Helminth Antigens Modulate Virus-Induced Activation of CD154 (CD40L) Expression on T Cells in Onchocerca volvulus-Infected Individuals
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participant Recruitment
2.2. Onchocerca volvulus and Wuchereria bancrofti Assessment and Filarial Lymphedema (LE) Staging
2.3. Measurement of SARS-CoV-2-Specific Antibodies
2.4. Measurement of A. lumbricoides-Specific Antibodies
2.5. Antigen Preparation
2.6. PBMC Isolation and Cryopreservation
2.7. Cell Treatment
2.8. Stimulation and Cell Culture
2.9. FACS Staining and Gating Strategy
2.10. Data Analysis
3. Results
3.1. Demographic and Clinical Characteristics of the Study Population
3.2. Filarial Infection Suppresses SARS-CoV-2–Induced T Cell Activation
3.3. A. lumbricoides Antigens Suppress SARS-CoV-2-Induced CD3+ and CD4+CD154+ T Cells in O. volvulus-Infected Individuals
3.4. Downregulation of CD154 on CD4+ T Lymphocytes in O. volvulus-Infected Participants
3.5. Upregulation of CD8+CD154+ T Cells in the O. volvulus Patients Post-Stimulation
3.6. A. lumbricoides IgG is Associated with Reduced SARS-CoV-2 Antigen-Specific T Cell Activation in O. volvulus-Infected Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LFLE | Lymphatic Filariasis lymphedema |
| CFA | Circulating Filarial Antigens |
| PBMC | Peripheral Blood Mononuclear Cells |
| FMO | Fluorescence Minus One |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
| NCP | Nucleocapsid Protein |
| SPP | SARS-CoV-2 Peptide Pool |
| IQR | Interquartile Range |
| CI | Confidence Interval |
| KCCR | Kumasi Centre for Collaborative Research in Tropical Medicine |
| IMMIP | Institute of Medical Microbiology, Immunology and Parasitology |
| KNUST | Kwame Nkrumah University of Science and Technology |
Appendix A




References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- World Health Organisation Timeline: WHO’s COVID-19 Response. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline (accessed on 19 February 2025).
- Centre for Disease Control. SARS-CoV-2 Variant Classifications and Definitions. Available online: https://stacks.cdc.gov/view/cdc/105817 (accessed on 9 January 2025).
- Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina 2022, 58, 144. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine Storm in COVID-19—Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front. Immunol. 2020, 11, 569067. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. COVID-19 Epidemiological Update—16 February 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-16-february-2024 (accessed on 9 April 2025).
- Njenga, M.K.; Dawa, J.; Nanyingi, M.; Gachohi, J.; Ngere, I.; Letko, M.; Otieno, C.F.; Gunn, B.M.; Osoro, E. Why Is There Low Morbidity and Mortality of COVID-19 in Africa? Am. J. Trop. Med. Hyg. 2020, 103, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Nachega, J.B.; Atteh, R.; Ihekweazu, C.; Sam-Agudu, N.A.; Adejumo, P.; Nsanzimana, S.; Rwagasore, E.; Condo, J.; Paleker, M.; Mahomed, H.; et al. Contact Tracing and the COVID-19 Response in Africa: Best Practices, Key Challenges, and Lessons Learned from Nigeria, Rwanda, South Africa, and Uganda. Am. J. Trop. Med. Hyg. 2021, 104, 1179–1187. [Google Scholar] [CrossRef]
- Alrouji, M.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elhadad, H.; Alexiou, A.; Papadakis, M.; Ogaly, H.A.; Elgazzar, A.M.; Batiha, G.E.S. Immunological Interactions in Helminths-SARS CoV-2 Coinfection: Could Old Enemy Be a Friend Today? Parasite Immunol. 2023, 45, e12982. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alkazmi, L.; El-Bouseary, M.M.; Hamad, R.S.; Abdelhamid, M.; Batiha, G.E.S. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J. Immunol. Res. 2023, 2023, 5544819. [Google Scholar] [CrossRef]
- Hays, R.; Pierce, D.; Giacomin, P.; Loukas, A.; Bourke, P.; McDermott, R. Helminth Coinfection and COVID-19: An Alternate Hypothesis. PLoS Negl. Trop. Dis. 2020, 14, e0008628. [Google Scholar] [CrossRef]
- Siles-Lucas, M.; González-Miguel, J.; Geller, R.; Sanjuan, R.; Pérez-Arévalo, J.; Martínez-Moreno, Á. Potential Influence of Helminth Molecules on COVID-19 Pathology. Trends Parasitol. 2021, 37, 11–14. [Google Scholar] [CrossRef]
- Akelew, Y.; Andualem, H.; Ebrahim, E.; Atnaf, A.; Hailemichael, W. Immunomodulation of COVID-19 Severity by Helminth Co-infection: Implications for COVID-19 Vaccine Efficacy. Immun. Inflamm. Dis. 2022, 10, e573. [Google Scholar] [CrossRef]
- Bradbury, R.; Piedrafita, D.; Greenhill, A.; Mahanty, S. Will Helminth Co-Infection Modulate COVID-19 Severity in Endemic Regions? Nat. Rev. Immunol. 2020, 20, 342. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.S.; Oliveira, S.C.; Araujo, M.I. Schistosoma Mansoni Antigens as Modulators of the Allergic Inflammatory Response in Asthma. Endocr. Metab. Immune Disord.—Drug Targets 2012, 12, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nembot Fogang, B.A.; Debrah, L.B.; Owusu, M.; Agyei, G.; Meyer, J.; Gmanyami, J.M.; Ritter, M.; Arndts, K.; Adu Mensah, D.; Adjobimey, T.; et al. Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases. Vaccines 2025, 13, 436. [Google Scholar] [CrossRef] [PubMed]
- Fogang, B.A.N.; Meyer, J.; Debrah, L.B.; Owusu, M.; Agyei, G.; Mensah, D.A.; Boateng, J.; Mensah, J.O.; Klarmann-Schulz, U.; Horn, S.; et al. Helminth Seropositivity Inversely Correlated with Th1 and Th17 Cytokines and Severe COVID-19. Vaccines 2025, 13, 252. [Google Scholar] [CrossRef]
- Schlosser-Brandenburg, J.; Midha, A.; Mugo, R.M.; Ndombi, E.M.; Gachara, G.; Njomo, D.; Rausch, S.; Hartmann, S. Infection with Soil-Transmitted Helminths and Their Impact on Coinfections. Front. Parasitol. 2023, 2, 1197956. [Google Scholar] [CrossRef]
- Stetter, N.; Hartmann, W.; Brunn, M.L.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. A Combination of Deworming and Prime-Boost Vaccination Regimen Restores Efficacy of Vaccination Against Influenza in Helminth-Infected Mice. Front. Immunol. 2021, 12, 784141. [Google Scholar] [CrossRef]
- Loffredo-Verde, E.; Bhattacharjee, S.; Malo, A.; Festag, J.; Kosinska, A.D.; Ringelhan, M.; Rim Sarkar, S.; Steiger, K.; Heikenwaelder, M.; Protzer, U.; et al. Dynamic, Helminth-Induced Immune Modulation Influences the Outcome of Acute and Chronic Hepatitis B Virus Infection. J. Infect. Dis. 2020, 221, 1448–1461. [Google Scholar] [CrossRef]
- Desai, P.; Diamond, M.S.; Thackray, L.B. Helminth–Virus Interactions: Determinants of Coinfection Outcomes. Gut Microbes 2021, 13, 1961202. [Google Scholar] [CrossRef]
- Duan, L.; Mukherjee, E. Janeway’s Immunobiology, Ninth Edition. Yale J. Biol. Med. 2016, 89, 424. [Google Scholar]
- Sallusto, F.; Cella, M.; Danieli, C.; Lanzavecchia, A. Dendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class II Compartment: Downregulation by Cytokines and Bacterial Products. J. Exp. Med. 1995, 182, 389–400. [Google Scholar] [CrossRef]
- Cron, R.Q. CD154 Transcriptional Regulation in Primary Human CD4 T Cells. Immunol. Res. 2003, 27, 185–202. [Google Scholar] [CrossRef]
- Hirohata, S. The Role of CD40-CD40 Ligand Interactions in Suppression of Human B Cell Responsiveness by CD4+ T Cells. Cell. Immunol. 1997, 181, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Baum, D.; Yaron, R.; Yellin, M.J. TNF-α, Not CD154 (CD40L), Plays a Major Role in SEB-Dependent, CD4+ T Cell-Induced Endothelial Cell Activation In Vitro. Cell. Immunol. 1998, 190, 12–22. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, W.E.; Dooms, H.; Thorne, S.H.; Kuswanto, W.F.; Simonds, E.F.; Krutzik, P.O.; Nolan, G.P.; Abbas, A.K. The Initial Phase of an Immune Response Functions to Activate Regulatory T Cells. J. Immunol. 2009, 183, 332. [Google Scholar] [CrossRef]
- Blair, P.J.; Riley, J.L.; Harlan, D.M.; Abe, R.; Tadaki, D.K.; Hoffmann, S.C.; White, L.; Francomano, T.; Perfetto, S.J.; Kirk, A.D.; et al. Cd40 Ligand (Cd154) Triggers a Short-Term Cd4+ T Cell Activation Response That Results in Secretion of Immunomodulatory Cytokines and Apoptosis. J. Exp. Med. 2000, 191, 651. [Google Scholar] [CrossRef]
- Ford, G.S.; Barnhart, B.; Shone, S.; Covey, L.R. Regulation of CD154 (CD40 Ligand) MRNA Stability During T Cell Activation. J. Immunol. 1999, 162, 4037–4044. [Google Scholar] [CrossRef]
- Adjobimey, T.; Meyer, J.; Hennenfent, A.; Bara, A.J.; Lagnika, L.; Kocou, B.; Adjagba, M.; Laleye, A.; Hoerauf, A.; Parcina, M. Negative Association between Ascaris Lumbricoides Seropositivity and Covid-19 Severity: Insights from a Study in Benin. Front. Immunol. 2023, 14, 1233082. [Google Scholar] [CrossRef] [PubMed]
- Adjobimey, T.; Meyer, J.; Terkeš, V.; Parcina, M.; Hoerauf, A. Helminth Antigens Differentially Modulate the Activation of CD4+ and CD8+ T Lymphocytes of Convalescent COVID-19 Patients In Vitro. BMC Med. 2022, 20, 241. [Google Scholar] [CrossRef]
- Debrah, L.B.; Gyasi, C.; Ahiadorme, M.; Rahamani, A.A.; Opoku, V.S.; Obeng, P.; Osei-Mensah, J.; Obeng, M.A.; Mensah, D.A.; Debrah, A.Y. Association of Haemato-Biochemical Indices and Blood Composite Ratios with Microfilaridermia in Onchocerciasis Patients. BMC Infect. Dis. 2024, 24, 384. [Google Scholar] [CrossRef]
- Debrah, L.B.; Klarmann-Schulz, U.; Osei-Mensah, J.; Kuehlwein, J.M.; Mubarik, Y.; Nadal, J.; Ayisi-Boateng, N.K.; Ricchiuto, A.; Opoku, V.S.; Sullivan, S.M.; et al. Adherence to Hygiene Protocols and Doxycycline Therapy in Ameliorating Lymphatic Filariasis Morbidity in an Endemic Area Post-Interruption of Disease Transmission in Ghana. Am. J. Trop. Med. Hyg. 2024, 111, 66–82. [Google Scholar] [CrossRef]
- Djune-Yemeli, L.; Domché, A.; Nana-Djeunga, H.C.; Donfo-Azafack, C.; Lenou-Nanga, C.G.; Masumbe-Netongo, P.; Kamgno, J. Relationship between Skin Snip and Ov16 ELISA: Two Diagnostic Tools for Onchocerciasis in a Focus in Cameroon after Two Decades of Ivermectin-Based Preventive Chemotherapy. PLoS Negl. Trop. Dis. 2022, 16, e0010380. [Google Scholar] [CrossRef] [PubMed]
- Euroimmun. Anti-SARS-CoV-2 ELISA (IgA) Instructions for Use. Available online: https://www.euroimmun.co.jp/fileadmin/Subsidiaries/Japan/Documents/IFU/IFU_EI_2606-9601_A.pdf (accessed on 6 April 2025).
- Thermo Fisher Scientific. Thawing Frozen Cells. Available online: https://www.thermofisher.com/gh/en/home/references/gibco-cell-culture-basics/cell-culture-protocols/thawing-cells.html (accessed on 12 April 2025).
- Avelar-Freitas, B.A.; Almeida, V.G.; Pinto, M.C.X.; Mourão, F.A.G.; Massensini, A.R.; Martins-Filho, O.A.; Rocha-Vieira, E.; Brito-Melo, G.E.A. Trypan Blue Exclusion Assay by Flow Cytometry. Braz. J. Med. Biol. Res. 2014, 47, 307–315. [Google Scholar] [CrossRef]
- Miltenyi Biotec. SARS-CoV-2 T Cell Analysis Kits for Human PBMC Samples. Available online: https://www.miltenyibiotec.com/UN-en/lp/sars-cov-2-t-cell-analysis-kit.html (accessed on 5 January 2025).
- Kirk, A.D.; Blair, P.J.; Tadaki, D.K.; Xu, H.; Harlan, D.M. The Role of CD154 in Organ Transplant Rejection and Acceptance. Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.S.; Stagg, J.; Mourad, W. Role of CD154 in Cancer Pathogenesis and Immunotherapy. Cancer Treat. Rev. 2015, 41, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.Y.; Clark, E.A. The Role of CD40 and CD154/CD40L in Dendritic Cells. Semin. Immunol. 2009, 21, 265–272. [Google Scholar] [CrossRef]
- George, P.J.; Kumar, N.P.; Sridhar, R.; Hanna, L.E.; Nair, D.; Banurekha, V.V.; Nutman, T.B.; Babu, S. Coincident Helminth Infection Modulates Systemic Inflammation and Immune Activation in Active Pulmonary Tuberculosis. PLoS Negl. Trop. Dis. 2014, 8, e3289. [Google Scholar] [CrossRef]
- Rajamanickam, A.; Munisankar, S.; Dolla, C.; Menon, P.A.; Thiruvengadam, K.; Nutman, T.B.; Babu, S. Helminth Infection Modulates Systemic Pro-Inflammatory Cytokines and Chemokines Implicated in Type 2 Diabetes Mellitus Pathogenesis. PLoS Negl. Trop. Dis. 2020, 14, e0008101. [Google Scholar] [CrossRef]
- Smits, H.H.; Yazdanbakhsh, M. Chronic Helminth Infections Modulate Allergen-Specific Immune Responses: Protection against Development of Allergic Disorders? Ann. Med. 2007, 39, 428–439. [Google Scholar] [CrossRef]
- Hartmann, W.; Schramm, C.; Breloer, M. Litomosoides Sigmodontis Induces TGF-β Receptor Responsive, IL-10-Producing T Cells That Suppress Bystander T-Cell Proliferation in Mice. Eur. J. Immunol. 2015, 45, 2568–2581. [Google Scholar] [CrossRef]
- Coomes, S.M.; Kannan, Y.; Pelly, V.S.; Entwistle, L.J.; Guidi, R.; Perez-Lloret, J.; Nikolov, N.; Müller, W.; Wilson, M.S. CD4 + Th2 Cells Are Directly Regulated by IL-10 during Allergic Airway Inflammation. Mucosal. Immunol. 2017, 10, 150–161. [Google Scholar] [CrossRef]
- Shah, P.D.; West, E.E.; Whitlock, A.B.; Orens, J.B.; McDyer, J.F. CD154 Deficiency Uncouples Allograft CD8+ T-Cell Effector Function from Proliferation and Inhibits Murine Airway Obliteration. Am. J. Transplant. 2009, 9, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Smits, H.H.; Everts, B.; Hartgers, F.C.; Yazdanbakhsh, M. Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes. Curr. Allergy Asthma Rep. 2010, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, W.; Brunn, M.L.; Stetter, N.; Gagliani, N.; Muscate, F.; Stanelle-Bertram, S.; Gabriel, G.; Breloer, M. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Rep. 2019, 29, 2243–2256.e4. [Google Scholar] [CrossRef]
- Rahamani, A.A.; Horn, S.; Ritter, M.; Feichtner, A.; Osei-Mensah, J.; Serwaa Opoku, V.; Batsa Debrah, L.; Marandu, T.F.; Haule, A.; Mhidze, J.; et al. Stage-Dependent Increase of Systemic Immune Activation and CCR5+CD4+ T Cells in Filarial Driven Lymphedema in Ghana and Tanzania. Pathogens 2023, 12, 809. [Google Scholar] [CrossRef]
- Horn, S.; Borrero-Wolff, D.; Ritter, M.; Arndts, K.; Wiszniewsky, A.; Debrah, L.B.; Debrah, A.Y.; Osei-Mensah, J.; Chachage, M.; Hoerauf, A.; et al. Distinct Immune Profiles of Exhausted Effector and Memory CD8+ T Cells in Individuals with Filarial Lymphedema. Front. Cell. Infect. Microbiol. 2021, 11, 680832. [Google Scholar] [CrossRef] [PubMed]
- Horn, S.; Ritter, M.; Arndts, K.; Borrero-Wolff, D.; Wiszniewsky, A.; Debrah, L.B.; Debrah, A.Y.; Osei-Mensah, J.; Chachage, M.; Hoerauf, A.; et al. Filarial Lymphedema Patients Are Characterized by Exhausted CD4+ T Cells. Front. Cell. Infect. Microbiol. 2022, 11, 767306. [Google Scholar] [CrossRef]






| Parameter | LE LF Participants | O. volvulus-Infected Participants | Uninfected Control | |
|---|---|---|---|---|
| Gender, n (%) | Male | 2 (11.8) | 15 (75.0) | 4 (66.7) |
| Female | 15 (88.2) | 5 (25.0) | 2 (33.3) | |
| Age group, n (%) | 17–24 | 0 (0.0) | 2 (10.0) | 1 (16.7) |
| 25–44 | 7 (41.2) | 13 (65.0) | 5 (83.3) | |
| 45–64 | 10 (58.8) | 5 (25.0) | 0 (0.0) | |
| COVID-19 Sero, n (%) | Seropositive | 16 (94.1) | 15 (75.0) | 6 (100.0) |
| Seronegative | 1 (5.9) | 5 (25.0) | 0 (0.0) | |
| Vaccination, n (%) | Vaccinated | 7 (41.2) | 10 (50.0) | 6 (100.0) |
| Unvaccinated | 10 (58.8) | 10 (50.0) | 0 (0.0) | |
| Median SARS-CoV-2 IgA titer (ABU) | 4 (IQR: 1.6–41.2) | 7.9 (IQR: 1.8–16.0) | 9.8 (IQR: 4.5–31.1) | |
| Median SARS-CoV-2 IgG titer (ABU) | 2 (IQR: 1.2–9.8) | 5.4 (IQR: 1.3–8.3) | 19.7 (IQR: 6.5–33.2) | |
| Median A. lumbricoides IgG titer (Index) | 8.3 (IQR: 7.1–10.4) | 23.9 (IQR: 16.3–28.5) | 9 (IQR: 7.7–10.2) | |
| Lymphedema (LE) staging, n (%) | Stage 1 | 1 (5.9) | - | - |
| Stage 2 | 11 (64.7) | - | - | |
| Stage 3 | 4 (23.5) | - | - | |
| Stage 6 | 1 (5.9) | - | - | |
| Average palpable nodules per patient | 3 | - | ||
| Average MF/mg skin snip | 56 | - | ||
| Total investigated, n (%) | 17 (100) | 20 (100) | 6 (100) | |
| Predictor | cβ (Unstandardised) | Std. Error | β (Standardised) | t-Value | Sig (p-Value) | 95% CI for B |
|---|---|---|---|---|---|---|
| SARS IgA | 0.075 | 0.039 | 0.415 | 1.937 | 0.069 | [−0.006, 0.156] |
| SARS IgG | 0.190 | 0.071 | 0.532 | 2.662 | 0.016 | [0.040, 0.339] |
| NCP IgG | 3.235 | 1.496 | 0.607 | 2.162 | 0.063 | [−0.215, 6.686] |
| COVID-19 vaccine | 1.989 | 1.544 | 0.290 | 1.288 | 0.214 | [−1.256, 5.234] |
| A. lumbricoides IgG | −0.219 | 0.09 | −0.499 | −2.441 | 0.025 | [−0.408, −0.031] |
| Predictor | cβ (Unstandardised) | Std. Error | Β (Standardised) | t-Value | p-Value | 95% CI for B |
|---|---|---|---|---|---|---|
| SARS IgG | 0.981 | 0.391 | 0.509 | 2.511 | 0.022 | [0.160, 1.802] |
| SARS IgA | 0.358 | 0.213 | 0.369 | 1.684 | 0.109 | [−0.089, 0.805] |
| NCP IgG | 8.041 | 6.163 | 0.419 | 1.305 | 0.228 | [−6.170, 22.253] |
| COVID-19 vaccine | −4.730 | 8.647 | −0.128 | −0.547 | 0.591 | [−22.896, 13.436] |
| A. lumbricoides IgG | −0.225 | 0.558 | −0.095 | −0.403 | 0.691 | [−1.396, 0.947] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fogang, B.A.N.; Arndts, K.; Adjobimey, T.; Owusu, M.; Opoku, V.S.; Adu Mensah, D.; Boateng, J.; Osei-Mensah, J.; Meyer, J.; Klarmann-Schulz, U.; et al. Helminth Antigens Modulate Virus-Induced Activation of CD154 (CD40L) Expression on T Cells in Onchocerca volvulus-Infected Individuals. Pathogens 2026, 15, 93. https://doi.org/10.3390/pathogens15010093
Fogang BAN, Arndts K, Adjobimey T, Owusu M, Opoku VS, Adu Mensah D, Boateng J, Osei-Mensah J, Meyer J, Klarmann-Schulz U, et al. Helminth Antigens Modulate Virus-Induced Activation of CD154 (CD40L) Expression on T Cells in Onchocerca volvulus-Infected Individuals. Pathogens. 2026; 15(1):93. https://doi.org/10.3390/pathogens15010093
Chicago/Turabian StyleFogang, Brice Armel Nembot, Kathrin Arndts, Tomabu Adjobimey, Michael Owusu, Vera Serwaa Opoku, Derrick Adu Mensah, John Boateng, Jubin Osei-Mensah, Julia Meyer, Ute Klarmann-Schulz, and et al. 2026. "Helminth Antigens Modulate Virus-Induced Activation of CD154 (CD40L) Expression on T Cells in Onchocerca volvulus-Infected Individuals" Pathogens 15, no. 1: 93. https://doi.org/10.3390/pathogens15010093
APA StyleFogang, B. A. N., Arndts, K., Adjobimey, T., Owusu, M., Opoku, V. S., Adu Mensah, D., Boateng, J., Osei-Mensah, J., Meyer, J., Klarmann-Schulz, U., Horn, S., Kroidl, I., Debrah, A. Y., Hoerauf, A., Ritter, M., & Debrah, L. B. (2026). Helminth Antigens Modulate Virus-Induced Activation of CD154 (CD40L) Expression on T Cells in Onchocerca volvulus-Infected Individuals. Pathogens, 15(1), 93. https://doi.org/10.3390/pathogens15010093

