Vet. Res. 2017, 13, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreani, J.; Fongue, J.; Khalil, J.Y.B.; David, L.; Mougari, S.; Le Bideau, M.; Abrahão, J.; Berbis, P.; La Scola, B. Human Infection with Orf Virus and Description of Its Whole Genome, France, 2017. Emerg. Infect. Dis. 2019, 25, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Savory, L.J.; Stacker, S.A.; Fleming, S.B.; Niven, B.E.; Mercer, A.A. Viral vascular endothelial growth factor plays a critical role in orf virus infection. J. Virol. 2000, 74, 10699–10706. [Google Scholar] [CrossRef] [Green Version]
- Rziha, H.-J.; Bauer, B.; Adam, K.-H.; Röttgen, M.; Cottone, R.; Henkel, M.; Dehio, C.; Büttner, M. Relatedness and heterogeneity at the near-terminal end of the genome of a parapoxvirus bovis 1 strain (B177) compared with parapoxvirus ovis (Orf virus). J. Gen. Virol. 2003, 84, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.M.; Stuart, G.S.; Real, N.C.; Fleming, S.B.; Mercer, A.A. Orf virus IL-10 accelerates wound healing while limiting inflammation and scarring. Wound Repair Regen. 2014, 22, 356–367. [Google Scholar] [CrossRef]
- Fleming, S.B.; Haig, D.M.; Nettleton, P.; Reid, H.W.; McCaughan, C.A.; Wise, L.M.; Mercer, A.A. Sequence and functional analysis of a homolog of interleukin-10 encoded by the parapoxvirus orf virus. Virus Genes 2000, 21, 85–95. [Google Scholar] [CrossRef]
- Perrin, A.; Larsonneur, E.; Nicholson, A.C.; Edwards, D.J.; Gundlach, K.M.; Whitney, A.M.; Gulvik, C.A.; Bell, M.E.; Rendueles, O.; Cury, J.; et al. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat. Commun. 2017, 8, 15483. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wang, S.; Yin, Y.; Zhang, G.; Carter, R.A.; Wang, J.; Xu, G.; Sun, H.; Wang, M.; Wen, C.; et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc. Natl. Acad. Sci. USA 2014, 112, 548–553. [Google Scholar] [CrossRef] [Green Version]
- Ahanger, S.A.; Parveen, R.; Nazki, S.; Dar, Z.; Dar, T.; Dar, K.H.; Dar, A.; Rai, N.; Dar, P.A. Detection and phylogenetic analysis of Orf virus in Kashmir Himalayas. Virus Dis. 2018, 29, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Bala, J.A.; Balakrishnan, K.N.; Abdullah, A.A.; Mohamed, R.; Haron, A.W.; Jesse, F.F.A.; Noordin, M.M.; Mohd-Azmi, M.L. The re-emerging of orf virus infection: A call for surveillance, vaccination and effective control measures. Microb. Pathog. 2018, 120, 55–63. [Google Scholar] [CrossRef]
- Bora, M.; Bora, D.P.; Barman, N.N.; Borah, B.; Bora, P.L.; Talukdar, A.; Tamuly, S. Isolation and molecular characterization of Orf virus from natural outbreaks in goats of Assam. Virus Dis. 2015, 26, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.W.; Lin, J.W.; Lee, S.H.; Liao, C.J.; Tsai, M.C.; Hsu, W.L.; Wong, M.L.; Shih, H.C. Identification and phylogenetic analysis of orf virus from goats in Taiwan. Virus Genes 2007, 35, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.; Gonzalez Altamiranda, E.A.; Verna, A.E.; Peralta, A.V.; Madariaga, C.; Odeón, A.C.; Canton, G. Orf virus in human, confirmation in case report from Chile. Rev. Chilena Infectol. 2017, 34, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Şevik, M. Association of two clusters of Orf virus isolates in outbreaks of infection in goat in the Central Anatolian region of Turkey. Virus Dis. 2017, 28, 345–348. [Google Scholar] [CrossRef]
- Soylemez, O.; Kondrashov, F.A. Estimating the Rate of Irreversibility in Protein Evolution. Genome Biol. Evol. 2012, 4, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Haig, D.; McInnes, C.J.; Deane, D.; Reid, H.; Mercer, A.A. The immune and inflammatory response to orf virus. Comp. Immunol. Microbiol. Infect. Dis. 1997, 20, 197–204. [Google Scholar] [CrossRef]
- Paillot, R. A systematic review of the immune-modulators Parapoxvirus ovis and Propionibacterium acnes for the prevention of respiratory disease and other infections in the horse. Vet. Immunol. Immunopathol. 2013, 153, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Soderholm, J.; Ahlén, G.; Kaul, A.; Frelin, L.; Alheim, M.; Barnfield, C.; Liljeström, P.; Weiland, O.; Milich, D.R.; Bartenschlager, R.; et al. Relation between viral fitness and immune escape within the hepatitis C virus protease. Gut 2006, 55, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree Of Life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011, 39, W475–W478. [Google Scholar] [CrossRef]
- Ito, K.; Murphy, D. Application of ggplot2 to Pharmacometric Graphics. Cpt Pharmacomet. Syst. Pharmacol. 2013, 2, e79. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Newton, M.A.; Raftery, A.E. Approximate bayesian inference with the weighted likelihood bootstrap. J. R. Stat. Soc. Ser. B (Methodol.) 1994, 56, 3–48. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, B.; Rambaut, A.; Drummond, A.J. Choosing Appropriate Substitution Models for the Phylogenetic Analysis of Protein-Coding Sequences. Mol. Biol. Evol. 2005, 23, 7–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Lam, T.T.; Carvalho, L.M.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Evolutionary Rate (nt Substitutions per Site per Year) | 95% HPD |
---|---|---|
B2L | 6.34 × 10−5 | 3.89 × 10−9–1.52 × 10−4 |
CBP | 3.51 × 10−4 | 2.39 × 10−5–7.06 × 10−4 |
F1L | 2.79 × 10−4 | 1.39 × 10−4–4.31 × 10−4 |
GIF | 1.29 × 10−4 | 3.53 × 10−5–3.07 × 10−4 |
VIR | 4.21 × 10−4 | 1.28 × 10−4–7.32 × 10−4 |
VEGF | 3.56 × 10−5 | 4.31 × 10−6–9.61 × 10−5 |
VLTF−1 | 4.45 × 10−5 | 1.85 × 10−5–7.22 × 10−5 |
Gene | M0 (ω) | Likelihood Test (2ΔlnL) | ||
---|---|---|---|---|
M0 vs. M3 | M1a vs. M2a | M7 vs. M8 | ||
B2L | 0.496 | 37.600 * | 7.855 * | 14.975 * |
CBP | 0.712 | 714.169 ** | 158.452 ** | 465.606 ** |
F1L | 0.810 | 16.101 * | 7.855 * | 4.673 * |
GIF | 1.446 | 54.257 ** | 45.127 *** | 45.116 **** |
VIR | 1.537 | 27.370 * | 32.219 *** | 39.494 *** |
VEGF | 0.801 | 64.918 *** | 17.004 * | 25.106 * |
VLTF-1 | 0.015 | 1.062 | 1.766 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Pang, M.; Wang, T.; Chen, X.; Tang, X.; Chang, J.; Chen, D.; Ma, W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020, 9, 888. https://doi.org/10.3390/pathogens9110888
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens. 2020; 9(11):888. https://doi.org/10.3390/pathogens9110888
Chicago/Turabian StyleYao, Xiaoting, Ming Pang, Tianxing Wang, Xi Chen, Xidian Tang, Jianjun Chang, Dekun Chen, and Wentao Ma. 2020. "Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades" Pathogens 9, no. 11: 888. https://doi.org/10.3390/pathogens9110888
APA StyleYao, X., Pang, M., Wang, T., Chen, X., Tang, X., Chang, J., Chen, D., & Ma, W. (2020). Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens, 9(11), 888. https://doi.org/10.3390/pathogens9110888