Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems
Abstract
:1. Introduction
2. Key Facts of Neglected Diseases: Leishmaniasis and Chagas’s Disease
3. The Diseases at a Glance
4. Pharmacological Interventions
4.1. Traditional Pharmacological Approaches
- the intracellular location of the amastigote form;
- the distinct pharmacokinetic requirements to transport active substances in liver, spleen, bone marrow (on VL) or skin (on CL);
- the significant variations in drug susceptibility of the 17 genera of Leishmania responsible for LM in humans;
- the effect of immunosuppression linked to LM, which may reduce the efficacy of certain drugs.
4.2. Pharmacological Combinations
4.3. New Drugs
4.4. Herbal Treatments
5. New Drug Delivery Systems
5.1. Targeting the Values of Apparent Solubility
5.1.1. Cyclodextrin Complexes
5.1.2. Modification in the Absorption Behavior
5.1.3. Increase in Resistance Time
5.1.4. Programmed Cell Death
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meyer, A.C.; Birbeck, G.L. 41-Parasitic Infections A2-Gilman, Sid. In Neurobiology of Disease; Academic Press: Cambridge, MA, USA, 2007; pp. 453–472. [Google Scholar]
- Mackey, T.K.; Liang, B.A.; Cuomo, R.; Hafen, R.; Brouwer, K.C.; Lee, D.E. Emerging and reemerging neglected tropical diseases: A review of key characteristics, risk factors, and the policy and innovation environment. Clin. Microbiol. Rev. 2014, 27, 949–979. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Nelson, R.J. Social Behavior and Parasites A2-Breed, Michael D. In Encyclopedia of Animal; Behavior, J., Ed.; Academic Press: Oxford, UK, 2010; pp. 216–225. [Google Scholar]
- The US Government and Global Neglected Tropical Disease Efforts. Published on 28 January 2019. Available online: https://www.kff.org/global-health-policy/fact-sheet/the-u-s-government-and-global-neglected-tropical-diseases/ (accessed on 17 May 2019).
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-Aided Drug Discovery Approaches against the Tropical Infectious Diseases Malaria, Tuberculosis, Trypanosomiasis, and Leishmaniasis. ACS Infect. Dis. 2016, 2, 8–31. [Google Scholar] [CrossRef] [PubMed]
- Kappagoda, S.U.S.; Blackburn, B.G. Antiparasitic therapy. Mayo Clin. Proc. 2011, 86, 561–583. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, D.H. Control of Human Parasitic Diseases: Context and Overview; Elsevier: Amsterdam, The Netherlands, 2006; Volume 61, pp. 1–45. [Google Scholar]
- Colley, D.G. Parasitic diseases: Opportunities and challenges in the 21st century. Memórias Inst. Oswaldo Cruz 2000, 95, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A. Treating neglected tropical diseases. Community Eye Health 2013, 26, 26–27. [Google Scholar] [PubMed]
- Stefanakis, R.; Robertson, A.S.; Ponder, E.L.; Moree, M. Analysis of Neglected Tropical Disease Drug and Vaccine Development Pipelines to Predict Issuance of FDA Priority Review Vouchers over the Next Decade. PLoS Negl. Trop. Dis. 2012, 6, e1803. [Google Scholar] [CrossRef]
- Page, S.W. Chapter 10—Antiparasitic Drugs, in Small Animal Clinical Pharmacology, 2nd ed.; W.B. Saunders: Philadelphia, PA, USA, 2008; pp. 198–260. [Google Scholar]
- Marchal, B.; Van Dormael, M.; Pirard, M.; Cavalli, A.; Kegels, G.; Polman, K. Neglected tropical disease (NTD) control in health systems: The interface between programmes and general health services. Acta Trop. 2011, 120, 177–185. [Google Scholar] [CrossRef]
- Mitra, A.K.; Mawson, A.R. Neglected Tropical Diseases: Epidemiology and Global Burden. Trop. Med. Infect. Dis. 2017, 2, 36. [Google Scholar] [CrossRef]
- Banthia, V. Neglected Diseases: How Intellectual Property Can Incentivize New Treatment. Chi. Kent J. Intell. Prop. 2016, 16, 241. [Google Scholar]
- Rosenberg, M.; Utzinger, J.; Addiss, D.G. Preventive Chemotherapy Versus Innovative and Intensified Disease Management in Neglected Tropical Diseases: A Distinction Whose Shelf Life Has Expired. PLoS Negl. Trop. Dis. 2016, 10, e0004521. [Google Scholar] [CrossRef] [PubMed]
- Leishmaniasis. World Health Organization. Available online: https://www.who.int/leishmaniasis/en/ (accessed on 27 May 2019).
- Chagas Disease. World Health Organization. Available online: https://www.who.int/chagas/en/ (accessed on 27 May 2019).
- Report of the Eleventh Meeting of the WHO Strategic and Technical Advisory Group for Neglected Tropical Diseases; WHO: Geneva, Switzerland, 2018.
- Torres-Guerrero, E.; Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef]
- Campino, L.; Maia, C. [Epidemiology of leishmaniases in Portugal]. Acta Médica Portuguesa 2010, 23, 859–864. [Google Scholar]
- Croft, S.L.; Buffet, P.A. 356-Leishmaniasis A2-Goldman, Lee, in Goldman’s Cecil Medicine, 24th ed.; Schafer, A.I., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2012; pp. 2025–2030. [Google Scholar]
- Soong, L. Chapter 63-Leishmaniasis A2-Barrett, Edited byAlan, D.T. In Vaccines for Biodefense and Emerging and Neglected Diseases; Stanberry, L.R., Ed.; Academic Press: London, UK, 2009; pp. 1275–1289. [Google Scholar]
- Hepburn, N. Cutaneous leishmaniasis: An overview. J. Postgrad. Med. 2003, 49, 50. [Google Scholar] [CrossRef]
- Hashiguchi, Y.; Gomez, E.L.; Kato, H.; Martini, L.R.; Velez, L.N.; Uezato, H. Diffuse and disseminated cutaneous leishmaniasis: Clinical cases experienced in Ecuador and a brief review. Trop. Med. Health 2016, 44, 239. [Google Scholar] [CrossRef] [PubMed]
- Magill, A.J. 99-Leishmaniasis, in Hunter’s Tropical Medicine and Emerging Infectious Disease, 9th ed.; W.B. Saunders: London, UK, 2013; pp. 739–760. [Google Scholar]
- De Vries, H.J.C.; Reedijk, S.H.; Schallig, H.D.F.H. Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. Am. J. Clin. Dermatol. 2015, 16, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2010, 391, 82–94. [Google Scholar] [CrossRef]
- Álvarez-Hernández, D.A.; Franyuti-Kelly, G.A.; Díaz-López-Silva, R.; González-Chávez, A.M.; González-Hermosillo-Cornejo, D.; Vázquez-López, R. Chagas disease: Current perspectives on a forgotten disease. Rev. Médica Hosp. Gen. México 2016, 81, 154–164. [Google Scholar] [CrossRef]
- Pinheiro, E.; Brum-Soares, L.; Reis, R.; Cubides, J.C. Chagas disease: Review of needs, neglect, and obstacles to treatment access in Latin America. Rev. da Soc. Bras. Med. Trop. 2017, 50, 296–300. [Google Scholar] [CrossRef]
- Malik, L.H.; Singh, G.D.; Amsterdam, E.A. The Epidemiology, Clinical Manifestations, and Management of Chagas Heart Disease. Clin. Cardiol. 2015, 38, 565–569. [Google Scholar] [CrossRef]
- World Health Organization. Research Priorities for Chagas Disease, Human African Trypanosomiasis and Leishmaniasis; World Health Organization: Geneva, Switzerland, 2012; pp. 1–100. [Google Scholar]
- Lenk, E.J.; Redekop, W.K.; Luyendijk, M.; Fitzpatrick, C.; Niessen, L.; Stolk, W.A.; Tediosi, F.; Rijnsburger, A.J.; Bakker, R.; Hontelez, J.A.C.; et al. Socioeconomic benefit to individuals of achieving 2020 targets for four neglected tropical diseases controlled/eliminated by innovative and intensified disease management: Human African trypanosomiasis, leprosy, visceral leishmaniasis, Chagas disease. PLoS Negl. Trop. Dis. 2018, 12, e0006250. [Google Scholar] [CrossRef] [PubMed]
- Silva-Jardim, I.; Thiemann, O.H.; Anibal, F.F. Leishmaniasis and Chagas Disease Chemotherapy: A Critical Review. J. Braz. Chem. Soc. 2014, 25, 1810–1823. [Google Scholar] [CrossRef]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; Lopez-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Junior, L.H.; Chatelain, E.; Kim, H.A.; Siqueira-Neto, J.L. Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? Int. J. Parasitol. Drugs Drug Resist. 2012, 2, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monge-Maillo, B.; López-Vélez, R. Therapeutic Options for Visceral Leishmaniasis. Drugs 2013, 73, 1863–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, H.; Ishfaq, M.; Wahab, A.; Abbas, M.N.; Ahmad, I.; Rehman, A.; Zakir, M. Therapeutic modalities to combat leishmaniasis, a review. Asian Pac. J. Trop. Dis. 2016, 6, 1–5. [Google Scholar] [CrossRef]
- Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.K.; Murray, H.W. Failure of Pentavalent Antimony in Visceral Leishmaniasis in India: Report from the Center of the Indian Epidemic. Clin. Infect. Dis. 2000, 31, 1104–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundar, S.; Chakravarty, J. Liposomal Amphotericin B and Leishmaniasis: Dose and Response. J. Glob. Infect. Dis. 2010, 2, 159–166. [Google Scholar] [CrossRef]
- Wortmann, G.; Zapor, M.; Ressner, R.; Fraser, S.; Hartzell, J.; Pierson, J.; Weintrob, A.; Magill, A. Lipsosomal Amphotericin B for Treatment of Cutaneous Leishmaniasis. Am. J. Trop. Med. Hyg. 2010, 83, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Saravolatz, L.D.; Bern, C.; Adler-Moore, J.; Berenguer, J.; Boelaert, M.; den Boer, M.; Davidson, R.N.; Figueras, C.; Gradoni, L.; Kafetzis, D.A.; et al. Liposomal Amphotericin B for the Treatment of Visceral Leishmaniasis. Clin. Infect. Dis. 2006, 43, 917–924. [Google Scholar]
- Van der Meide, W.F.; Sabajo, L.O.; Jensema, A.J.; Peekel, I.; Faber, W.R.; Schallig, H.D.; Fat, R.F.L.A. Evaluation of treatment with pentamidine for cutaneous leishmaniasis in Suriname. Int. J. Dermatol. 2009, 48, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; De Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, P.; Cojean, S.; Schrevel, J. Sitamaquine as a putative antileishmanial drug candidate: From the mechanism of action to the risk of drug resistance. Parasite 2011, 18, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Victoria, J.M.; Bavchvarov, B.I.; Torrecillas, I.R.; Martínez-García, M.; López-Martín, C.; Campillo, M.; Castanys, S.; Gamarro, F. Sitamaquine Overcomes ABC-Mediated Resistance to Miltefosine and Antimony in Leishmania. Antimicrob. Agents Chemother. 2011, 55, 3838–3844. [Google Scholar] [CrossRef] [PubMed]
- Pagniez, F.; Abdala-Valencia, H.; Marchand, P.; Le Borgne, M.; Le Baut, G.; Robert-Piessard, S.; Le Pape, P. Antileishmanial activities and mechanisms of action of indole-based azoles. J. Enzym. Inhib. Med. Chem. 2006, 21, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011, 118, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Neves, L.O.; Talhari, A.C.; Gadelha, E.P.N.; Júnior, S.; Guerra, J.A.D.O.; Ferreira, L.C.D.L.; Talhari, S. A randomized clinical trial comparing meglumine antimoniate, pentamidine and amphotericin B for the treatment of cutaneous leishmaniasis by Leishmania guyanensis. An. Bras. Dermatol. 2011, 86, 1092–1101. [Google Scholar]
- Gaspar, L.; Moraes, C.B.; Freitas-Junior, L.H.; Ferrari, S.; Costantino, L.; Costi, M.P.; Coron, R.P.; Smith, T.K.; Siqueira-Neto, J.L.; McKerrow, J.H.; et al. Current and Future Chemotherapy for Chagas Disease. Curr. Med. Chem. 2015, 22, 4293–4312. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 2017, 15, 98–103. [Google Scholar] [CrossRef]
- Campos, M.C.; Leon, L.L.; Taylor, M.C.; Kelly, J.M. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Mol. Biochem. Parasitol. 2014, 193, 17–19. [Google Scholar] [CrossRef]
- Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.; Meymandi, S.K. Safety Profile of Nifurtimox for Treatment of Chagas Disease in the United States. Clin. Infect. Dis. 2016, 63, 1056–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanovska, V.; Rademaker, C.M.A.; Van Dijk, L.; Mantel-Teeuwisse, A.K. Pediatric Drug Formulations: A Review of Challenges and Progress. Pediatrics 2014, 134, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, J.A.; deMecca, M.M.; Bartel, L.C. Toxic Side Effects of Drugs Used to Treat Chagas’ Disease (American Trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination therapy for visceral leishmaniasis. Lancet Infect. Dis. 2010, 10, 184–194. [Google Scholar] [CrossRef]
- Berg, M.; García-Hernández, R.; Cuypers, B.; Vanaerschot, M.; Manzano, J.I.; Poveda, J.A.; Ferragut, J.A.; Castanys, S.; Dujardin, J.-C.; Gamarro, F. Experimental Resistance to Drug Combinations in Leishmania donovani: Metabolic and Phenotypic Adaptations. Antimicrob. Agents Chemother. 2015, 59, 2242–2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohapatra, S. Drug resistance in leishmaniasis: Newer developments. Trop. Parasitol. 2014, 4, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Mishra, J.; Gupta, A.K.; Singh, A.; Shankar, P.; Singh, S. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasites Vectors 2017, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Singh, S.; Singh, P.S. Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Exp. Parasitol. 2013, 135, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Das, P.; Isaakidis, P.; Sunyoto, T.; Sagili, K.D.; Lima, M.A.; Mitra, G.; Kumar, D.; Pandey, K.; Van Geertruyden, J.-P.; et al. Combination Treatment for Visceral Leishmaniasis Patients Coinfected with Human Immunodeficiency Virus in India. Clin. Infect. Dis. 2015, 61, 1255–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atia, A.M.; Mumina, A.; Tayler-Smith, K.; Boulle, P.; Alcoba, G.; Elhag, M.S.; Alnour, M.; Shah, S.; Chappuis, F.; van Griensven, J.; et al. Sodium stibogluconate and paromomycin for treating visceral leishmaniasis under routine conditions in eastern Sudan. Trop. Med. Int. Health 2015, 20, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Denerolle, P.; Bourdoiseau, G. Combination Allopurinol and Antimony Treatment versus Antimony Alone and Allopurinol Alone in the Treatment of Canine Leishmaniasis (96 Cases). J. Vet. Intern. Med. 1999, 13, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.; Khamesipour, A.; Ghoorchi, M.H.; Nassiri-Kashani, M.; Eskandari, S.E.; Khatami, A.; Hooshmand, B.; Gorouhi, F.; Rashighi-Firoozabadi, M.; Dowlati, Y. Imiquimod in combination with meglumine antimoniate for cutaneous leishmaniasis: A randomized assessor-blind controlled trial. Arch. Dermatol. 2006, 142, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, P.; Konidas, P.; Durkin-Konidas, M. New World cutaneous leishmaniasis: Updated review of current and future diagnosis and treatment. J. Am. Acad. Dermatol. 2010, 63, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Goyal, V.; Haque, R.; Jamil, K.; Faiz, A.; Samad, R.; Ellis, S.; Balasegaram, M.; Boer, M.D.; Rijal, S.; et al. Safety and efficacy of short course combination regimens with AmBisome, miltefosine and paromomycin for the treatment of visceral leishmaniasis (VL) in Bangladesh. PLoS Negl Trop. Dis. 2017, 11, 0005635. [Google Scholar] [CrossRef] [PubMed]
- Barati, M.; Mohebali, M.; Alimohammadian, M.H.; Khmesipour, A.; Keshavarz, H.; Akhoundi, B.; Zarei, Z. Double-Blind Randomized Efficacy Field Trial of Alum Precipitated Autoclaved Leishmania major (Alum-ALM) Vaccine Mixed with BCG Plus Imiquimod vs. Placebo Control Group. Iran. J. Parasitol. 2015, 10, 351–359. [Google Scholar]
- Diniz, L.d.F.; Urbina, J.A.; de Andrade, I.M.; Mazzeti, A.L.; Martins, T.A.F.; Caldas, I.S.; Talvani, A.; Ribeiro, I.; Bahia, M.T. Benznidazole and Posaconazole in Experimental Chagas Disease: Positive Interaction in Concomitant and Sequential Treatments. PLoS Negl. Trop. Dis. 2013, 7, e2367. [Google Scholar] [CrossRef] [PubMed]
- Sesti-Costa, R.; Carneiro, Z.A.; Silva, M.C.; Santos, M.; Silva, G.K.; Milanezi, C.; Da Silva, R.S.; Silva, J.S. Ruthenium Complex with Benznidazole and Nitric Oxide as a New Candidate for the Treatment of Chagas Disease. PLoS Negl. Trop. Dis. 2014, 8, e3207. [Google Scholar] [CrossRef]
- Molina, I.; Salvador, F.; Sánchez-Montalvá, A. The use of posaconazole against Chagas disease. Curr. Opin. Infect. Dis. 2015, 28, 1–407. [Google Scholar] [CrossRef]
- Khare, S.; Liu, X.; Stinson, M.; Rivera, I.; Groessl, T.; Tuntland, T.; Yeh, V.; Wen, B.; Molteni, V.; Glynne, R.; et al. Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease. Antimicrob. Agents Chemother. 2015, 59, 6385–6394. [Google Scholar] [CrossRef] [Green Version]
- Urbina, J.A.; Payares, G.; Sanoja, C.; Lira, R.; Romanha, A.J. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int. J. Antimicrob. Agents 2003, 21, 27–38. [Google Scholar] [CrossRef]
- Spósito, P.; Álvaro; Mazzeti, A.L.; Faria, C.D.O.A.; Urbina, J.; Pound-Lana, G.; Bahia, M.T.; Mosqueira, V.F. Ravuconazole self-emulsifying delivery system: In vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity. Int. J. Nanomed. 2017, 12, 3785–3799. [Google Scholar] [CrossRef] [PubMed]
- Gulin, J.E.; Eagleson, M.A.; Postan, M.; Cutrullis, R.A.; Freilij, H.; Bournissen, F.G.; Petray, P.B.; Altcheh, J. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection. J. Antimicrob. Chemother. 2013, 68, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Lepesheva, G.I. Design or screening of drugs for the treatment of Chagas disease: What shows the most promise? Expert Opin. Drug Discov. 2013, 8, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- McCabe, R.E.; Araujo, F.G.; Remington, J.S. In Vitro and in Vivo Effects of Itraconazole against Trypanosoma Cruzi. Am. J. Trop. Med. Hyg. 1986, 35, 280–284. [Google Scholar] [CrossRef]
- De Almeida, E.A.; Silva, E.L.; Guariento, M.E.; Aoki, F.H.; Pedro, R.D.J. Aetiological treatment with itraconazole or ketoconazole in individuals with Trypanosoma cruzi/HIV co-infection. Ann. Trop. Med. Parasitol. 2009, 103, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Molina, I.; Treviño, B.; Serre, N.; Pou, D.; Cabezos, J.; Pahissa, A.I.; Prat, J.G.; Salvador, F.; Sulleiro, E.; Roure, S. Randomized Trial of Posaconazole and Benznidazole for Chronic Chagas’ Disease. N. E. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef]
- Maruyama, Y. Work in progress: Californium-252 brachytherapy plus fractionated irradiation for advanced tonsillar carcinoma. Radiology 1983, 148, 247–251. [Google Scholar] [CrossRef]
- Hall, B.S.; Wilkinson, S.R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 2012, 56, 115–123. [Google Scholar] [CrossRef]
- Rezvan, H.; Moafi, M. An overview on Leishmania vaccines: A narrative review article. Vet. Res. Forum 2015, 6, 1–7. [Google Scholar]
- Gillespie, P.M.; Beaumier, C.M.; Strych, U.; Hayward, T.; Hotez, P.J.; Bottazzi, M.E. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine 2016, 34, 2992–2995. [Google Scholar] [CrossRef] [PubMed]
- McCall, L.-I.; Zhang, W.-W.; Ranasinghe, S.; Matlashewski, G. Leishmanization revisited: Immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine 2013, 31, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Fiúza, J.A.; Dey, R.; Davenport, D.; Abdeladhim, M.; Meneses, C.; Oliveira, F.; Kamhawi, S.; Valenzuela, J.G.; Gannavaram, S.; Nakhasi, H.L. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters. PLoS Negl. Trop. Dis. 2016, 10, e0004322. [Google Scholar] [CrossRef] [PubMed]
- Corradin, S.; Ransijn, A.; Corradin, G.; Bouvier, J.; Delgado, M.B.; Fernández-Carneado, J.; Mottram, J.C.; Vergères, G.; Mauël, J. Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem. J. 2002, 367, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, P.B.; Kelly, B.L.; Kamhawi, S.; Sacks, D.L.; McMaster, W. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol. Biochem. Parasitol. 2002, 120, 33–40. [Google Scholar] [CrossRef]
- Olivier, M.; Atayde, V.D.; Isnard, A.; Hassani, K.; Shio, M.T. Leishmania virulence factors: Focus on the metalloprotease GP63. Microbes Infect. 2012, 14, 1377–1389. [Google Scholar] [CrossRef]
- Batista, D.d.G.J.; Batista, M.M.; De Oliveira, G.M.; Do Amaral, P.B.; Lannes-Vieira, J.; Britto, C.C.; Junqueira, A.; Lima, M.M.; Romanha, A.J.; Junior, P.A.S.; et al. Arylimidamide DB766, a Potential Chemotherapeutic Candidate for Chagas’ Disease Treatment. Antimicrob. Agents Chemother. 2010, 54, 2940–2952. [Google Scholar] [CrossRef]
- Soeiro, M.N.; Dantas, A.P.; Daliry, A.; da Silva, C.F.; Batista, D.G.; de Souza, E.M.; Oliveira, G.M.; Salomão, K.; Batista, M.M.; Pacheco, M.G.; et al. Experimental chemotherapy for Chagas disease: 15 years of research contributions from in vivo and in vitro studies. Mem. Inst. Oswaldo Cruz 2009, 104 (Suppl. 1), 301–310. [Google Scholar]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef]
- Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J. 2018, 26, 739–753. [Google Scholar] [CrossRef]
- Ahmad, B.; Islam, A.; Khan, A.; Khan, M.A.; Ul Haq, I.; Jafri, L.; Ahmad, M.; Mehwish, S.; Khan, A.; Ullah, N. Comprehensive investigations on anti-leishmanial potentials of Euphorbia wallichii root extract and its effects on membrane permeability and apoptosis. Comp Immunol Microbiol Infect Dis 2019, 64, 138–145. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; Saki, K.; Ezatpour, B.; Shahsavari, S.; Eftekhari, Z.; Jelodari, M.; Rafieian-Kopaei, M.; Sepahvand, R. Leishmaniosis phytotherapy: Review of plants used in Iranian traditional medicine on leishmaniasis. Asian Pac. J. Trop. Biomed. 2015, 5, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.B.; Kale, R.R.; Singh, R.K.; Tiwari, V.K. Alkaloids: Future prospective to combat leishmaniasis. Fitoter 2009, 80, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rebolledo, G.A.; Drier-Jonas, S.; Jiménez-Arellanes, M.A. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pac. J. Trop. Med. 2017, 10, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.A.; Mazotto, A.M.; Cardoso, V.; Alves, R.L.; Amaral, A.C.F.; Silva, J.R.D.A.; Pinheiro, A.S.; Vermelho, A.B. Natural Products: Insights into Leishmaniasis Inflammatory Response. Mediat. Inflamm. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes Neto, R.N.; Setubal, R.F.B.; Higino, T.M.M.; Brelaz-de-Castro, M.C.A.; da Silva, L.C.N.; Alianca, A. Asteraceae Plants as Sources of Compounds Against Leishmaniasis and Chagas Disease. Front. Pharmacol. 2019, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Iran. J. Vet. Res. 2015, 16, 1–19. [Google Scholar]
- Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules 2016, 22, 58. [Google Scholar] [CrossRef]
- Wulsten, I.F.; Costa-Silva, T.A.; Mesquita, J.T.; Lima, M.L.; Galuppo, M.K.; Taniwaki, N.N.; Borborema, S.E.T.; Da Costa, F.B.; Schmidt, T.J.; Tempone, A.G. Investigation of the Anti-Leishmania (Leishmania) infantum Activity of Some Natural Sesquiterpene Lactones. Molecules 2017, 22, 685. [Google Scholar] [CrossRef]
- Silva, A.R.S.T.; Scher, R.; Santos, F.V.; Ferreira, S.R.; Cavalcanti, S.C.H.; Correa, C.B.; Bueno, L.L.; Alves, R.J.; Souza, D.P.; Fujiwara, R.T.; et al. Leishmanicidal Activity and Structure-Activity Relationships of Essential Oil Constituents. Molecules 2017, 22, 815. [Google Scholar] [CrossRef]
- Rohloff, J.; Hymete, A.; Tariku, Y. Chapter 11-Plant-Derived Natural Products for the Treatment of Leishmaniasis. In Studies in Natural Products; Chemistry, R., Atta ur, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 381–429. [Google Scholar]
- Jones, A.J.; Grkovic, T.; Sykes, M.L.; Avery, V.M. Trypanocidal Activity of Marine Natural Products. Mar. Drugs 2013, 11, 4058–4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulfiqar, B.; Jones, A.J.; Sykes, M.L.; Shelper, T.B.; Davis, R.A.; Avery, V.M. Screening a Natural Product-Based Library against Kinetoplastid Parasites. Molecules 2017, 22, 1715. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ferreira, D.; Rodrigues Esperandim, V.; Gabriela Marçal, M.; dos Reis Neres, N.B.; Larissa Cunha, N.; Andrade e Silva, M.L.; Roberto Cunha, W. Natural products and Chagas’ disease: The action of triterpenes acids isolated from Miconia species. Univ. Sci. 2013, 18, 243–256. [Google Scholar]
- Francisco, A.F.; Jayawardhana, S.; Lewis, M.D.; Taylor, M.C.; Kelly, J.M. Biological factors that impinge on Chagas disease drug development. Parasitology 2017, 144, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Sales Junior, P.A.; Molina, I.; Fonseca Murta, S.M.; Sánchez-Montalvá, A.; Salvador, F.; Corrêa-Oliveira, R.; Carneiro, C.M. Experimental and Clinical Treatment of Chagas Disease: A Review. Am. J. Trop. Med. Hyg. 2017, 97, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.S. Nanotechnology tools in pharmaceutical R&D. Mater. Today 2010, 12, 24–30. [Google Scholar]
- de Menezes, J.P.B.; Guedes, C.E.S.; Petersen, A.L.d.O.A.; Fraga, D.B.M.; Veras, P.S.T. Advances in Development of New Treatment for Leishmaniasis. BioMed Res. Int. 2015, 2015, 815023. [Google Scholar] [CrossRef]
- Shaw, C.D.; Carter, K.C. Drug delivery: Lessons to be learnt from Leishmania studies. Nanomedicine 2014, 9, 1531–1544. [Google Scholar] [CrossRef]
- de Almeida, L.; Terumi Fujimura, A.; Del Cistia, M.L.; Fonseca-Santos, B.; Braga Imamura, K.; Michels, P.A.M.; Chorilli, M.; Graminha, M.A.S. Nanotechnological Strategies for Treatment of Leishmaniasis—A Review. J. Biomed. Nanotechnol. 2017, 13, 117–133. [Google Scholar] [CrossRef]
- Van de Ven, H.; Vermeersch, M.; Vandenbroucke, R.E.; Matheeussen, A.; Apers, S.; Weyenberg, W.; De Smedt, S.C.; Cos, P.; Maes, L.; Ludwig, A. Intracellular drug delivery in Leishmania-infected macrophages: Evaluation of saponin-loaded PLGA nanoparticles. J. Drug Target. 2012, 20, 142–154. [Google Scholar] [CrossRef]
- Gupta, S. Nishi Visceral leishmaniasis: Experimental models for drug discovery. Indian J. Med. Res. 2011, 133, 27–39. [Google Scholar] [PubMed]
- Teixeira, M.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frézard, F.; Demicheli, C.; Ribeiro, R.R. Pentavalent Antimonials: New Perspectives for Old Drugs. Molecules 2009, 14, 2317–2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, J.D.; Hanson, W.L.; Chapman, W.L.; Alving, C.R.; Lopez-Berestein, G. Antileishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys. Antimicrob. Agents Chemother. 1986, 30, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Boil. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, M.; Farajzadeh, S.; Sharifi, I.; Khazaeli, P.; Sharifi, H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J. Parasit. Dis. 2019, 43, 176–185. [Google Scholar] [CrossRef]
- Souto, E.B.; Doktorovova, S.; Campos, J.R.; Martins-Lopes, P.; Silva, A.M. Surface-tailored anti-HER2/neu-solid lipid nanoparticles for site-specific targeting MCF-7 and BT-474 breast cancer cells. Eur. J. Pharm. Sci. 2019, 128, 27–35. [Google Scholar] [CrossRef]
- Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.; García, M. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye–Part II-Ocular drug-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 2017, 110, 58–69. [Google Scholar] [CrossRef]
- Heidari-Kharaji, M.; Taheri, T.; Doroud, D.; Habibzadeh, S.; Badirzadeh, A.; Rafati, S. Enhanced paromomycin efficacy by Solid Lipid Nanoparticle formulation against Leishmania in mice model. Parasite Immunol. 2016, 38, 599–608. [Google Scholar] [CrossRef]
- Veerareddy, P.R.; Vobalaboina, V.; Ali, N. Antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose-grafted amphotericin B lipid nanospheres. J. Drug Target. 2009, 17, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.A. Overview of amphotericin B colloidal dispersion (Amphocil). J. Infect. 1994, 28, 45–49. [Google Scholar] [CrossRef]
- Stone, N.R.H.; Bicanic, T.; Salim, R.; Hope, W. Liposomal Amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Crucho, C.I.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef]
- Rodrigues, J. Primaquine-loaded poly(lactide) nanoparticles: Physicochemical study and acute tolerance in mice. Int. J. Pharm. 1995, 126, 253–260. [Google Scholar] [CrossRef]
- Ghosh, S.; Das, S.; De, A.K.; Kar, N.; Bera, T. Amphotericin B-loaded mannose modified poly(d,l -lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: In vitro and in vivo approaches. RSC Adv. 2017, 7, 29575–29590. [Google Scholar] [CrossRef]
- Durand, R.; Paul, M.; Rivollet, D.; Houin, R.; Astier, A.; Deniau, M. Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int. J. Parasitol. 1997, 27, 1361–1367. [Google Scholar] [CrossRef]
- Bruni, N.; Stella, B.; Giraudo, L.; Della Pepa, C.; Gastaldi, D.; Dosio, F. Nanostructured delivery systems with improved leishmanicidal activity: A critical review. Int. J. Nanomed. 2017, 12, 5289–5311. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, J.; Suhendro, D.K.; Zieleniecki, J.L.; Shapter, J.G.; Köper, I. Membrane–drug interactions studied using model membrane systems. Saudi, J. Biol. Sci. 2015, 22, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, H.; Paulussen, C.; Feijens, P.B.; Matheeussen, A.; Rombaut, P.; Kayaert, P.; Van den Mooter, G.; Weyenberg, W.; Cos, P.; Maes, L.; et al. PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. J. Control. Release 2012, 161, 795–803. [Google Scholar] [CrossRef]
- Kayser, O. Formulation of amphotericin B as nanosuspension for oral administration. Int. J. Pharm. 2003, 254, 73–75. [Google Scholar] [CrossRef]
- Al-Quadeib, B.T.; Radwan, M.A.; Siller, L.; Horrocks, B.; Wright, M.C. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm. J. 2015, 23, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.; Buera, P.; Mazzobre, F. Novel trends in cyclodextrins encapsulation. Applications in food science. Curr. Opin. Food Sci. 2017, 16, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Demicheli, C.; Ochoa, R.; da Silva, J.B.B.; Falcão, C.A.B.; Rossi-Bergmann, B.; de Melo, A.L.; Sinisterra, R.D.; Frézard, F. Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis. Antimicrob. Agents Chemother. 2004, 48, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Martín-Belloso, O.; McClements, D.J. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials 2016, 6, 17. [Google Scholar] [CrossRef]
- Müller, R.; Runge, S.; Ravelli, V.; Mehnert, W.; Thünemann, A.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int. J. Pharm. 2006, 317, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Muller, R.H. Lipid nanoparticles: Effect on bioavailability and pharmacokinetic changes. In Drug delivery; Springer: Berlin/Heidelberg, Germany, 2010; pp. 115–141. [Google Scholar]
- Souto, E.B.; Nayak, A.P.; Murthy, R.S.R. Lipid nanoemulsions for anti-cancer drug therapy. Die Pharm. 2011, 66, 473–478. [Google Scholar]
- Brime, B.; Moreno, M.A.; Frutos, G.; Ballesteros, M.; Frutos, P. Amphotericin B in Oil–Water Lecithin-Based Microemulsions: Formulation and Toxicity Evaluation. J. Pharm. Sci. 2002, 91, 1178–1185. [Google Scholar] [CrossRef]
- Wasan, E.K.; Gershkovich, P.; Zhao, J.; Zhu, X.; Werbovetz, K.; Tidwell, R.R.; Clement, J.G.; Thornton, S.J.; Wasan, K.M. A Novel Tropically Stable Oral Amphotericin B Formulation (iCo-010) Exhibits Efficacy against Visceral Leishmaniasis in a Murine Model. PLoS Negl. Trop. Dis. 2010, 4, 913. [Google Scholar] [CrossRef]
- Poša, M.; Ćirin, D. Mixed Micelles of Sodium Salts of Bile Acids and Tween 40: Effect of the Steroid Skeleton on the Coefficient of Interaction in Mixed Micelles. Ind. Eng. Chem. Res. 2012, 51, 14722–14728. [Google Scholar] [CrossRef]
- Faustino, C.; Serafim, C.; Rijo, P.D.D.M.; Reis, C.P. Bile acids and bile acid derivatives: Use in drug delivery systems and as therapeutic agents. Expert Opin. Drug Deliv. 2016, 13, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Campani, V.; Giarra, S.; De Rosa, G. Lipid-based core-shell nanoparticles: Evolution and potentialities in drug delivery. OpenNano 2018, 3, 5–17. [Google Scholar] [CrossRef]
- Tripathi, P.; Verma, A.; Dwivedi, P.; Sharma, D.; Kumar, V.; Shukla, R.; Banala, V.T.; Pandey, G.; Pachauri, S.D.; Singh, S.K.; et al. Formulation and Characterization of Amphotericin B Loaded Nanostructured Lipid Carriers Using Microfluidizer. J. Biomater. Tissue Eng. 2014, 4, 194–197. [Google Scholar] [CrossRef]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tan, Y.; Chen, M.; Dian, L.; Shan, Z.; Peng, X.; Wu, C. Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability. AAPS Pharm. Sci. Technol. 2012, 13, 1483–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, T.; Khandasamy, U.; Hinabindhu, R.; Kona, K. Nanocochleate–A New Drug Delivery System. FABAD J. Pharm. Sci. 2008, 34, 91–101. [Google Scholar]
- Liu, M.; Zhong, X.; Yang, Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci. Rep. 2017, 7, 41322. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kesarla, R.; Omri, A. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems. ISRN Pharm. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Asthana, S.; Jaiswal, A.K.; Gupta, P.K.; Pawar, V.K.; Dube, A.; Chourasia, M.K. Immunoadjuvant Chemotherapy of Visceral Leishmaniasis in Hamsters Using Amphotericin B-Encapsulated Nanoemulsion Template-Based Chitosan Nanocapsules. Antimicrob. Agents Chemother. 2013, 57, 1714–1722. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Molina, J.A.; Perez, A.M.; Norman, F.F.; Monge-Maillo, B.; López-Vélez, R. Old and new challenges in Chagas disease. Lancet Infect. Dis. 2015, 15, 1347–1356. [Google Scholar] [CrossRef]
- Andrade, D.V.; Gollob, K.J.; Dutra, W.O. Acute Chagas Disease: New Global Challenges for an Old Neglected Disease. PLoS Negl. Trop. Dis. 2014, 8, 3010. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.J.; Juliano, R.L. Interactions of liposomes with the reticuloendothelial system. II: Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages. Biochim. Biophys. Acta 1982, 720, 411–419. [Google Scholar] [CrossRef]
- Yoshihara, E.; Tachibana, H.; Nakae, T. Trypanocidal activity of the stearylamine-bearing liposome in vitro. Life Sci. 1987, 40, 2153–2159. [Google Scholar] [CrossRef]
- Yoshihara, E.; Nakae, T. Cytolytic activity of liposomes containing stearylamine. Biochim. Biophys. Acta (BBA)-Biomembr. 1986, 854, 93–101. [Google Scholar] [CrossRef]
- Morilla, M.J.; Prieto, M.J.; Romero, E.L. Benznidazole vs benznidazole in multilamellar liposomes: How different they interact with blood components? Memórias Inst. Oswaldo Cruz 2005, 100, 213–219. [Google Scholar] [CrossRef]
- Morilla, M.J.; Montanari, J.; Frank, F.; Malchiodi, E.; Corral, R.; Petray, P.; Romero, E.L. Etanidazole in pH-sensitive liposomes: Design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. J. Control. Release 2005, 103, 599–607. [Google Scholar] [CrossRef]
- Yardley, V.; Croft, S.L. A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int. J. Antimicrob. Agents 2000, 13, 243–248. [Google Scholar] [CrossRef]
- Gonzalez-Martin, G.; Merino, I.; Torres, M.; Nuñez, R.; Osuna, A.; González-Martin, G.; Rodriguez-Cabezas, M.N.; González-Martin, G.; Rodriguez-Cabezas, M.N. Pharmaceutics: Characterization and Trypanocidal Activity of Nifurtimox-containing and Empty Nanoparticles of Polyethylcyanoacrylates. J. Pharm. Pharmacol. 1998, 50, 29–35. [Google Scholar] [CrossRef]
- González-Martín, G.; Figueroa, C.; Merino, I.; Osuna, A. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: Preparation and trypanocidal activity. Eur. J. Pharm. Biopharm. 2000, 49, 137–142. [Google Scholar] [CrossRef]
- Molina, J. Cure of experimental Chagas’ disease by the bis-triazole DO870 incorporated into ’stealth’ polyethyleneglycol-polylactide nanospheres. J. Antimicrob. Chemother. 2001, 47, 101–104. [Google Scholar] [CrossRef]
- Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and Antileishmanial Activities of Flavonoids and Their Analogues: In Vitro, In Vivo, Structure-Activity Relationship, and Quantitative Structure-Activity Relationship Studies. Antimicrob. Agents Chemother. 2006, 50, 1352–1364. [Google Scholar] [CrossRef] [Green Version]
- Sen, G.; Mukhopadhyay, S.; Ray, M.; Biswas, T. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity. J. Antimicrob. Chemother. 2008, 61, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, P.; Das, S.; Bera, T.; Mondol, S.; Mukherjee, A. Andrographolide nanoparticles in leishmaniasis: Characterization and in vitro evaluations. Int. J. Nanomed. 2010, 5, 1113–1121. [Google Scholar]
- Ribeiro, T.G.; Chávez-Fumagalli, M.A.; Valadares, D.G.; França, J.R.; Rodrigues, L.B.; Duarte, M.C.; Lage, P.S.; Andrade, P.H.R.; Lage, D.P.; Arruda, L.V.; et al. Novel targeting using nanoparticles: An approach to the development of an effective anti-leishmanial drug-delivery system. Int. J. Nanomed. 2014, 9, 877–890. [Google Scholar]
- Sah, P.; Meher, J.G.; Pawar, V.K.; Raval, K.; Chourasia, M.K.; Singh, P.K.; Joshi, S.; Sharma, K.; Kumar, A.; Dube, A. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv. 2016, 6, 71705–71718. [Google Scholar]
- Sinha, J.; Raay, B.; Das, N.; Medda, S.; Garai, S.; Mahato, S.B.; Basu, M.K. Bacopasaponin C: Critical Evaluation of Anti-Leishmanial Properties in Various Delivery Modes. Drug Deliv. 2002, 9, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Medda, S.; Mukhopadhyay, S.; Basu, M.K. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J. Antimicrob. Chemother. 1999, 44, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Veerareddy, P.R.; Vobalaboina, V.; Nahid, A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Die Pharm. 2004, 59, 194–197. [Google Scholar]
- Lala, S.; Pramanick, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Basu, M.K. Harmine: Evaluation of its Antileishmanial Properties in Various Vesicular Delivery Systems. J. Drug Target. 2004, 12, 165–175. [Google Scholar] [CrossRef]
- Jimenez, V.; Paredes, R.; Sosa, M.A.; Galanti, N. Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. J. Cell Biochem. 2008, 105, 688–698. [Google Scholar] [CrossRef]
- Debrabant, A.; Nakhasi, H. Programmed cell death in trypanosomatids: Is it an altruistic mechanism for survival of the fittest? Kinetoplastid Biol. Dis. 2003, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Gannavaram, S.; Debrabant, A. Programmed cell death in Leishmania: Biochemical evidence and role in parasite infectivity. Front. Microbiol. 2012, 2, 95. [Google Scholar] [CrossRef] [PubMed]
Pathology | World Prevalence (in Millions) | Risk Population (in Millions) | Prevalence Regions |
---|---|---|---|
Ascariasis | 807 | 4200 | South and East Asia, Pacific Islands, Africa |
Sub-Saharan Africa, India, China, Latin America and the Caribbean | |||
Trichuriasis | 604 | 3200 | South and East Asia, Pacific Islands, Africa |
Sub-Saharan Africa, India, Latin America and the Caribbean | |||
Ancylostomiasis | 576 | 3200 | South and East Asia, Pacific Islands, Africa |
Sub-Saharan Africa, India, Latin America and the Caribbean | |||
Schistosomiasis | 207 | 779 | Sub-Saharan Africa, Latin America and the Caribbean |
Filariasis | 120 | 1300 | South and East Asia, Pacific Islands, Africa |
Sub-Saharan Africa | |||
Trachoma | 84 | 590 | Middle East and North Africa, Sub-Saharan Africa |
Onchocerciasis | 37 | 90 | Sub-Saharan Africa, Latin America and the Caribbean |
Leishmaniasis | 12 | 350 | South Asia, Sub-Saharan Africa, India, America |
Latin America and the Caribbean | |||
Chagas’s Disease | 8–9 | 25 | Latin America and the Caribbean |
Hansen’s Disease | 0.4 | - | Sub-Saharan Africa, India, Latin America and the Caribbean |
African Trypanosomiasis | 0.3 | 60 | Sub-Saharan Africa |
Dracunculiasis | 0.01 | - | Sub-Saharan Africa |
Buruli ulcer | - | - | Sub-Saharan Africa |
Compound | Natural Sources | Targeted Parasite | Classes of Compounds |
---|---|---|---|
Renieramycin A | Neopetrosia | L. amazonensis | Alkaloids |
Cyclic peroxide | Plakortis aff angulospiculatus | L. mexicana | - |
Valinomycin | Streptomycers spp. | L. major promastigotes | - |
Agelasine D | Agelas nakamurai | L. infantum | - |
Diphyllin | Haplophyllum bucharicum | L. infantum intracelular amastigotes and promastigotes | Lignans |
10-deacetylbaccatin III | Taxus baccata | L. donovani amastigotes | Taxoids |
Linalool | Croton cajuçara | L. amazonensis promastigotes and intracellular amastigotes | Terpenes (mono) |
7-hydroxy-12-methoxy-20-nor-abieta-1,5(10),7,9,12-pentaen-6,14-dione | Salvia cilicica | L. donovani and L. major intracellular amastigotes | Terpenes |
Abieta-8,12-dien-11,14-dione | |||
- | Lophanthera lactescens | L. amazonensis amastigotes | Triterpenes (nor-) |
Isoiguesterin | Salacia madagascariensis | L. donovani and L. mexicana | Terpenes |
20-epi-isoiguesterinol | |||
8-epixanthatin 1_,5_-epoxide | Xanthium brasilicum Vell | L. donovani | Terpenes (lactone sesqui-) |
Elephantopin | Elephantopus mollis | L. major extracellular promastigotes | Terpenes (lactone sesqui-) |
2-deethoxy-2_-methoxyphantomolin | |||
Psilostachyin | Ambrosia tenuifolia | Leishmaniaspp. promastigotes | Terpenes (lactone sesqui-) |
Simalikalactone D | Simaba orinocensis | L. donovani promastigotes | Terpenoids (Decanortri-) |
Acetylvismione D | Psorospermum glaberrimum | L. donovani | Anthranoids |
Dicentrinone | Duguetia furfuracea | L. braziliensis promastigotes | Alkaloids |
Jatrogrossidione | Jatropha grossidentata | Leishmaniaspp. amastigotes | Terpenes (di-) |
Jatrophone | Jatropha isabellii | L. amazonensis | Terpenes (di-) |
Oleanolic acid | Salvia cilicica | L. donovani and L. major promastigotes and amastigotes | Terpenes (tri-) |
Ursolic acid | |||
Luteolin | - | Leishmaniaspp. | Flavonoids |
Quercetin | |||
6,7-dihydroneridienone | Pentalinon andrieuxii | L. mexicana | Sterols |
Licochalcone A | Glycyrrhizaspp | L. major and L. donovani promastigotes and amastigotes | Chalcone (oxygenated) |
20,60-dihydroxy-40-methoxy-chalcone | Piper aduncum | Leishmania spp. | Chalcones derivatives |
- | - | Leishmania spp. promastigotes | Aurones |
- | C. brasiliense | L. amazonensis | Coumarins |
Casuarinin | Punica granatum,Casuarina, andStachyurusspecies | L. donovani | Tannins |
Amarogentin | Swertia chirata | L. donovani | Iridoids (glycoside seco-) |
Plumbagin | Pera benensis | L. donovani promastigotes and intracellular amastigotes and L. amazonensis amastigotes and L. braziliensis and L. venezuelensis | Naphthoquinones |
8,80-biplumbagin | |||
Burmanin A | Diospyros burmanica | L. major | Naphthoquinones |
Burmanin B | |||
Burmanin C | |||
Pendulone | Miconia lepidota | L. donovani | Quinones |
Primin | |||
Chimanine B | Galipea longiflora | L. amazonensis | Alkaloids (quinoline derivatives) |
Chimanine D | |||
Cephaeline | Psychotria klugii | L. donovani | Alkaloids |
Isocephaeline | |||
Klugine | |||
Harmine | Peganum harmala | Leishmania spp. | Alkaloids |
Maesabalides III | Maesa balansae | L. infantum intracellular amastigotes | Saponins |
Maesabalides IV | |||
Racemoside A | Asparagus racemosus | L. donovani amastigotes | Saponins |
α- and β-Hederine | Hedera helix | L. infantum promastigotes and intracellular amastigotes | Saponins |
Hederacholchiside A1 | |||
α-bisabolol | Matricaria recutita, Matricaria chamomilla and Vanillosmopsis arborea | L. amazonensis | Sesquiterpenes |
Undeca-2E,4E-dien-8,10-diynoic acid isopentylamide | Anacyclus pyrethrum | L. donavani | Alkamides |
Tetradeca-2E,4E,12Z-trien-8,10-diynoic acid isobutylamide | |||
Deca-2E,4E,9-trienoic acid isobutylamide | |||
5-methyl-2,2′:5′,2″-terthiophene | Porophyllum ruderale | L. amazonensis promastigotes and amastigotes | Thiophene derivatives |
5′-methyl-[5-(4-acetoxy-1-butynyl)]-2,2′-bithiophene | |||
Caffeic acid | P. carolinensis, P. roseaand P. odorata | L. amazonensis promastigotes and intracellular amastigotes | - |
Chlorogenic acid | |||
Ferulic acid | |||
Quercetin | |||
Rosmarinic acid | |||
- | Artemisia absinthiumL. Artemisia dracunculusL. Artemisia seiberiL. Artemisia ludovicianaNutt Artemisia abyssinicaSch.Bip | L. amazonensis L. aethiopica and L. donovani | - |
- | Aphelandra scabra(leaves),Byrsonima bucidaefolia(bark),Byrsonima crassifolia(bark),Clusiaflava(leaves),Cupania dentata(bark),Diphysa carthagenensis(leaves),Dorstenia contrajerva(complete plant),Milleria quinqueflora(root),Tridax procumbens(complete plant), andVitex gaumeri(bark) | L. mexicana promastigotes | - |
- | Urechites andrieuxii; Colubrina greggii,Dorstenia contrajerva, andTridax procumbens | L. aethiopica promastigotes | - |
3(S)-16,17-didehydrofalcarinol or oxylipin | T. procumbens | L. mexicana promastigotes and intracellular amastigotes | - |
Cholest-5,20,24-trien-3β-ol | U. andrieuxii | L. braziliensis and L. amazonensis and L. donovani and L. mexicana promastigotes and amastigotes | - |
6,7-dihydroneridienone | |||
Methylcholest-4-24(28)-dien-3-one, cholest-4-en-3-one | |||
Pentalinosterol | |||
Neridienone | |||
Diospyrin | Euclea natalensis | L. donovani promastigotes | - |
Racemoside A | Asparagus racemosus | L. donovani promastigotes and amastigotes | Saponins |
Amarogentin | Swertia chirata | L. donovani | Iridoids (glucoseco-) |
Mesabalide III | Maesa balansae | L. infantum intracellular amastigotes | Saponins |
Mesabalide VI | |||
Crocaudatol | Croton caudatus | L. donovani promastigotes and intracellular amastigotes | Terpenes |
Crotocaudin | |||
Crotoncaudatin | |||
Isocrotocaudin | |||
Glycyrrhizic acid | Glycyrrhiza glabraA. indica | L. donovani intracellular amastigotes | - |
2-phenylquinoline | Angostura longiflora(Krause)Kallunki | L. braziliensis | Alkaloids |
6α,7α,15β,16β,24-pentacetoxy-22α-carbometoxy-21β,22β-epoxy-18β-hydroxy-27,30-bisnor-3,4-secofriedela-1,20(29)-dien-3,4 R-olide | Lophanthera lactescensDucke | Leishmania spp. intracellular amastigotes | Triterpenes (nor-) |
Piperine | Piper nigrum | L. amazonensis promastigotes and amastigotes | Alkaloids |
Phenylamide | |||
β-pinene | Artemisia campestris | L. infantum promastigotes | - |
Camphor | Artemisia herba-alba | L. infantum promastigotes | - |
Camphor | Artemisia annua | L. donovani promastigotes and amastigotes | - |
β-caryophyllene | |||
Buchtienin | Kopsia griffithii | L. donovani promastigotes | Alkaloids (indole) |
Harmane | |||
Pleiocarpin | |||
Ramiflorines A and B | Ampelocera edentula | L. braziliensis and L. amazonensis, and L. donovani promastigotes | Alkaloids |
2α,3β-dihydroxyursan-12-in-28-oic acid | Pourouma guianensis | L. amazonensis promastigotes and intracellular amastigotes | - |
2α,3β-dihydroxyolean-12-in-oic acid | |||
Oleanolic acid | |||
Ursolic acid |
Compound | Natural Sources | Targeted Parasite | Classes of Compounds |
---|---|---|---|
Helenalin | Arnica spp. and Inula spp. | T. brucei rhodesiense trypomastigotes | Terpenes (sesquiterpene lactones) |
Mexicanin I | |||
Parthenolide | Saussurea costus | T. brucei rhodesiense | Terpenes (sesquiterpene lactones) |
Primin | Miconia lepidota | T. brucei rhodesiense | Quinones |
7,8-dihydroxyflavone | - | T. brucei rhodesiense | Flavones |
Quercetagetin | Flavonols | ||
Demethylpraecansone B | Tephrosia aequilata | T. brucei rhodesiense | Chalcones |
Praecansone B | |||
Justicidin B | - | T. brucei rhodesiense | Lignans (arylnaphthalide) |
Piscatorin | |||
Cissampeloflavone | Cissampelos pareira | T. brucei rhodesiense | Chalcones (flavone-chalcone dimer) |
Lepadins D | Didemnum spp. | T. brucei rhodesiense trypomastigotes | Quinolines (decahydroquinoline) |
Fascaplysin | Hyrtios erecta | T. brucei rhodesiense | Alkaloids (quaternary indole) |
Ascididemin | - | T. brucei rhodesiense | Alkaloids (pyridoacridone) |
2-bromoascididemin | |||
Manadoperoxide B | Plakortis cfr. Lita | T. brucei rhodesiense | Peroxide derivatives |
Manadoperoxide I | |||
Manadoperoxide K | |||
Pandaroside G methyl ester | Pandaros acanthifolium | T. brucei rhodesiense | Steroids (saponins) |
Dibromopalau’amine | Axinella verrucosa | T. brucei rhodesiense | Oroidins (dimer) |
Brassicasterol | Chondrosia reniformis and Tethya rubra and Tethya ignis and Mycale angulosa and Dysidea avara | T. cruzi epimastigotes | Steroids (sterols) |
β-sitosterol | |||
Stigmasterol | |||
Rhodnius prolixus | T. rangelii | Lectins | |
Quercetin | Guazuma ulmifolia | T. cruzi | Flavones |
Naringenin | - | T. cruzi trypomastigotes and amastigotes | Flavanones |
Sakuranetin | |||
Borneol | Croton pedicellatus and Croton leptostachyus | T. cruzi | - |
γ-terpinene | |||
p-cymene | |||
trans-caryophyllene | |||
Germacrene D | |||
Artemisinin | A. absinthium and A. annua | T. cruzi | - |
α-thujone | |||
β-thujone | |||
sabinene | |||
β-pinene | |||
Myrcene | |||
trans-sabinyl acetate | |||
1,8-cineole | |||
Linalool | |||
cis-epoxyocimene | |||
Artemisiaketone | |||
Camphor | |||
Bornyl acetate | |||
Myrtenol | |||
Chrysanthenyl acetate hydrocarbon monoterpenes | |||
Sesquiterpene lactones | |||
Dihydrochamazulene | |||
trans-caryophyllene | |||
4-hydroxy-3-tetraprenylphenylacetic acid | Spongiaspp. and Ircinia spp | T.b. rhodesiense | Terpenes (furanoterpenes and meroterpenes and di- and tri-terpenes) |
11β-acetoxyspongi-12-en-16-one | |||
Demethylfurospongin-4 | |||
24-ethyl-cholest-5α-7-en-3-β-ol | Agelas oroides | T.b. rhodesiense | Steroids (sterol) |
Pandaroside G | Pandaros acanthifolium | T.b. brucei and T. cruzi | Steroids (saponins) |
Acanthifolioside E | - | T.b. rhodesiense and T. cruzi | Steroids (saponins) and Terpenes (acanthifolisides) |
Acanthifolioside F methyl ester | |||
Plakortide P | Plakortis angulospiculatus | T. cruzi | Polyketide endoperoxides |
11,12-didehydro-13-oxo-plakortide Q | Plakortis sp | T.b. brucei | - |
10-carboxy-11,12,13, 14-tetranor-plakortide Q | |||
Manadoperoxides B | Plakortis cfr. lita | T.b. rhodesiense | - |
Manadoperoxide G | |||
Peroxyplakoric ester B3 | |||
Tetronic acid-containing tetromycin B | Axinella polypoides | T.b. brucei | - |
Tetromycins 1 | |||
Tetromycins 3 | |||
- | Chaetomium sp. | T.b. rhodesiense | Xanthone (heterocyclic-substituted analogues) |
Tryptophol | Ircinia spinulosa | T.b. rhodesiense | Alkaloids (indole-) |
3-formylindole | Anthiphates sp | T. cruzi | Alkaloids (indole-) |
3-hydroxyacetylindole | |||
N-acetyl-β-oxotryptamine | |||
Opacalines A | Pseudodistoma opacum | T.b. rhodesiense | Alkaloids (alkylguanidine-substituted β-carboline-) |
Opacalines B | |||
Opacalines C | |||
Amino-1-(aminoimidazoyl)-prop-1-ene | Agelas oroides | T.b. rhodesiense and T. cruzi | Bromopyrrole derivatives |
Oroidin trifluoroacetate salt | Agelas oroides | T.b. rhodesiense | Bromopyrrole derivatives |
Longamide B | Agelas dispar | T.b. rhodesiense | Alkaloids |
Longamide A | Agelas longissima | T.b. rhodesiense | Alkaloids |
Oroidin dimer dibromopalau’amine | Axinella verrucosa | T.b. rhodesiense | Alkaloids |
Sceptrin | Agelas sceptrum | T.b. rhodesiense | Alkaloids |
Agelasine D | Agelas nakamurai | T.b. brucei and T. cruzi | Terpenes (bicyclic diterpenoid purine) |
Convolutamines I | Amathia tortusa | T.b. brucei | Alkaloids (brominated β-phenyl ethylamine-based) |
Convolutamines J | |||
Iotrochotamide A | Iotrochota sp. | T.b. brucei | Amino acids (cinnamoyl amino acids) |
Iotrochotamide B | |||
Lepadins D | Didemnum sp. | T.b. rhodesiense and T. cruzi | Alkaloids (decahydroquinoline) |
Lepadins E | |||
Lepadins F | |||
Viscosamine | Haliclona viscosa | T.b. brucei | Alkaloids (3-alkylpyridinium) |
Fascaplysin | Hyrtios cf. erecta | T.b. rhodesiense | Alkaloids (pentacyclic bis-indole) |
Ascididemnin | Polysyncraton echinatum | T.b. brucei | Alkaloids (pyridoacridines) |
12-deoxyascididemnin | |||
- | Aspergillus fumigatus | T.b. brucei | Alkaloids (dimethylthio, spiro-pentacyclic and fused penta- and hexacyclic diketopiperazines) |
Chaetocin | Nectria inventa | T. cruzi | Alkaloids (dimethylthio and two disulfide diketopiperazines) |
Verticilin B | |||
Venturamides A | Oscillatoria sp | T. cruzi | Cyclic peptides |
Venturamides B | |||
Aerucyclamides B | Microrcystis aeruginosa | T.b. rhodesiense | Alkaloids |
Aerucyclamides C | |||
Almiramides B | Lyngbya majuscula | T.b. brucei | Alkaloids |
Almiramides C | |||
- | Liriodendron tulipifera and Lychnophora diamantinana and Viguiera robusta and Eremanthus goyazensis and Helianthus tuberosus | T.b. rhodesiense | Sesquiterpenes (lactones) |
8-epixanthatin 1,5-epoxide | T.b. rhodesiense | Sesquiterpenes (lactones) | |
Sinefungin | Streptomyces grizeolus and S. incarnates | T. brucei and T. congolense and T. vivax | - |
Aculeatin D | Amomum aculeatum | T. brucei rhodesiense trypomastigotes | Aculeatins |
Ferruginol | Craniolaria annua | T. cruzi trypomastigotes and epimastigotes | Abietanes (phenolic) |
Montbretol | |||
α-solamargine | Solanum lycocarpum and Solanum palinacanthum | T. cruzi | Alkaloids (glycoalkaloids) |
α-solasonine |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souto, E.B.; Dias-Ferreira, J.; Craveiro, S.A.; Severino, P.; Sanchez-Lopez, E.; Garcia, M.L.; Silva, A.M.; Souto, S.B.; Mahant, S. Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems. Pathogens 2019, 8, 119. https://doi.org/10.3390/pathogens8030119
Souto EB, Dias-Ferreira J, Craveiro SA, Severino P, Sanchez-Lopez E, Garcia ML, Silva AM, Souto SB, Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems. Pathogens. 2019; 8(3):119. https://doi.org/10.3390/pathogens8030119
Chicago/Turabian StyleSouto, Eliana B., João Dias-Ferreira, Sara A. Craveiro, Patrícia Severino, Elena Sanchez-Lopez, Maria L. Garcia, Amélia M. Silva, Selma B. Souto, and Sheefali Mahant. 2019. "Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems" Pathogens 8, no. 3: 119. https://doi.org/10.3390/pathogens8030119
APA StyleSouto, E. B., Dias-Ferreira, J., Craveiro, S. A., Severino, P., Sanchez-Lopez, E., Garcia, M. L., Silva, A. M., Souto, S. B., & Mahant, S. (2019). Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems. Pathogens, 8(3), 119. https://doi.org/10.3390/pathogens8030119