Taming Superbugs: Current Progress and Challenges in Combating ESKAPE Pathogens
Abstract
1. Introduction
2. Challenges Against Bacterial Vaccine Development
2.1. Antigenic Diversity and Immune Evasion
2.2. Pathogen-Specific and Cross-Species Obstacles
2.3. Clinical and Strain Heterogeneity
3. Emerging Vaccine Platforms and Technologies
3.1. mRNA-Based Vaccines
3.2. OMV-Based Vaccines (Outer Membrane Vesicles)
3.3. Multi-Epitope/Epitope-Based Vaccines
4. Computational Antigen Discovery and Reverse Vaccinology
5. Vaccine Landscape Across the ESKAPE Pathogens
5.1. Enterococcus faecium Vaccine Candidates
5.2. Staphylococcus aureus Vaccine Candidates
5.3. Klebsiella pneumoniae Vaccine Candidates
5.4. Acinetobacter baumannii Vaccine Candidates
5.5. Pseudomonas aeruginosa Vaccine Candidates
5.6. Enterobacter spp. Vaccine Candidates
6. Insights from Failed Single-Target and Shifting Toward Cross-Genus Target Approaches
7. Structural Basis and Mechanistic Rationale for Cross-Reactive Antigen Targeting
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 4C-Staph | Four-component Staphylococcus aureus vaccine |
| AIPs | Autoinducing peptides |
| AdcA | Adhesin zinc-binding lipoprotein A |
| AmpC | Class C β-lactamase |
| APC | Antigen-presenting cell |
| ATP | Adenosine triphosphate |
| Bap | Biofilm-associated protein |
| BPAg | Bacterial protective antigen |
| BSA | Bovine serum albumin |
| BepiPred | B-cell epitope prediction tool |
| cDNA | Complementary DNA |
| CD | Cluster of differentiation |
| CDS | Coding sequence |
| CF | Cystic fibrosis |
| ClfA | Clumping factor A |
| CMTR1 | mRNA cap 2′-O-methyltransferase |
| CpG | Cytosine-phosphate-guanine motif |
| CP5/CP8 | Capsular polysaccharide types 5 and 8 |
| CW | Cell wall |
| DC | Dendritic cell |
| DNA | Deoxyribonucleic acid |
| DSPE-PEG | Polyethylene glycolated phospholipids |
| eDNA | Extracellular DNA |
| ELISA | Enzyme-linked immunosorbent assay |
| ESKAPE | E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp. |
| Esp | Enterococcal surface protein |
| ExoA | Exotoxin A |
| ExPEC10V | Extraintestinal pathogenic E. coli 10-valent vaccine |
| FnBP/FnBPA/FnBPB | Fibronectin-binding proteins |
| FOXP3 | Forkhead box P3 protein |
| FpvA | Pyoverdine receptor A |
| FSAV / rFSAV | Five-antigen S. aureus vaccine |
| GMMA | Generalized modules for membrane antigens |
| GRAM | Global Research on Antimicrobial Resistance |
| HAI | Healthcare-associated infection |
| Hla | Alpha-hemolysin |
| Hcp1 | Type VI secretion system component |
| HLA | Human leukocyte antigen |
| IC43 | OprF-OprI hybrid P. aeruginosa vaccine |
| IFN-γ | Interferon-gamma |
| Ig/IgA/IgG/IgM | Immunoglobulins |
| IL | Interleukin |
| IM | Intramuscular |
| Isd/IsdA/IsdB | Iron-regulated surface determinants |
| KB001 | Anti-PcrV monoclonal antibody |
| KLH | Keyhole limpet hemocyanin |
| K. pneumoniae | Klebsiella pneumoniae |
| LNP | Lipid nanoparticle |
| LPS | Lipopolysaccharide |
| LIA | Luminex immunoassay |
| MAP/MAP27 | Multi-antigenic peptide |
| MDR | Multidrug resistant |
| MHC | Major histocompatibility complex |
| ML | Machine learning |
| mRNA | Messenger RNA |
| MrkD/MrkH | Fimbrial adhesin regulators |
| MSCRAMM | Microbial surface components recognizing adhesive matrix molecules |
| MVs | Membrane vesicles |
| NP | Nanoparticle |
| NCT | Clinical trial registry ID |
| NetMHCpan | MHC binding prediction tool |
| OMVs | Outer membrane vesicles |
| OMP | Outer membrane protein |
| OmpA/OmpK36/OmpW/Omp22/Omp34 | Outer membrane antigens |
| OPK | Opsonophagocytic killing |
| PAMP | Pathogen-associated molecular pattern |
| PcrV | Type III secretion system tip protein |
| PGN | Peptidoglycan |
| PI3K | Phosphatidylinositol-3-kinase |
| PNAG | Poly-N-acetylglucosamine |
| Psl/Pel | P. aeruginosa exopolysaccharides |
| PLGA | Poly(lactic-co-glycolic acid) |
| QS | Quorum sensing |
| QSI | Quorum-sensing inhibitor |
| RNA-seq | RNA sequencing |
| RV | Reverse vaccinology |
| SA4Ag | S. aureus four-antigen vaccine |
| SagA | Secreted antigen A (E. faecium) |
| Sc(EH)3 | Multi-epitope AdcA-derived antigen |
| SEB | Staphylococcal enterotoxin B |
| ST | Sequence type |
| Sta-V5 | Five-antigen S. aureus vaccine |
| T3SS | Type III secretion system |
| Th/Th1/Th17 | T helper cell subsets |
| TLR | Toll-like receptor |
| TNF-α | Tumor necrosis factor-alpha |
| TMB | Tetramethylbenzidine |
| UTR | Untranslated region |
| VRE/VREfm | Vancomycin-resistant Enterococcus faecium |
| VaxiJen | Antigenicity prediction tool |
| Vaxign2 | ML-based vaccine design platform |
| V710 | S. aureus IsdB vaccine |
| WHO | World Health Organization |
| WGS | Whole-genome sequencing |
References
- WHO. Global Leaders Set First Targets to Control Antimicrobial Resistance Crisis. Available online: https://www.who.int/europe/news-room/27-09-2024-global-leaders-set-first-targets-to-control-antimicrobial-resistance-crisis (accessed on 19 February 2025).
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef]
- Marturano, J.E.; Lowery, T.J. ESKAPE Pathogens in Bloodstream Infections Are Associated With Higher Cost and Mortality but Can Be Predicted Using Diagnoses Upon Admission. Open Forum Infect. Dis. 2019, 6, ofz503. [Google Scholar] [CrossRef]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef]
- Ali Agha, A.S.A.; Al-Samydai, A.; Aburjai, T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025, 11, e42013. [Google Scholar] [CrossRef] [PubMed]
- Massimi, A.M.; Shaheen, A.M.; Hamdan, K.M.; Albqoor, M.A.; Al Duridi, H. Differences in Knowledge and Attitudes of Self-Prescription of Antibiotics in Jordan: A Cross-Sectional Study. J. Drug Issues 2025, 2025, 00220426251364371. [Google Scholar] [CrossRef]
- Mba, I.E.; Sharndama, H.C.; Anyaegbunam, Z.K.G.; Anekpo, C.C.; Amadi, B.C.; Morumda, D.; Doowuese, Y.; Ihezuo, U.J.; Chukwukelu, J.U.; Okeke, O.P. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop. Med. Int. Health 2023, 28, 275–299. [Google Scholar] [CrossRef]
- Li, J.; Ju, Y.; Jiang, M.; Li, S.; Yang, X.Y. Epitope-Based Vaccines: The Next Generation of Promising Vaccines Against Bacterial Infection. Vaccines 2025, 13, 248. [Google Scholar] [CrossRef]
- Sastalla, I.; Kwon, K.; Huntley, C.; Taylor, K.; Brown, L.; Samuel, T.; Zou, L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines 2025, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Sadones, O.; Kramarska, E.; Sainz-Mejias, M.; Berisio, R.; Huebner, J.; McClean, S.; Romero-Saavedra, F. Identification of cross-reactive vaccine antigen candidates in Gram-positive ESKAPE pathogens through subtractive proteome analysis using opsonic sera. PLoS ONE 2025, 20, e0319933. [Google Scholar] [CrossRef]
- Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest. 2014, 124, 2836–2840. [Google Scholar] [CrossRef] [PubMed]
- Sorieul, C.; Dolce, M.; Romano, M.R.; Codee, J.; Adamo, R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert. Rev. Vaccines 2023, 22, 1055–1078. [Google Scholar] [CrossRef]
- Imani, S.; Lv, S.; Qian, H.; Cui, Y.; Li, X.; Babaeizad, A.; Wang, Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol. Adv. 2025, 79, 108492. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.; Anwer, F.; Ishaq, Z.; Saeed, M.T.; Ali, A. VacSol-ML(ESKAPE)(:) Machine learning empowering vaccine antigen prediction for ESKAPE pathogens. Vaccine 2024, 42, 126204. [Google Scholar] [CrossRef]
- Cabrera, A.; Mason, E.; Mullins, L.P.; Sadarangani, M. Antimicrobial resistance and vaccines in Enterobacteriaceae including extraintestinal pathogenic Escherichia coli and Klebsiella pneumoniae. NPJ Antimicrob. Resist. 2025, 3, 34. [Google Scholar] [CrossRef]
- Bekeredjian-Ding, I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front. Immunol. 2020, 11, 1755. [Google Scholar] [CrossRef]
- Aljohani, F.R.; Alanazi, A.A.; Albalawi, A.Z.A.; Soliman, G.M.; Qushawy, M.; Arafa, M.F.; Elsherbiny, N.; Atif, H.M.; Hetta, H.F.; Ramadan, Y.N.; et al. Development and evaluation of fusidic acid myrrh oil organogel for the reversal of Gram-negative bacterial resistance and improvement of wound-healing potential. J. Drug Deliv. Sci. Technol. 2025, 112, 107247. [Google Scholar] [CrossRef]
- Mauger, D.M.; Cabral, B.J.; Presnyak, V.; Su, S.V.; Reid, D.W.; Goodman, B.; Link, K.; Khatwani, N.; Reynders, J.; Moore, M.J.; et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. USA 2019, 116, 24075–24083. [Google Scholar] [CrossRef]
- Klöcker, N.; Weissenboeck, F.P.; van Dülmen, M.; Špaček, P.; Hüwel, S.; Rentmeister, A. Photocaged 5′ cap analogues for optical control of mRNA translation in cells. Nat. Chem. 2022, 14, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Thillier, Y.; Decroly, E.; Morvan, F.; Canard, B.; Vasseur, J.J.; Debart, F. Synthesis of 5′ cap-0 and cap-1 RNAs using solid-phase chemistry coupled with enzymatic methylation by human (guanine-)-methyl transferase. RNA 2012, 18, 856–868. [Google Scholar] [CrossRef]
- Williams, G.D.; Gokhale, N.S.; Snider, D.L.; Horner, S.M. The mRNA Cap 2′-O-Methyltransferase CMTR1 Regulates the Expression of Certain Interferon-Stimulated Genes. mSphere 2020, 5, e00202-20. [Google Scholar] [CrossRef]
- Leppek, K.; Das, R.; Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2018, 19, 158–174. [Google Scholar] [CrossRef]
- Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect. Biol. 2019, 11, a034728. [Google Scholar]
- Gote, V.; Bolla, P.K.; Kommineni, N.; Butreddy, A.; Nukala, P.K.; Palakurthi, S.S.; Khan, W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023, 24, 2700. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Kim, S.C.; Sekhon, S.S.; Shin, W.R.; Ahn, G.; Cho, B.K.; Ahn, J.Y.; Kim, Y.H. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell Toxicol. 2022, 18, 1–8. [Google Scholar] [CrossRef]
- Wagner, T.M.; Romero-Saavedra, F.; Laverde, D.; Johannessen, M.; Hubner, J.; Hegstad, K. Enterococcal Membrane Vesicles as Vaccine Candidates. Int. J. Mol. Sci. 2023, 24, 16051. [Google Scholar] [CrossRef]
- Clegg, J.; Soldaini, E.; McLoughlin, R.M.; Rittenhouse, S.; Bagnoli, F.; Phogat, S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front. Immunol. 2021, 12, 705360. [Google Scholar] [CrossRef]
- Chand, U.; Priyambada, P.; Kushawaha, P.K. Staphylococcus aureus vaccine strategy: Promise and challenges. Microbiol. Res. 2023, 271, 127362. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.A.; Bubeck Wardenburg, J. A path forward for Staphylococcus aureus vaccine development. J. Exp. Med. 2024, 221, e20240002. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Hu, D.; Dou, Y.; Xiong, L.; Wang, X.; Hu, J.; Xing, S.Z.; Li, W.; Cai, J.P.; Jin, M.; et al. Identification and Evaluation of Recombinant Outer Membrane Proteins as Vaccine Candidates Against Klebsiella pneumoniae. Front. Immunol. 2021, 12, 730116. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Yang, N.; Shi, S.; Xu, Z.; Chen, Z.; Liang, C.; Zhang, X.; Du, X. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vaccines 2023, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Zare Banadkoki, E.; Rasooli, I.; Ghazanfari, T.; Siadat, S.D.; Shafiee Ardestani, M.; Owlia, P. Pseudomonas aeruginosa PAO1 outer membrane vesicles-diphtheria toxoid conjugate as a vaccine candidate in a murine burn model. Sci. Rep. 2022, 12, 22324. [Google Scholar] [CrossRef]
- Killough, M.; Rodgers, A.M.; Ingram, R.J. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines 2022, 10, 1100. [Google Scholar] [CrossRef]
- Alshammari, A.; Alharbi, M.; Alghamdi, A.; Alharbi, S.A.; Ashfaq, U.A.; Tahir Ul Qamar, M.; Ullah, A.; Irfan, M.; Khan, A.; Ahmad, S. Computer-Aided Multi-Epitope Vaccine Design against Enterobacter xiangfangensis. Int. J. Environ. Res. Public. Health 2022, 19, 7723. [Google Scholar] [CrossRef]
- Irene, C.; Fantappie, L.; Caproni, E.; Zerbini, F.; Anesi, A.; Tomasi, M.; Zanella, I.; Stupia, S.; Prete, S.; Valensin, S.; et al. Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc. Natl. Acad. Sci. USA 2019, 116, 21780–21788. [Google Scholar] [CrossRef]
- Netea, M.; Joosten, L.; Latz, E.; Mills, K.; Natoli, G.; Stunnenberg, H.; O’Neill, L.; Xavier, R. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef]
- Chan, L.C.; Chaili, S.; Filler, S.G.; Miller, L.S.; Solis, N.V.; Wang, H.; Johnson, C.W.; Lee, H.K.; Diaz, L.F.; Yeaman, M.R. Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infect. Immun. 2017, 85, e00876-16. [Google Scholar] [CrossRef]
- Chan, L.C.; Rossetti, M.; Miller, L.S.; Filler, S.G.; Johnson, C.W.; Lee, H.K.; Wang, H.; Gjertson, D.; Fowler, V.G., Jr.; Reed, E.F.; et al. Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory. Proc. Natl. Acad. Sci. USA 2018, 115, E11111–E11119. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, R.; Forde, A.J.; Lohrmann, F.; Kolter, J.; Ramirez, N.J.; Zimmermann, J.; Gomez de Aguero, M.; Henneke, P. Resident macrophages acquire innate immune memory in staphylococcal skin infection. eLife 2020, 9, e55602. [Google Scholar] [CrossRef]
- Lee, E.Y.; Choi, D.Y.; Kim, D.K.; Kim, J.W.; Park, J.O.; Kim, S.; Kim, S.H.; Desiderio, D.M.; Kim, Y.K.; Kim, K.P.; et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 2009, 9, 5425–5436. [Google Scholar] [CrossRef]
- Bose, S.; Aggarwal, S.; Singh, D.V.; Acharya, N. Extracellular vesicles: An emerging platform in gram-positive bacteria. Microb. Cell 2020, 7, 312–322. [Google Scholar] [CrossRef]
- Wang, X.G.; Thompson, C.D.; Weidenmaier, C.; Lee, J.C. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat. Commun. 2018, 9, 1379. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Kim, M.-H.; Jeon, J.; Kim, O.Y.; Choi, Y.; Seo, J.; Hong, S.-W.; Lee, W.-H.; Jeon, S.G.; Gho, Y.S.; et al. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS ONE 2015, 10, e0136021. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Kim, M.R.; Lee, E.Y.; Kim, J.H.; Kim, Y.S.; Jeon, S.G.; Yang, J.M.; Lee, B.J.; Pyun, B.Y.; Gho, Y.S.; et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 2011, 66, 351–359. [Google Scholar] [CrossRef]
- Brown, A.F.; Murphy, A.G.; Lalor, S.J.; Leech, J.M.; O’Keeffe, K.M.; Mac Aogain, M.; O’Halloran, D.P.; Lacey, K.A.; Tavakol, M.; Hearnden, C.H.; et al. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection. PLoS Pathog. 2015, 11, e1005226. [Google Scholar] [CrossRef]
- Lin, L.; Ibrahim, A.S.; Xu, X.; Farber, J.M.; Avanesian, V.; Baquir, B.; Fu, Y.; French, S.W.; Edwards, J.E., Jr.; Spellberg, B. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009, 5, e1000703. [Google Scholar] [CrossRef]
- Keller, M.D.; Ching, K.L.; Liang, F.X.; Dhabaria, A.; Tam, K.; Ueberheide, B.M.; Unutmaz, D.; Torres, V.J.; Cadwell, K. Decoy exosomes provide protection against bacterial toxins. Nature 2020, 579, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Choi, H.I.; Hong, S.W.; Kim, K.S.; Gho, Y.S.; Jeon, S.G. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp. Mol. Med. 2015, 47, e183. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Cheng, P.; Yu, Z.; Li, M.; Yu, Z.; Cheng, W.; Zhang, W.; Sun, H.; Song, X. Klebsiella pneumoniae derived outer membrane vesicles mediated bacterial virulence, antibiotic resistance, host immune responses and clinical applications. Virulence 2025, 16, 2449722. [Google Scholar] [CrossRef] [PubMed]
- Douradinha, B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol. Res. 2024, 287, 127837. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.Q.; Ji, L.; Sun, S.; Jin, Z.; Jin, Z.L.; Sun, H.W.; Zeng, H.; Zhang, W.J.; Lu, D.S.; et al. Development of Different Methods for Preparing Acinetobacter baumannii Outer Membrane Vesicles Vaccine: Impact of Preparation Method on Protective Efficacy. Front. Immunol. 2020, 11, 1069. [Google Scholar] [CrossRef]
- Higham, S.L.; Baker, S.; Flight, K.E.; Krishna, A.; Kellam, P.; Reece, S.T.; Tregoning, J.S. Intranasal immunization with outer membrane vesicles (OMV) protects against airway colonization and systemic infection with Acinetobacter baumannii. J. Infect. 2023, 86, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Balhuizen, M.D.; Veldhuizen, E.J.A.; Haagsman, H.P. Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Front. Microbiol. 2021, 12, 629090. [Google Scholar] [CrossRef]
- Mansouri, E.; Gabelsberger, J.; Knapp, B.; Hundt, E.; Lenz, U.; Hungerer, K.D.; Gilleland, H.E., Jr.; Staczek, J.; Domdey, H.; von Specht, B.U. Safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. Infect. Immun. 1999, 67, 1461–1470. [Google Scholar] [CrossRef]
- Lieberman, L.A. Outer membrane vesicles: A bacterial-derived vaccination system. Front. Microbiol. 2022, 13, 1029146. [Google Scholar] [CrossRef]
- Yang, F.; Gu, J.; Yang, L.; Gao, C.; Jing, H.; Wang, Y.; Zeng, H.; Zou, Q.; Lv, F.; Zhang, J. Protective Efficacy of the Trivalent Pseudomonas aeruginosa Vaccine Candidate PcrV-OprI-Hcp1 in Murine Pneumonia and Burn Models. Sci. Rep. 2017, 7, 3957. [Google Scholar] [CrossRef]
- Dey, J.; Mahapatra, S.R.; Raj, T.K.; Kaur, T.; Jain, P.; Tiwari, A.; Patro, S.; Misra, N.; Suar, M. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathog. 2022, 14, 21. [Google Scholar] [CrossRef]
- Kalfopoulou, E.; Huebner, J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020, 9, 2397. [Google Scholar] [CrossRef] [PubMed]
- Dey, J.; Mahapatra, S.R.; Singh, P.K.; Prabhuswamimath, S.C.; Misra, N.; Suar, M. Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction-based approaches. Immunol. Res. 2023, 71, 639–662. [Google Scholar] [CrossRef] [PubMed]
- Beig, M.; Sholeh, M.; Moradkasani, S.; Shahbazi, B.; Badmasti, F. Development of a multi-epitope vaccine against Acinetobacter baumannii: A comprehensive approach to combating antimicrobial resistance. PLoS ONE 2025, 20, e0319191. [Google Scholar] [CrossRef]
- Santamarina-Fernandez, R.; Fuentes-Valverde, V.; Silva-Rodriguez, A.; Garcia, P.; Moscoso, M.; Bou, G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int. J. Mol. Sci. 2025, 26, 2012. [Google Scholar] [CrossRef]
- Alhassan, H.H. Advanced vaccinomic, immunoinformatic, and molecular modeling strategies for designing Multi- epitope vaccines against the Enterobacter cloacae complex. Front. Immunol. 2024, 15, 1454394. [Google Scholar] [CrossRef]
- Bolourchi, N.; Fereshteh, S.; Noori Goodarzi, N.; Badmasti, F. Subtractive genomic analysis for computational identification of putative immunogenic targets against clinical Enterobacter cloacae complex. PLoS ONE 2022, 17, e0275749. [Google Scholar] [CrossRef]
- Soltan, M.A.; Magdy, D.; Solyman, S.M.; Hanora, A. Design of Staphylococcus aureus New Vaccine Candidates with B and T Cell Epitope Mapping, Reverse Vaccinology, and Immunoinformatics. OMICS 2020, 24, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Huang, Z.X.; Chen, Y.G.; Lu, X.; Zhu, P.; Wen, K.; Fu, N.; Liu, B.Y. A Multiple Antigenic Peptide Mimicking Peptidoglycan Induced T Cell Responses to Protect Mice from Systemic Infection with Staphylococcus aureus. PLoS ONE 2015, 10, e0136888. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Anwer, F.; Ishaq, Z.; Siddique, A.; Shah, M.A.; Rahman, M.; Rahman, A.; Mao, X.; Jiang, T.; Lee, B.L.; et al. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J. Immunol. Methods 2022, 504, 113264. [Google Scholar] [CrossRef]
- Klimka, A.; Mertins, S.; Nicolai, A.K.; Rummler, L.M.; Higgins, P.G.; Gunther, S.D.; Tosetti, B.; Krut, O.; Kronke, M. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. NPJ Vaccines 2021, 6, 11. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, J.; Song, X.; Zeng, J.; Yuan, Y.; Chen, Z.; Xu, L.; Gou, Q.; Yang, F.; Zeng, N.; et al. An Immunodominant Epitope-Specific Monoclonal Antibody Cocktail Improves Survival in a Mouse Model of Staphylococcus aureus Bacteremia. J. Infect. Dis. 2021, 223, 1743–1752. [Google Scholar] [CrossRef]
- Zhu, F.C.; Zeng, H.; Li, J.X.; Wang, B.; Meng, F.Y.; Yang, F.; Gu, J.; Liang, H.Y.; Hu, Y.M.; Liu, P.; et al. Evaluation of a recombinant five-antigen Staphylococcus aureus vaccine: The randomized, single-centre phase 1a/1b clinical trials. Vaccine 2022, 40, 3216–3227. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.; Lee, C.R. Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. J. Microbiol. Biotechnol. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Ranjbarian, P.; Sobhi Amjad, Z.; Chegene Lorestani, R.; Shojaeian, A.; Rostamian, M. Klebsiella pneumoniae vaccine studies in animal models. Biologicals 2023, 82, 101678. [Google Scholar] [CrossRef]
- Babu, L.; Uppalapati, S.R.; Sripathy, M.H.; Reddy, P.N. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Front. Microbiol. 2017, 8, 1805. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, X.; Zeng, X.; Zhao, Z.; Sun, T.; Xia, Z.; Jing, H.; Yuan, Y.; Chen, Z.; Gou, Q.; et al. A rational designed multi-epitope vaccine elicited robust protective efficacy against Klebsiella pneumoniae lung infection. Biomed. Pharmacother. 2024, 174, 116611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, X.; Wan, C.; Wei, J.; Gao, C.; Zhang, Y.; Zeng, H.; Peng, L.; Luo, P.; Lu, D.; et al. Development of a Chimeric Vaccine Against Pseudomonas aeruginosa Based on the Th17-Stimulating Epitopes of PcrV and AmpC. Front. Immunol. 2020, 11, 601601. [Google Scholar] [CrossRef]
- Kalantari, H.; Habibi, M.; Ferdousi, A.; Asadi Karam, M.R.; Mohammadian, T. Development of a multi-epitope vaccine candidate against Pseudomonas aeruginosa causing urinary tract infection and evaluation of its immunoreactivity in a rabbit model. J. Biomol. Struct. Dyn. 2024, 42, 6212–6227. [Google Scholar] [CrossRef]
- Rezvanirad, A.; Habibi, M.; Farokhi, M.; Asadi Karam, M.R. Immunogenic Potential and Therapeutic Efficacy of Multi-Epitope Encapsulated Silk Fibroin Nanoparticles against Pseudomonas aeruginosa-Mediated Urinary Tract Infections. Macromol. Biosci. 2023, 23, e2300074. [Google Scholar] [CrossRef] [PubMed]
- Faezi, S.; Bahrmand, A.R.; Sardari, S.; Nikokara, I.; Khanaki, K.; Siadat, S.D.; Goudarzi, G.; Elmi, A.; Mahdavi, M. Epitope-based immunoinformatics study of a novel PilQ-PilA fusion protein from. Gene Rep. 2019, 15, 100385. [Google Scholar] [CrossRef]
- Elhag, M.; Alaagib, R.M.; Ahmed, N.M.; Abubaker, M.; Haroun, E.M.; Albagi, S.O.A.; Hassan, M.A. Design of Epitope-Based Peptide Vaccine against Pseudomonas aeruginosa Fructose Bisphosphate Aldolase Protein Using Immunoinformatics. J. Immunol. Res. 2020, 2020, 9475058. [Google Scholar] [CrossRef] [PubMed]
- Beg, A.Z.; Farhat, N.; Khan, A.U. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. Infect. Genet. Evol. 2021, 93, 104982. [Google Scholar] [CrossRef]
- Dey, J.; Mahapatra, S.R.; Patnaik, S.; Lata, S.; Kushwaha, G.S.; Panda, R.K.; Misra, N.; Suar, M. Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int. J. Pept. Res. Ther. 2022, 28, 49. [Google Scholar] [CrossRef]
- Asadinezhad, M.; Khoshnood, S.; Asadollahi, P.; Ghafourian, S.; Sadeghifard, N.; Pakzad, I.; Zeinivand, Y.; Omidi, N.; Hematian, A.; Kalani, B.S. Development of innovative multi-epitope mRNA vaccine against Pseudomonas aeruginosa using in silico approaches. Brief. Bioinform. 2023, 25, bbad502. [Google Scholar] [CrossRef]
- Gouda, A.M.; Soltan, M.A.; Abd-Elghany, K.; Sileem, A.E.; Elnahas, H.M.; Ateya, M.A.; Elbatreek, M.H.; Darwish, K.M.; Bogari, H.A.; Lashkar, M.O.; et al. Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Front. Mol. Biosci. 2023, 10, 1123411. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Al-Harbi, A.I.; Ahmed, E.A.; Battah, B.; Abd Ellah, N.H.; Zanetti, S.; Donadu, M.G. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023, 11, 413. [Google Scholar] [CrossRef]
- Hetta, H.F.; Sirag, N.; Alsharif, S.M.; Alharbi, A.A.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Ramadan, Y.N.; Rashed, Z.I.; Alanazi, F.E. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals 2024, 17, 1555. [Google Scholar] [CrossRef]
- Kramarska, E.; Toumi, E.; Squeglia, F.; Laverde, D.; Napolitano, V.; Frapy, E.; Autiero, I.; Sadones, O.; Huebner, J.; Skurnik, D.; et al. A rationally designed antigen elicits protective antibodies against multiple nosocomial Gram-positive pathogens. NPJ Vaccines 2024, 9, 151. [Google Scholar] [CrossRef]
- Shi, M.; Chen, X.; Sun, Y.; Kim, H.K.; Schneewind, O.; Missiakas, D. A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine 2021, 39, 3907–3915. [Google Scholar] [CrossRef]
- Zhu, F.; Qin, R.; Ma, S.; Zhou, Z.; Tan, C.; Yang, H.; Zhang, P.; Xu, Y.; Luo, Y.; Chen, J.; et al. Designing a multi-epitope vaccine against Pseudomonas aeruginosa via integrating reverse vaccinology with immunoinformatics approaches. Sci. Rep. 2025, 15, 10425. [Google Scholar] [CrossRef]
- Kurupati, P.; Ramachandran, N.P.; Poh, C.L. Protective efficacy of DNA vaccines encoding outer membrane protein A and OmpK36 of Klebsiella pneumoniae in mice. Clin. Vaccine Immunol. 2011, 18, 82–88. [Google Scholar] [CrossRef]
- Tan, Y.C.; Lahiri, C. Promising Acinetobacter baumannii Vaccine Candidates and Drug Targets in Recent Years. Front. Immunol. 2022, 13, 900509. [Google Scholar] [CrossRef] [PubMed]
- Acar, M.B.; Ayaz-Guner, S.; Guner, H.; Dinc, G.; Ulu Kilic, A.; Doganay, M.; Ozcan, S. A subtractive proteomics approach for the identification of immunodominant Acinetobacter baumannii vaccine candidate proteins. Front. Immunol. 2022, 13, 1001633. [Google Scholar] [CrossRef] [PubMed]
- Tamehri, M.; Rasooli, I.; Pishgahi, M.; Jahangiri, A.; Ramezanalizadeh, F.; Banisaeed Langroodi, S.R. Combination of BauA and OmpA elicit immunoprotection against Acinetobacter baumannii in a murine sepsis model. Microb. Pathog. 2022, 173, 105874. [Google Scholar] [CrossRef]
- Yang, N.; Jin, X.; Zhu, C.; Gao, F.; Weng, Z.; Du, X.; Feng, G. Subunit vaccines for Acinetobacter baumannii. Front. Immunol. 2022, 13, 1088130. [Google Scholar] [CrossRef] [PubMed]
- Priebe, G.P.; Goldberg, J.B. Vaccines for Pseudomonas aeruginosa: A long and winding road. Expert. Rev. Vaccines 2014, 13, 507–519. [Google Scholar] [CrossRef]
- Al-Megrin, W.A.I.; Karkashan, A.; Alnuqaydan, A.M.; Aba Alkhayl, F.F.; Alrumaihi, F.; Almatroudi, A.; Allemailem, K.S. Design of a Multi-Epitopes Based Chimeric Vaccine against Enterobacter cloacae Using Pan-Genome and Reverse Vaccinology Approaches. Vaccines 2022, 10, 886. [Google Scholar] [CrossRef]
- Alatawi, A.D.; Hetta, H.F.; Ali, M.A.S.; Ramadan, Y.N.; Alaqyli, A.B.; Alansari, W.K.; Aldhaheri, N.H.; Bin Selim, T.A.; Merdad, S.A.; Alharbi, M.O.; et al. Diagnostic Innovations to Combat Antibiotic Resistance in Critical Care: Tools for Targeted Therapy and Stewardship. Diagnostics 2025, 15, 2244. [Google Scholar] [CrossRef]
- Shudifat, R.e.M.; Al-samydai, A.; Al-Halaseh, L.K.; Shnaikat, S.G.; Aboud, T.A.; Alzuhairi, A.; Al-Samydai, M.; Yousif, R.O. Digital strategies intervention and impact in promoting health education and making health decisions among individuals. Pharmacia 2024, 71, 1–9. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Chellan, T.; S’Thebe, N.W.; Dweba, Y.; Sabiu, S. ESKAPE pathogens and associated quorum sensing systems: New targets for novel antimicrobials development. Health Sci. Rev. 2024, 11, 100155. [Google Scholar] [CrossRef]
- Lee, J.; Hunter, B.; Shim, H. A pangenome analysis of ESKAPE bacteriophages: The underrepresentation may impact machine learning models. Front. Mol. Biosci. 2024, 11, 1395450. [Google Scholar] [CrossRef]
- Velimirov, B.; Velimirov, B.A. Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development. Life 2024, 14, 1584. [Google Scholar] [CrossRef]
- Hassanzadeh, H.; Baber, J.; Begier, E.; Noriega, D.C.; Konishi, H.; Yato, Y.; Wang, M.Y.; Le Huec, J.C.; Patel, V.; Varga, P.; et al. Efficacy of a 4-Antigen Staphylococcus aureus Vaccine in Spinal Surgery: The Staphylococcus aureus suRgical Inpatient Vaccine Efficacy (STRIVE) Randomized Clinical Trial. Clin. Infect. Dis. 2023, 77, 312–320. [Google Scholar] [CrossRef]
- Begier, E.; Seiden, D.J.; Patton, M.; Zito, E.; Severs, J.; Cooper, D.; Eiden, J.; Gruber, W.C.; Jansen, K.U.; Anderson, A.S.; et al. SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine 2017, 35, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Scully, I.L.; Timofeyeva, Y.; Illenberger, A.; Lu, P.; Liberator, P.A.; Jansen, K.U.; Anderson, A.S. Performance of a Four-Antigen Staphylococcus aureus Vaccine in Preclinical Models of Invasive S. aureus Disease. Microorganisms 2021, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Gong, M.Q.; Zhang, H.J.; Peng, A.Q.; Xie, Z.; Sun, D.; Liu, L.; Zhou, S.Q.; Chen, H.; Yang, X.F.; et al. The safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine among patients undergoing elective surgery for closed fractures: A randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial. Vaccine 2023, 41, 5562–5571. [Google Scholar] [CrossRef]
- Poolman, J.T.; Torres, V.J.; Missiakas, D.; Welten, S.P.M.; Fernandez, J.; DuMont, A.L.; O’Keeffe, A.; Konstantinov, S.R.; Morrow, B.; Burghout, P.; et al. A SpA+LukAB vaccine targeting Staphylococcus aureus evasion factors restricts infection in two minipig infection models. NPJ Vaccines 2025, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Gurtman, A.; Begier, E.; Mohamed, N.; Baber, J.; Sabharwal, C.; Haupt, R.M.; Edwards, H.; Cooper, D.; Jansen, K.U.; Anderson, A.S. The development of a Staphylococcus aureus four antigen vaccine for use prior to elective orthopedic surgery. Hum. Vaccin. Immunother. 2019, 15, 358–370. [Google Scholar] [CrossRef]
- Fowler, V.G.; Allen, K.B.; Moreira, E.D.; Moustafa, M.; Isgro, F.; Boucher, H.W.; Corey, G.R.; Carmeli, Y.; Betts, R.; Hartzel, J.S.; et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: A randomized trial. JAMA 2013, 309, 1368–1378. [Google Scholar] [CrossRef]
- Harro, C.D.; Betts, R.F.; Hartzel, J.S.; Onorato, M.T.; Lipka, J.; Smugar, S.S.; Kartsonis, N.A. The immunogenicity and safety of different formulations of a novel Staphylococcus aureus vaccine (V710): Results of two Phase I studies. Vaccine 2012, 30, 1729–1736. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Zou, J.; Wu, W.; Jing, H.; Gou, Q.; Li, H.; Gu, J.; Zou, Q.; Zhang, J. Immunization with Pseudomonas aeruginosa outer membrane vesicles stimulates protective immunity in mice. Vaccine 2018, 36, 1047–1054. [Google Scholar] [CrossRef]
- Westritschnig, K.; Hochreiter, R.; Wallner, G.; Firbas, C.; Schwameis, M.; Jilma, B. A randomized, placebo-controlled phase I study assessing the safety and immunogenicity of a Pseudomonas aeruginosa hybrid outer membrane protein OprF/I vaccine (IC43) in healthy volunteers. Hum. Vaccin. Immunother. 2014, 10, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Fakoor, M.H.; Mousavi Gargari, S.L.; Owlia, P.; Sabokbar, A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect. Drug Resist. 2020, 13, 1651–1661. [Google Scholar] [CrossRef]
- Baumann, U.; Mansouri, E.; von Specht, B.U. Recombinant OprF-OprI as a vaccine against Pseudomonas aeruginosa infections. Vaccine 2004, 22, 840–847. [Google Scholar] [CrossRef]
- Goldberg, J.B.; Crisan, C.V.; Luu, J.M. Pseudomonas aeruginosa Antivirulence Strategies: Targeting the Type III Secretion System. Adv. Exp. Med. Biol. 2022, 1386, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Pulido, M.R.; Garcia-Quintanilla, M.; Pachon, J.; McConnell, M.J. A lipopolysaccharide-free outer membrane vesicle vaccine protects against Acinetobacter baumannii infection. Vaccine 2020, 38, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Lee, E.J.; Lee, J.H.; Jun, S.H.; Choi, C.W.; Kim, S.I.; Kang, S.S.; Hyun, S. Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response. FEMS Microbiol. Lett. 2012, 331, 17–24. [Google Scholar] [CrossRef]
- Wu, G.; Ji, H.; Guo, X.; Li, Y.; Ren, T.; Dong, H.; Liu, J.; Liu, Y.; Shi, X.; He, B. Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine 2020, 24, 102148. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, G.; Khan, K.; Al Mouslem, A.K.; Ahmad Khan, S.; Naseer Abbas, M.; Abbas, M.; Ali Shah, S.; Jalal, K. Pan genome based reverse vaccinology approach to explore Enterococcus faecium (VRE) strains for identification of novel multi-epitopes vaccine candidate. Immunobiology 2022, 227, 152221. [Google Scholar] [CrossRef] [PubMed]
- Heikens, E.; Leendertse, M.; Wijnands, L.M.; van Luit-Asbroek, M.; Bonten, M.J.; van der Poll, T.; Willems, R.J. Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol. 2009, 9, 19. [Google Scholar] [CrossRef]
- Popovic, N.; Dinic, M.; Tolinacki, M.; Mihajlovic, S.; Terzic-Vidojevic, A.; Bojic, S.; Djokic, J.; Golic, N.; Veljovic, K. New Insight into Biofilm Formation Ability, the Presence of Virulence Genes and Probiotic Potential of Enterococcus sp. Dairy Isolates. Front. Microbiol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Tendolkar, P.M.; Baghdayan, A.S.; Gilmore, M.S.; Shankar, N. Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect. Immun. 2004, 72, 6032–6039. [Google Scholar] [CrossRef]
- Heikens, E.; Bonten, M.J.; Willems, R.J. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J. Bacteriol. 2007, 189, 8233–8240. [Google Scholar] [CrossRef]
- Kim, B.; Wang, Y.C.; Hespen, C.W.; Espinosa, J.; Salje, J.; Rangan, K.J.; Oren, D.A.; Kang, J.Y.; Pedicord, V.A.; Hang, H.C. Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. Elife 2019, 8, e45343. [Google Scholar] [CrossRef]
- Prasad, R.; Jenq, R.R. The SagA of E. faecium. Elife 2024, 13, e97277. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert. Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, L.; Fan, H.M.; Tao, H.R.; Huang, J.D. Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022, 11, 292. [Google Scholar] [CrossRef]
- Nallapareddy, S.R.; Singh, K.V.; Sillanpaa, J.; Zhao, M.; Murray, B.E. Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect. Immun. 2011, 79, 2901–2910. [Google Scholar] [CrossRef]
- Singh, K.V.; Nallapareddy, S.R.; Murray, B.E. Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 2007, 195, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Jiang, K.; Camacho, M.I.; Jonna, V.R.; Hofer, A.; Westerlund, F.; Christie, P.J.; Berntsson, R.P. PrgB promotes aggregation, biofilm formation, and conjugation through DNA binding and compaction. Mol. Microbiol. 2018, 109, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.S.; Lassinantti, L.; Jarva, M.; Schmitt, A.; Ter Beek, J.; Berntsson, R.P. Structural foundation for the role of enterococcal PrgB in conjugation, biofilm formation, and virulence. Elife 2023, 12, RP84427. [Google Scholar] [CrossRef]
- Lam, L.N.; Sedra, A.; Kajfasz, J.; Berges, A.; Saengpet, I.S.; Adams, G.; Fairman, J.; Lemos, J.A. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. FEMS Microbes 2024, 5, xtae031. [Google Scholar] [CrossRef]
- Laverde, D.; Armiento, S.; Molinaro, A.; Huebner, J.; De Castro, C.; Romero-Saavedra, F. Identification of a capsular polysaccharide from Enterococcus faecium U0317 using a targeted approach to discover immunogenic carbohydrates for vaccine development. Carbohydr. Polym. 2024, 330, 121731. [Google Scholar] [CrossRef]
- Kodali, S.; Vinogradov, E.; Lin, F.; Khoury, N.; Hao, L.; Pavliak, V.; Jones, C.H.; Laverde, D.; Huebner, J.; Jansen, K.U.; et al. A Vaccine Approach for the Prevention of Infections by Multidrug-resistant Enterococcus faecium. J. Biol. Chem. 2015, 290, 19512–19526. [Google Scholar] [CrossRef] [PubMed]
- Ali, L.; Goraya, M.U.; Arafat, Y.; Ajmal, M.; Chen, J.L.; Yu, D. Molecular Mechanism of Quorum-Sensing in Enterococcus faecalis: Its Role in Virulence and Therapeutic Approaches. Int. J. Mol. Sci. 2017, 18, 960. [Google Scholar] [CrossRef]
- Santajit, S.; Sookrung, N.; Indrawattana, N. Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence. Biology 2022, 11, 1466. [Google Scholar] [CrossRef]
- Hammerum, A.M.; Karstensen, K.T.; Roer, L.; Kaya, H.; Lindegaard, M.; Porsbo, L.J.; Kjerulf, A.; Pinholt, M.; Holzknecht, B.J.; Worning, P.; et al. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clusters from vanA to vanB Enterococcus faecium clusters, Denmark, 2015 to 2022. Eurosurveillance 2024, 29, 2300633. [Google Scholar] [CrossRef]
- RePorter, N. Harnessing mRNA Vaccine Technology for VRE. Available online: https://reporter.nih.gov/project-details/11186644#description (accessed on 5 March 2025).
- Singh, K.V.; Nallapareddy, S.R.; Sillanpaa, J.; Murray, B.E. Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog. 2010, 6, e1000716. [Google Scholar] [CrossRef]
- Bagnoli, F.; Bertholet, S.; Grandi, G. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front. Cell Infect. Microbiol. 2012, 2, 16. [Google Scholar] [CrossRef]
- Torres, V.J.; Pishchany, G.; Humayun, M.; Schneewind, O.; Skaar, E.P. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J. Bacteriol. 2006, 188, 8421–8429. [Google Scholar] [CrossRef]
- Pishchany, G.; Sheldon, J.R.; Dickson, C.F.; Alam, M.T.; Read, T.D.; Gell, D.A.; Heinrichs, D.E.; Skaar, E.P. IsdB-dependent hemoglobin binding is required for acquisition of heme by Staphylococcus aureus. J. Infect. Dis. 2014, 209, 1764–1772. [Google Scholar] [CrossRef]
- Vermeiren, C.L.; Pluym, M.; Mack, J.; Heinrichs, D.E.; Stillman, M.J. Characterization of the heme binding properties of Staphylococcus aureus IsdA. Biochemistry 2006, 45, 12867–12875. [Google Scholar] [CrossRef]
- Liu, M.; Tanaka, W.N.; Zhu, H.; Xie, G.; Dooley, D.M.; Lei, B. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J. Biol. Chem. 2008, 283, 6668–6676. [Google Scholar] [CrossRef] [PubMed]
- Askarian, F.; Ajayi, C.; Hanssen, A.M.; van Sorge, N.M.; Pettersen, I.; Diep, D.B.; Sollid, J.U.; Johannessen, M. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Sci. Rep. 2016, 6, 22134. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.A.; Echague, C.G.; Hair, P.S.; Ward, M.D.; Nyalwidhe, J.O.; Geoghegan, J.A.; Foster, T.J.; Cunnion, K.M. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS ONE 2012, 7, e38407. [Google Scholar] [CrossRef]
- Stranger-Jones, Y.K.; Bae, T.; Schneewind, O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2006, 103, 16942–16947. [Google Scholar] [CrossRef]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, I.; Penades, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef]
- McCourt, J.; O’Halloran, D.P.; McCarthy, H.; O’Gara, J.P.; Geoghegan, J.A. Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol. Lett. 2014, 353, 157–164. [Google Scholar] [CrossRef]
- Lin, M.H.; Shu, J.C.; Lin, L.P.; Chong, K.Y.; Cheng, Y.W.; Du, J.F.; Liu, S.T. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis. PLoS ONE 2015, 10, e0124216. [Google Scholar] [CrossRef]
- Boles, B.R.; Horswill, A.R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 2008, 4, e1000052. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, X.; Wang, W.; Shen, J.; Ma, K.; Wang, H.; Xue, T. The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus. Int. J. Food Microbiol. 2025, 428, 110997. [Google Scholar] [CrossRef] [PubMed]
- Creech, C.B.; Frenck, R.W., Jr.; Sheldon, E.A.; Seiden, D.J.; Kankam, M.K.; Zito, E.T.; Girgenti, D.; Severs, J.M.; Immermann, F.W.; McNeil, L.K.; et al. Safety, tolerability, and immunogenicity of a single dose 4-antigen or 3-antigen Staphylococcus aureus vaccine in healthy older adults: Results of a randomised trial. Vaccine 2017, 35, 385–394. [Google Scholar] [CrossRef]
- Inoue, M.; Yonemura, T.; Baber, J.; Shoji, Y.; Aizawa, M.; Cooper, D.; Eiden, J.; Gruber, W.C.; Jansen, K.U.; Anderson, A.S.; et al. Safety, tolerability, and immunogenicity of a novel 4-antigen Staphylococcus aureus vaccine (SA4Ag) in healthy Japanese adults. Hum. Vaccin. Immunother. 2018, 14, 2682–2691. [Google Scholar] [CrossRef] [PubMed]
- Hajam, I.A.; Liu, G.Y. Linking S. aureus Immune Evasion Mechanisms to Staphylococcal Vaccine Failures. Antibiot. 2024, 13, 410. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, F.; Feng, Q.; Zhang, J.; Gu, J.; Jing, H.; Cai, C.; Xu, L.; Yang, X.; Xia, X.; et al. Rapid and Broad Immune Efficacy of a Recombinant Five-Antigen Vaccine against Staphylococcus aureus Infection in Animal Models. Vaccines 2020, 8, 134. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, Y.; Wang, X.; Jin, J.; Liu, C.; Yang, C.; Wang, P.G.; He, Y. A multivalent mRNA-LNP cocktail vaccine confers superior efficacy against Staphylococcus aureus infection in murine models. NPJ Vaccines 2025, 10, 210. [Google Scholar] [CrossRef]
- Misstear, K.; McNeela, E.A.; Murphy, A.G.; Geoghegan, J.A.; O’Keeffe, K.M.; Fox, J.; Chan, K.; Heuking, S.; Collin, N.; Foster, T.J.; et al. Targeted nasal vaccination provides antibody-independent protection against Staphylococcus aureus. J. Infect. Dis. 2014, 209, 1479–1484. [Google Scholar] [CrossRef]
- Chen, G.; Bai, Y.; Li, Z.; Wang, F.; Fan, X.; Zhou, X. Bacterial extracellular vesicle-coated multi-antigenic nanovaccines protect against drug-resistant Staphylococcus aureus infection by modulating antigen processing and presentation pathways. Theranostics 2020, 10, 7131–7149. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.; Zhang, B.Z.; Gao, P.; Lin, Q.; Kao, R.Y.; Gustafsson, K.; Yuen, K.Y.; Huang, J.D. Broad and Effective Protection against Staphylococcus aureus Is Elicited by a Multivalent Vaccine Formulated with Novel Antigens. mSphere 2019, 4, e00362-19. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Xi, J.; Shi, Z.; Zhu, Y.; Ma, Z.; Li, M.; Yang, Q.; Song, C.; Fan, L. Antigen-Dependent Adjuvanticity of Poly(lactic-co-glycolic acid)-polyethylene Glycol 25% Nanoparticles for Enhanced Vaccine Efficacy. Vaccines 2025, 13, 317. [Google Scholar] [CrossRef]
- A First in Human Trial to Assess the Safety and Immunogenicity of LTB-SA7 Vaccine Against Staphylococcus aureus. (LTBSA701). Available online: https://clinicaltrials.gov/study/NCT06719219#xd_co_f=N2NkNTYzYmMtNTExMi00ZjM2LWE5ZGYtMTk5OTFlMzg0ZTNi~ (accessed on 5 March 2025).
- LimmaTech Awarded FDA Fast Track Designation for Vaccine Candidate Against Staphylococcus aureus. Available online: https://www.businesswire.com/news/home/20241219504299/en/LimmaTech-Awarded-FDA-Fast-Track-Designation-for-Vaccine-Candidate-Against-Staphylococcus-aureus#xd_co_f=MTIyNTliNGEtYjc4Ny00YzIyLWE3MjQtZDVhYjY0NjhhMmJj~ (accessed on 1 March 2025).
- Yang, L.; Cai, C.; Feng, Q.; Shi, Y.; Zuo, Q.; Yang, H.; Jing, H.; Wei, C.; Zhuang, Y.; Zou, Q.; et al. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models. Sci Rep. 2016, 6, 20929. [Google Scholar] [CrossRef] [PubMed]
- Briaud, P.; Carroll, R.K. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect. Immun. 2020, 88, e00433-20. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, H.Q.; Wei, S.S.; Li, B.; Feng, Q.; Zhu, J.; Zeng, H.; Zou, Q.M.; Wu, C. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Sci. Rep. 2015, 5, 12371. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhang, J.Y.; Wei, C.; Yang, L.Y.; Zuo, Q.F.; Zhuang, Y.; Feng, Y.J.; Srinivas, S.; Zeng, H.; Zou, Q.M. Immunisation with Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection. PLoS ONE 2016, 11, e0149638. [Google Scholar] [CrossRef]
- Wang, M.; Zhai, L.; Yu, W.; Wei, Y.; Wang, L.; Liu, S.; Li, W.; Li, X.; Yu, S.; Chen, X.; et al. Identification of a protective B-cell epitope of the Staphylococcus aureus GapC protein by screening a phage-displayed random peptide library. PLoS ONE 2018, 13, e0190452. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wei, Y.; Yu, W.; Wang, L.; Zhai, L.; Li, X.; Wang, X.; Zhang, H.; Feng, Z.; Yu, L.; et al. Identification of a conserved linear B-cell epitope in the Staphylococcus aureus GapC protein. Microb. Pathog. 2018, 118, 39–47. [Google Scholar] [CrossRef]
- Ma, J.Z.; Wei, Y.H.; Zhang, L.M.; Wang, X.T.; Yao, D.; Liu, D.L.; Liu, W.; Yu, S.M.; Yu, Y.Z.; Wu, Z.J.; et al. Identification of a novel linear B-cell epitope as a vaccine candidate in the N2N3 subdomain of fibronectin-binding protein A. J. Med. Microbiol. 2018, 67, 423–431. [Google Scholar] [CrossRef]
- Ma, J.; Liu, W.; Wang, B.; Yu, S.; Yu, L.; Song, B.; Yu, Y.; Zhu, Z.; Cui, Y. Als3-Th-cell-epitopes plus the novel combined adjuvants of CpG, MDP, and FIA synergistically enhanced the immune response of recombinant TRAP derived from Staphylococcus aureus in mice. Immun. Inflamm. Dis. 2021, 9, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, K.; Vieira, B.; Ciaparin, I.; Hakansson, A.P.; Darrieux, M.; Converso, T.R. Overcoming Immune Evasion in Staphylococcus aureus: Strategies for Rational Vaccine Design. ACS Infect. Dis. Methods 2025, 11, 2692–2705. [Google Scholar] [CrossRef]
- Kumar, A.; Chakravorty, S.; Yang, T.; Russo, T.A.; Newton, S.M.; Klebba, P.E. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J. Bacteriol. 2024, 206, e0002424. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef]
- Daoud, L.; Al-Marzooq, F.; Moubareck, C.A.; Ghazawi, A.; Collyns, T. Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin cefiderocol. PLoS ONE 2022, 17, e0277946. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Moawad, A.A.; Algammal, A.M. Beyond Resistance: The Virulence Determinants Fueling Hypervirulent Klebsiella pneumoniae’s Threat. In Epidemic and Pandemic Preparedness and Management; Intech Open: London, UK, 2025. [Google Scholar]
- Hetta, H.F.; Alanazi, F.E.; Ali, M.A.S.; Alatawi, A.D.; Aljohani, H.M.; Ahmed, R.; Alansari, N.A.; Alkhathami, F.M.; Albogmi, A.; Alharbi, B.M.; et al. Hypervirulent Klebsiella pneumoniae: Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug. Pharmaceuticals 2025, 18, 724. [Google Scholar] [CrossRef]
- Hunt, J.J.; Wang, J.T.; Callegan, M.C. Contribution of mucoviscosity-associated gene A (magA) to virulence in experimental Klebsiella pneumoniae endophthalmitis. Invest. Ophthalmol. Vis. Sci. 2011, 52, 6860–6866. [Google Scholar] [CrossRef]
- Miller, J.C.; Cross, A.S.; Tennant, S.M.; Baliban, S.M. Klebsiella pneumoniae Lipopolysaccharide as a Vaccine Target and the Role of Antibodies in Protection from Disease. Vaccines 2024, 12, 1177. [Google Scholar] [CrossRef] [PubMed]
- Ou, Q.; Lu, L.; Zhai, L.; Sang, S.; Guan, Y.; Xiong, Y.; Liu, C.; Wang, H.; Hu, Q.; Wang, Y. Exploration of a GMMA-Based Bivalent Vaccine Against Klebsiella pneumoniae. Vaccines 2025, 13, 226. [Google Scholar] [CrossRef]
- Assoni, L.; Ciaparin, I.; Trentini, M.M.; Baboghlian, J.; Rodrigo, G.; Ferreira, B.V.; Pereira, J.A.; Martinez, C.; Ferraz, L.; Girardello, R.; et al. Protection Against Pneumonia Induced by Vaccination with Fimbriae Subunits from Klebsiella pneumoniae. Vaccines 2025, 13, 303. [Google Scholar] [CrossRef] [PubMed]
- Lavender, H.; Jagnow, J.J.; Clegg, S. Klebsiella pneumoniae type 3 fimbria-mediated immunity to infection in the murine model of respiratory disease. Int. J. Med. Microbiol. 2005, 295, 153–159. [Google Scholar] [CrossRef]
- Han, R.; Niu, M.; Liu, S.; Mao, J.; Yu, Y.; Du, Y. The effect of siderophore virulence genes entB and ybtS on the virulence of Carbapenem-resistant Klebsiella pneumoniae. Microb. Pathog. 2022, 171, 105746. [Google Scholar] [CrossRef]
- Hsieh, P.F.; Lin, T.L.; Yang, F.L.; Wu, M.C.; Pan, Y.J.; Wu, S.H.; Wang, J.T. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS ONE 2012, 7, e33155. [Google Scholar] [CrossRef]
- Wantuch, P.L.; Knoot, C.J.; Marino, E.C.; Harding, C.M.; Rosen, D.A. Klebsiella pneumoniae bioconjugate vaccine functional durability in mice. Vaccine 2025, 43, 126536. [Google Scholar] [CrossRef]
- Hsu, C.R.; Huang, Y.L.; Hsu, P.H.; Huang, C.H.; Huang, Y.C.; Kao, M.T.; Ye, Y.W. A novel Klebsiella pneumoniae diguanylate cyclase contributes to intestinal cell adhesion, biofilm formation, iron utilization, and in vivo virulence by gastrointestinal infection. Virulence 2025, 16, 2544882. [Google Scholar] [CrossRef]
- Rosen, D.A.; Twentyman, J.; Hunstad, D.A. High Levels of Cyclic Di-GMP in Klebsiella pneumoniae Attenuate Virulence in the Lung. Infect. Immun. 2018, 86, e00647-17. [Google Scholar] [CrossRef]
- Schroll, C.; Barken, K.B.; Krogfelt, K.A.; Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Wilksch, J.J.; Yang, J.; Clements, A.; Gabbe, J.L.; Short, K.R.; Cao, H.; Cavaliere, R.; James, C.E.; Whitchurch, C.B.; Schembri, M.A.; et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog. 2011, 7, e1002204. [Google Scholar] [CrossRef]
- Lin, T.L.; Yang, F.L.; Ren, C.T.; Pan, Y.J.; Liao, K.S.; Tu, I.F.; Chang, Y.P.; Cheng, Y.Y.; Wu, C.Y.; Wu, S.H.; et al. Development of Klebsiella pneumoniae Capsule Polysaccharide-Conjugated Vaccine Candidates Using Phage Depolymerases. Front. Immunol. 2022, 13, 843183. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Hegerle, N.; Nkeze, J.; Sen, S.; Jamindar, S.; Nasrin, S.; Sen, S.; Permala-Booth, J.; Sinclair, J.; Tapia, M.D.; et al. The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. Front. Microbiol. 2020, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, C.; Wang, K.; Guo, Y.; Sun, Y.; Li, X.; Sun, P.; Wu, J.; Wang, H.; Zhu, L. Preparation of a Klebsiella pneumoniae conjugate nanovaccine using glycol-engineered Escherichia coli. Microb. Cell Fact. 2023, 22, 95. [Google Scholar] [CrossRef] [PubMed]
- Wantuch, P.L.; Knoot, C.J.; Robinson, L.S.; Vinogradov, E.; Scott, N.E.; Harding, C.M.; Rosen, D.A. Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2:O1 strains of Klebsiella pneumoniae. PLoS Pathog. 2023, 19, e1011367. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, Y.; Xu, L.; Tian, Y.; Lu, H.; Xie, J.; Ma, R.; Li, M.; Li, B. KbvR mutant of Klebsiella pneumoniae affects the synthesis of type 1 fimbriae and provides protection to mice as a live attenuated vaccine. Vet. Res. 2022, 53, 97. [Google Scholar] [CrossRef] [PubMed]
- Hussein, K.E.; Bahey-El-Din, M.; Sheweita, S.A. Immunization with the outer membrane proteins OmpK17 and OmpK36 elicits protection against Klebsiella pneumoniae in the murine infection model. Microb. Pathog. 2018, 119, 12–18. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.J.; Han, W.Y.; Lei, L.C.; Sun, C.J.; Feng, X.; Du, C.T.; Du, T.F.; Gu, J.M. Identification and characterization of Th cell epitopes in MrkD adhesin of Klebsiella pneumoniae. Microb. Pathog. 2010, 49, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Akbari, Z.; Rasooli, I.; Ghaini, M.H.; Chaudhuri, S.; Farshchi Andisi, V.; Jahangiri, A.; Ramezanalizadeh, F.; Schryvers, A.B. BauA and Omp34 surface loops trigger protective antibodies against Acinetobacter baumannii in a murine sepsis model. Int. Immunopharmacol. 2022, 108, 108731. [Google Scholar] [CrossRef]
- Aghajani, Z.; Rasooli, I.; Mousavi Gargari, S.L. Exploitation of two siderophore receptors, BauA and BfnH, for protection against Acinetobacter baumannii infection. APMIS 2019, 127, 753–763. [Google Scholar] [CrossRef]
- Ramezanalizadeh, F.; Rasooli, I.; Owlia, P. Protective response against Acinetobacter baumannii with ferric iron receptors HemTR-BauA in a murine sepsis model. Future Microbiol. 2021, 16, 143–157. [Google Scholar] [CrossRef]
- Mansouri, M.; Sadeghpoor, M.; Jahangiri, A.; Ghaini, M.H.; Rasooli, I. Enhanced immunoprotection against Acinetobacter baumannii infection: Synergistic effects of Bap and BauA in a murine model. Immunol. Lett. 2023, 262, 18–26. [Google Scholar] [CrossRef]
- Mirali, M.; Jahangiri, A.; Jalali Nadoushan, M.; Rasooli, I. A two-protein cocktail elicits a protective immune response against Acinetobacter baumannii in a murine infection model. Microb. Pathog. 2023, 182, 106262. [Google Scholar] [CrossRef]
- Huang, W.; Yao, Y.; Long, Q.; Yang, X.; Sun, W.; Liu, C.; Jin, X.; Li, Y.; Chu, X.; Chen, B.; et al. Immunization against multidrug-resistant Acinetobacter baumannii effectively protects mice in both pneumonia and sepsis models. PLoS ONE 2014, 9, e100727. [Google Scholar] [CrossRef] [PubMed]
- Bjanes, E.; Zhou, J.; Qayum, T.; Krishnan, N.; Zurich, R.H.; Menon, N.D.; Hoffman, A.; Fang, R.H.; Zhang, L.; Nizet, V. Outer Membrane Vesicle-Coated Nanoparticle Vaccine Protects Against Acinetobacter baumannii Pneumonia and Sepsis. Adv. Nanobiomed Res. 2023, 3, 2200130. [Google Scholar] [CrossRef] [PubMed]
- Gaddy, J.A.; Tomaras, A.P.; Actis, L.A. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 2009, 77, 3150–3160. [Google Scholar] [CrossRef]
- Tomaras, A.P.; Dorsey, C.W.; Edelmann, R.E.; Actis, L.A. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: Involvement of a novel chaperone-usher pili assembly system. Microbiology 2003, 149, 3473–3484. [Google Scholar] [CrossRef]
- Choi, A.H.; Slamti, L.; Avci, F.Y.; Pier, G.B.; Maira-Litran, T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J. Bacteriol. 2009, 191, 5953–5963. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm Formation in Acinetobacter baumannii: Genotype-Phenotype Correlation. Molecules 2019, 24, 1849. [Google Scholar] [CrossRef]
- Huang, W.; Yao, Y.; Wang, S.; Xia, Y.; Yang, X.; Long, Q.; Sun, W.; Liu, C.; Li, Y.; Chu, X.; et al. Immunization with a 22-kDa outer membrane protein elicits protective immunity to multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2016, 6, 20724. [Google Scholar] [CrossRef]
- Naghipour Erami, A.; Rasooli, I.; Jahangiri, A.; Darvish Alipour Astaneh, S. Anti-Omp34 antibodies protect against Acinetobacter baumannii in a murine sepsis model. Microb. Pathog. 2021, 161, 105291. [Google Scholar] [CrossRef]
- McConnell, M.J.; Dominguez-Herrera, J.; Smani, Y.; Lopez-Rojas, R.; Docobo-Perez, F.; Pachon, J. Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii. Infect. Immun. 2011, 79, 518–526. [Google Scholar] [CrossRef]
- Luo, G.; Lin, L.; Ibrahim, A.S.; Baquir, B.; Pantapalangkoor, P.; Bonomo, R.A.; Doi, Y.; Adams, M.D.; Russo, T.A.; Spellberg, B. Active and passive immunization protects against lethal, extreme drug resistant-Acinetobacter baumannii infection. PLoS ONE 2012, 7, e29446. [Google Scholar] [CrossRef]
- Ansari, H.; Tahmasebi-Birgani, M.; Bijanzadeh, M.; Doosti, A.; Kargar, M. Study of the immunogenicity of outer membrane protein A (ompA) gene from Acinetobacter baumannii as DNA vaccine candidate in vivo. Iran. J. Basic. Med. Sci. 2019, 22, 669–675. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, T.; Cao, J.; Sun, J.; Dai, W.; Zhang, L. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii. Microb. Pathog. 2016, 96, 20–25. [Google Scholar] [CrossRef]
- Rumbo, C.; Tomas, M.; Fernandez Moreira, E.; Soares, N.C.; Carvajal, M.; Santillana, E.; Beceiro, A.; Romero, A.; Bou, G. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect. Immun. 2014, 82, 4666–4680. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.J.; Ren, S.; Xie, Y.E. Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice. Biomed. Environ. Sci. 2018, 31, 155–158. [Google Scholar] [CrossRef]
- Du, X.; Xue, J.; Jiang, M.; Lin, S.; Huang, Y.; Deng, K.; Shu, L.; Xu, H.; Li, Z.; Yao, J.; et al. A Multiepitope Peptide, rOmp22, Encapsulated in Chitosan-PLGA Nanoparticles as a Candidate Vaccine Against Acinetobacter baumannii Infection. Int. J. Nanomed. 2021, 16, 1819–1836. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, S.; Yao, Y.; Xia, Y.; Yang, X.; Long, Q.; Sun, W.; Liu, C.; Li, Y.; Ma, Y. OmpW is a potential target for eliciting protective immunity against Acinetobacter baumannii infections. Vaccine 2015, 33, 4479–4485. [Google Scholar] [CrossRef]
- Bentancor, L.V.; Routray, A.; Bozkurt-Guzel, C.; Camacho-Peiro, A.; Pier, G.B.; Maira-Litran, T. Evaluation of the trimeric autotransporter Ata as a vaccine candidate against Acinetobacter baumannii infections. Infect. Immun. 2012, 80, 3381–3388. [Google Scholar] [CrossRef]
- Fereshteh, S.; Ajdary, S.; Sepehr, A.; Bolourchi, N.; Barzi, S.M.; Haririzadeh Jouriani, F.; Riazi-Rad, F.; Shahcheraghi, F.; Badmasti, F. Immunization with recombinant DcaP-like protein and AbOmpA revealed protections against sepsis infection of multi-drug resistant Acinetobacter baumannii ST2(Pas) in a C57BL/6 mouse model. Microb. Pathog. 2023, 174, 105882. [Google Scholar] [CrossRef]
- Beiranvand, S.; Doosti, A.; Mirzaei, S.A. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. Infect. Genet. Evol. 2021, 96, 105138. [Google Scholar] [CrossRef]
- Pereira, I.L.; Hartwig, D.D. Unveiling the role of adhesin proteins in controlling Acinetobacter baumannii infections: A systematic review. Infect. Immun. 2025, 93, e0034824. [Google Scholar] [CrossRef]
- Negahdari, B.; Sarkoohi, P.; Ghasemi Nezhad, F.; Shahbazi, B.; Ahmadi, K. Design of multi-epitope vaccine candidate based on OmpA, CarO and ZnuD proteins against multi-drug resistant Acinetobacter baumannii. Heliyon 2024, 10, e34690. [Google Scholar] [CrossRef]
- Fereshteh, S.; Abdoli, S.; Shahcheraghi, F.; Ajdary, S.; Nazari, M.; Badmasti, F. New putative vaccine candidates against Acinetobacter baumannii using the reverse vaccinology method. Microb. Pathog. 2020, 143, 104114. [Google Scholar] [CrossRef]
- Bonneau, A.; Roche, B.; Schalk, I.J. Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: An intricate interacting network including periplasmic and membrane proteins. Sci. Rep. 2020, 10, 120. [Google Scholar] [CrossRef]
- Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc. Natl. Acad. Sci. USA 2002, 99, 7072–7077. [Google Scholar] [CrossRef]
- Banin, E.; Vasil, M.L.; Greenberg, E.P. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 2005, 102, 11076–11081. [Google Scholar] [CrossRef]
- Kang, D.; Revtovich, A.V.; Chen, Q.; Shah, K.N.; Cannon, C.L.; Kirienko, N.V. Pyoverdine-Dependent Virulence of Pseudomonas aeruginosa Isolates From Cystic Fibrosis Patients. Front. Microbiol. 2019, 10, 2048. [Google Scholar] [CrossRef]
- Sen-Kilic, E.; Blackwood, C.B.; Boehm, D.T.; Witt, W.T.; Malkowski, A.C.; Bevere, J.R.; Wong, T.Y.; Hall, J.M.; Bradford, S.D.; Varney, M.E.; et al. Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia. Front. Immunol. 2019, 10, 2497. [Google Scholar] [CrossRef]
- Granato, E.T.; Harrison, F.; Kummerli, R.; Ross-Gillespie, A. Do Bacterial “Virulence Factors” Always Increase Virulence? A Meta-Analysis of Pyoverdine Production in Pseudomonas aeruginosa As a Test Case. Front. Microbiol. 2016, 7, 1952. [Google Scholar] [CrossRef]
- Kirienko, D.R.; Kang, D.; Kirienko, N.V. Novel Pyoverdine Inhibitors Mitigate Pseudomonas aeruginosa Pathogenesis. Front. Microbiol. 2018, 9, 3317. [Google Scholar] [CrossRef]
- Tiwari, V. Editorial: ESKAPE biofilm: Challenges and solutions. Front. Cell Infect. Microbiol. 2023, 13, 1253439. [Google Scholar] [CrossRef]
- Hoiby, N.; Ciofu, O.; Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef]
- Colvin, K.M.; Irie, Y.; Tart, C.S.; Urbano, R.; Whitney, J.C.; Ryder, C.; Howell, P.L.; Wozniak, D.J.; Parsek, M.R. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012, 14, 1913–1928. [Google Scholar] [CrossRef]
- Chung, J.; Eisha, S.; Park, S.; Morris, A.J.; Martin, I. How Three Self-Secreted Biofilm Exopolysaccharides of, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int. J. Mol. Sci. 2023, 24, 8709. [Google Scholar] [CrossRef]
- Cryz, S.J., Jr.; Furer, E.; Que, J.U. Synthesis and characterization of a Pseudomonas aeruginosa alginate-toxin A conjugate vaccine. Infect. Immun. 1991, 59, 45–50. [Google Scholar] [CrossRef]
- Theilacker, C.; Coleman, F.T.; Mueschenborn, S.; Llosa, N.; Grout, M.; Pier, G.B. Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect. Immun. 2003, 71, 3875–3884. [Google Scholar] [CrossRef]
- Ramsey, D.M.; Wozniak, D.J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 2005, 56, 309–322. [Google Scholar] [CrossRef]
- Farjah, A.; Owlia, P.; Siadat, S.D.; Mousavi, S.F.; Ardestani, M.S.; Mohammadpour, H.K. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS 2015, 123, 175–183. [Google Scholar] [CrossRef]
- Campodonico, V.L.; Llosa, N.J.; Bentancor, L.V.; Maira-Litran, T.; Pier, G.B. Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect. Immun. 2011, 79, 3455–3464. [Google Scholar] [CrossRef]
- Najafzadeh, F.; Jaberi, G.; Shapouri, R.; Rahnema, M.; Karimi-Nik, A.; Kianmehr, A. Immunogenicity comparison of conjugate vaccines composed of alginate and lipopolysaccharide of Pseudomonas aeruginosa bound to diphtheria toxoid. Iran. J. Microbiol. 2014, 6, 317–323. [Google Scholar]
- Hassan, R.; El-Naggar, W.; Abd El-Aziz, A.M.; Shaaban, M.; Kenawy, H.I.; Ali, Y.M. Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa. J. Microbiol. Immunol. Infect. 2018, 51, 312–320. [Google Scholar] [CrossRef]
- Shime, N.; Sawa, T.; Fujimoto, J.; Faure, K.; Allmond, L.R.; Karaca, T.; Swanson, B.L.; Spack, E.G.; Wiener-Kronish, J.P. Therapeutic administration of anti-PcrV F(ab’)(2) in sepsis associated with Pseudomonas aeruginosa. J. Immunol. 2001, 167, 5880–5886. [Google Scholar] [CrossRef]
- Adlbrecht, C.; Wurm, R.; Depuydt, P.; Spapen, H.; Lorente, J.A.; Staudinger, T.; Creteur, J.; Zauner, C.; Meier-Hellmann, A.; Eller, P.; et al. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial. Crit. Care 2020, 24, 74. [Google Scholar] [CrossRef]
- Jain, R.; Beckett, V.V.; Konstan, M.W.; Accurso, F.J.; Burns, J.L.; Mayer-Hamblett, N.; Milla, C.; VanDevanter, D.R.; Chmiel, J.F.; KB001-A Study Group. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J. Cyst. Fibros. 2018, 17, 484–491. [Google Scholar] [CrossRef]
- Keshta, A.T.; Mohammed, F.Z.; Hassan, M.A.; Sheweita, S.A. Production and Evaluation of the Immunogenicity of an Ghost Vaccine in a Mouse Model. Egypt. J. Chem. 2023, 66, 539–547. [Google Scholar] [CrossRef]
- Hossain, S.; Yusuf, M.A.; Nahar, S.; Moureen, A.; Shahid, S.B.; Shamsuzzaman, S.M. Evaluation of Protective Antibody Response following Vaccination with Formaldehyde Inactivated Enterobacter cloacae. Bangladesh J. Med. Microbiol. 2024, 18, 44–49. [Google Scholar] [CrossRef]
- Bhar, S.; Edelmann, M.J.; Jones, M.K. Characterization and proteomic analysis of outer membrane vesicles from a commensal microbe, Enterobacter cloacae. J. Proteom. 2021, 231, 103994. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Thompson, C.D.; Park, S.; Park, W.B.; Lee, J.C. Preclinical Efficacy of Clumping Factor A in Prevention of Staphylococcus aureus Infection. mBio 2016, 7, e02232-02215. [Google Scholar] [CrossRef]
- Francois, B.; Luyt, C.E.; Dugard, A.; Wolff, M.; Diehl, J.L.; Jaber, S.; Forel, J.M.; Garot, D.; Kipnis, E.; Mebazaa, A.; et al. Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: A randomized, double-blind, placebo-controlled trial. Crit. Care Med. 2012, 40, 2320–2326. [Google Scholar] [CrossRef]
- Anderson, A.S.; Scully, I.L.; Buurman, E.T.; Eiden, J.; Jansen, K.U. Staphylococcus aureus Clumping Factor A Remains a Viable Vaccine Target for Prevention of S. aureus Infection. mBio 2016, 7, e00225. [Google Scholar] [CrossRef]
- Inoue, K.; Kinoshita, M.; Muranishi, K.; Ohara, J.; Sudo, K.; Kawaguchi, K.; Shimizu, M.; Naito, Y.; Moriyama, K.; Sawa, T. Effect of a Novel Trivalent Vaccine Formulation against Acute Lung Injury Caused by Pseudomonas aeruginosa. Vaccines 2023, 11, 88. [Google Scholar] [CrossRef]
- Rouha, H.; Badarau, A.; Visram, Z.C.; Battles, M.B.; Prinz, B.; Magyarics, Z.; Nagy, G.; Mirkina, I.; Stulik, L.; Zerbs, M.; et al. Five birds, one stone: Neutralization of alpha-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 2015, 7, 243–254. [Google Scholar] [CrossRef]
- Kolla, H.B.; Makam, S.S.; Reddy, P.N. Mapping of conserved immunodominant epitope peptides in the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens associated with gastrointestinal infections. J. Genet. Eng. Biotechnol. 2023, 21, 146. [Google Scholar] [CrossRef]
- Dominguez-Medina, C.C.; Perez-Toledo, M.; Schager, A.E.; Marshall, J.L.; Cook, C.N.; Bobat, S.; Hwang, H.; Chun, B.J.; Logan, E.; Bryant, J.A.; et al. Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nat. Commun. 2020, 11, 851. [Google Scholar] [CrossRef]
- Ullah, H.; Mahmud, S.; Hossain, M.J.; Islam, M.S.B.; Kibria, K.M.K. Immunoinformatic identification of the epitope-based vaccine candidates from Maltoporin, FepA and OmpW of Shigella Spp., with molecular docking confirmation. Infect. Genet. Evol. 2021, 96, 105129. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Rasooli, I.; Oskouei, R.H.; Pishgahi, M.; Jahangir, A.; Andisi, V.F.; Schryvers, A.B. Hybrid antigens expressing surface loops of BauA from Acinetobacter baumannii are capable of inducing protection against infection. Front. Immunol. 2022, 13, 933445. [Google Scholar] [CrossRef]
- Gonzalez-Cruz, M.; Reyes-Gastellou, A.; Castelan-Vega, J.A.; Monterrubio-Lopez, G.P.; Jimenez-Alberto, A.; Aparicio-Ozores, G.; Ribas-Aparicio, R.M. In silico development of a broad-spectrum vaccine against ESKAPE pathogens. J. Mol. Graph. Model. 2025, 140, 109120. [Google Scholar] [CrossRef]
- Vieira de Araujo, A.E.; Conde, L.V.; da Silva Junior, H.C.; de Almeida Machado, L.; Lara, F.A.; Chapeaurouge, A.; Pauer, H.; Pires Hardoim, C.C.; Martha Antunes, L.C.; D’Alincourt Carvalho-Assef, A.P.; et al. Cross-reactivity and immunotherapeutic potential of BamA recombinant protein from Acinetobacter baumannii. Microbes Infect. 2021, 23, 104801. [Google Scholar] [CrossRef]
- Neutra, M.R.; Kozlowski, P.A. Mucosal vaccines: The promise and the challenge. Nat. Rev. Immunol. 2006, 6, 148–158. [Google Scholar] [CrossRef]
- Song, Y.; Mehl, F.; Zeichner, S.L. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines 2024, 12, 191. [Google Scholar] [CrossRef]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef]
- Hetta, H.F.; Ramadan, Y.N.; Rashed, Z.I.; Alharbi, A.A.; Alsharef, S.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Battah, B.; Donadu, M.G. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024, 29, 3466. [Google Scholar] [CrossRef] [PubMed]




| Vaccine/Construct | Antigen Contents | Target Pathogen(s) | Protection/Immunogenicity | Clinical Stage | Limitations/Notes | |
|---|---|---|---|---|---|---|
| SA4Ag | ClfA, MntC, capsular polysaccharides CP5 & CP8 | S. aureus | Immunogenic in preclinical studies; intended to elicit opsonic & neutralizing Abs | Phase 2b/3 (evaluated in surgical patients) Clinical trial identifier: NCT02388165 | Failed to prevent surgery-associated S. aureus infections in trials; highlights translational gap. | [107] [34,108,109,110,111,112] |
| V710 (IsdB) | IsdB (iron surface determinant B) | S. aureus | Protected in some preclinical models (reduced bacterial burden) | Clinical trial (failed; associated with increased mortality in one trial) Clinical trial identifier: NCT00518687 | Clinical safety signal and lack of efficacy underscore need for multi-antigen approaches. | [113,114] |
| LBT-SA7 (multivalent toxoid) | Multiple detoxified S. aureus toxins (multitoxoid formulation) | S. aureus | Toxoid strategy intended to neutralize secreted virulence factors; preclinical rationale strong | Phase 1 (ongoing ) Clinical trial identifier: NCT06719219 | Promising novel approach; results pending. | |
| Sc(EH)3 (engineered AdcA epitopes) | Engineered epitopes from AdcA zinc-binding domain | E. faecium (cross-reactive with S. aureus) | Induces opsonophagocytic antibodies and conferred protection in murine systemic infection models | Preclinical | Demonstrates potential for cross-Gram-positive antigen design; needs broader validation. | [92] |
| S. aureus extracellular vesicle (EV) vaccine | Native EV protein cargo (multiple antigens) | S. aureus | Protective in murine pneumonia and lethal sepsis models; T cell–dependent protection reported | Preclinical | EVs provide multivalent native antigen display but require safety optimization and antigen mapping. | [50] |
| K. pneumoniae OMV vaccine | Native OMPs, LPS (modified), capsular components present in OMVs | K. pneumoniae | Recombinant OMVs demonstrated immunogenicity and protective efficacy in animal models | Preclinical | Capsular diversity and LPS reactogenicity are major design challenges. | |
| P. aeruginosa OMV vaccine | OprF, OprI in OMV preparations | P. aeruginosa | Protective in animal burn and infection models | Preclinical | OMV heterogeneity, endotoxin (LPS) toxicity, scale-up challenges; chronic infection & biofilm phenotypes complicate translation. | [39,60,61,62,63,115] |
| OprF/OprI hybrid protein vaccine (IC43) | Recombinant OprF–OprI fusion protein (Met-Ala-(His)6-OprF190–342–OprI21–83) | P. aeruginosa | Immunogenic in humans (induces OprF/OprI-specific IgG and opsonophagocytic activity). Also protective in animal models; improved protection when combined with PcrV in multivalent formats. | Early clinical/human Phase I safety & immunogenicity Clinical trial identifier: NCT00778388 | Single-antigen limitations; broader or multivalent antigen combinations likely required for chronic or biofilm-associated disease. | [116,117,118] |
| PcrV-based vaccines/KB001 antibody | PcrV (T3SS tip protein); KB001 = anti-PcrV Fab | P. aeruginosa | Neutralizing antibodies/protection in animal models; KB001 detectable in human airways | Clinical testing in humans (no clinical benefit in CF patients reported) Clinical trial identifier: NCT01695343 | Transient antigen expression, tissue penetration, and chronic infection biology limit efficacy. | [119] |
| Multi-epitope/in silico constructs | Variable—combinations of conserved epitopes (AdcA, Isd components, OMPs, siderophore receptors, OprF/I, etc.) | Multiple ESKAPE pathogens (species-dependent) | Predicted immunogenicity; several constructs elicited humoral & cellular responses in preclinical studies where tested | Mostly preclinical/computational designs; limited in vivo validation | Many constructs remain predictions—require experimental validation and standardization. | |
| LPS-deficient OMV vaccine (IB010) | Native OMVs from A. baumannii engineered to be LPS-deficient; contains multiple OMPs including OmpA and other vesicle-associated proteins | Acinetobacter baumannii | In BALB/c sepsis model, IM vaccination with 10 µg OMVs gave ~75% survival; 100 µg gave 100% survival. Vaccinated mice showed significantly reduced spleen CFU and decreased IL-1β/IL-6 levels | Preclinical (murine) | LPS reactogenicity addressed via LPS-deficient strain. Tested in sepsis—not respiratory—model. Strain breadth limited to study isolates. | [120] |
| Intranasal OMV vaccine | Whole OMVs (naturally containing OMPs including OmpA; not LPS-detoxified) | Acinetobacter baumannii clinical GC2 isolates | Intranasal immunization produced significant reduction in airway colonization and prevented systemic dissemination after intranasal challenge. IM vaccination produced antibodies but did not protect | Preclinical (murine) | Protection was route-dependent (only intranasal effective). Contains native LPS—reactogenicity unresolved. Data from limited GC2 isolates. | [59] |
| Recombinant BauA + OmpA subunit vaccine | Purified recombinant BauA (siderophore receptor) + OmpA | Acinetobacter baumannii | In murine sepsis model, combination immunization caused significant reductions in CFU in spleen, liver, and lungs versus controls and outperformed single-antigen groups. Authors report enhanced immunoprotection | Preclinical (murine) | Possible limited breadth because A. baumannii uses multiple iron-uptake pathways (siderophore redundancy). Tested with one primary clinical isolate | [98] |
| K. pneumoniae-derived extracellular vesicles (EVs) | Native EVs/OMVs containing outer membrane proteins (OMPs) (proteome analysis showed ~159 proteins) plus LPS and lipid-based vesicle structure. | Klebsiella pneumoniae | -In mice, three intraperitoneal immunizations with EVs (10 ng, 100 ng, or 1000 ng) induced high EV-specific IgG. -Splenocytes from immunized mice produced IFN-γ, IL-17, IL-4 after restimulation. -Survival: After challenge with lethal dose of K. pneumoniae (1 × 108 CFU, intraperitoneal), 80% survival for 0.5 µg EV immunized mice, 100% survival for 1 µg EV immunized mice. -Adoptive transfer: both sera and splenocytes from EV-immunized mice conferred protection in naïve mice on challenge. | Preclinical (murine) | -Potential reactogenicity due to LPS in EVs.—The EVs were not engineered to remove or modify LPS.—Route used was intraperitoneal—translational relevance (e.g., human immunization route) uncertain.—Does not directly address capsule polysaccharide: EVs derived from K. pneumoniae may or may not contain capsule components in a way that elicits capsule-specific immunity.—Manufacturing and scale-up challenges (heterogeneity of EVs). | [55,121] |
| BSA-reinforced K. pneumoniae OMVs (BN-OMVs) | Hollow OMVs from carbapenem-resistant K. pneumoniae, internally reinforced by BSA (bovine serum albumin) nanoparticles, containing native OMPs and LPS. | Klebsiella pneumoniae, particularly carbapenem-resistant strains | -Subcutaneous vaccination in mice with BN-OMVs induced high CRKP (carbapenem-resistant K. pneumoniae)-specific antibody titers. -Protection: Mice immunized with BN-OMVs showed a significantly increased survival rate after lethal challenge with CRKP. -Adoptive transfer experiments showed the protective effect was dependent on both humoral and cellular immunity. | Preclinical (murine) | -The native LPS remains in OMVs—risk of endotoxin-mediated reactogenicity.—The nanoparticle (BSA) reinforcement improves stability but could raise regulatory or safety considerations.—Challenge model may use specific CRKP strain; may not fully represent diversity of K. pneumoniae.—Scale-up, reproducibility, batch heterogeneity of BN-OMVs may be problematic. | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hetta, H.F.; Khalaf, F.R.; Kotb, A.A.; Alatawi, M.N.; Albalawi, A.S.; Alharbi, A.A.; Aljohani, M.K.; Aljohani, S.S.; Alatawi, M.S.; Abd Ellah, N.H.; et al. Taming Superbugs: Current Progress and Challenges in Combating ESKAPE Pathogens. Pathogens 2026, 15, 28. https://doi.org/10.3390/pathogens15010028
Hetta HF, Khalaf FR, Kotb AA, Alatawi MN, Albalawi AS, Alharbi AA, Aljohani MK, Aljohani SS, Alatawi MS, Abd Ellah NH, et al. Taming Superbugs: Current Progress and Challenges in Combating ESKAPE Pathogens. Pathogens. 2026; 15(1):28. https://doi.org/10.3390/pathogens15010028
Chicago/Turabian StyleHetta, Helal F., Fatma R. Khalaf, Ahmed A. Kotb, Marah N. Alatawi, Abdullah S. Albalawi, Ahmad A. Alharbi, Maryam K. Aljohani, Shumukh Saad Aljohani, Majd S. Alatawi, Noura H. Abd Ellah, and et al. 2026. "Taming Superbugs: Current Progress and Challenges in Combating ESKAPE Pathogens" Pathogens 15, no. 1: 28. https://doi.org/10.3390/pathogens15010028
APA StyleHetta, H. F., Khalaf, F. R., Kotb, A. A., Alatawi, M. N., Albalawi, A. S., Alharbi, A. A., Aljohani, M. K., Aljohani, S. S., Alatawi, M. S., Abd Ellah, N. H., Battah, B., Donadu, M. G., & Mazzarello, V. (2026). Taming Superbugs: Current Progress and Challenges in Combating ESKAPE Pathogens. Pathogens, 15(1), 28. https://doi.org/10.3390/pathogens15010028

