Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Sample Collection
2.2. Fly Collection and Processing
2.3. DNA Extraction and qPCR
2.4. Library Construction, Hybridisation Capture and Sequencing
2.5. Statistical Analysis
2.6. Bioinformatics Analysis
3. Results
3.1. Sample Distribution
3.2. PCR Results
3.3. Sequencing and Phylogenetic Analysis
3.4. Comparative Genomic Analysis of Cameroonian LSDV Genomes Reveals SNP and Indel Variations
3.5. Functional Impact of Genetic Variation in Cameroonian LSDV Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Meaning |
LSDV | Lumpy Skin Disease Virus |
DNA | Deoxyribonucleic Acid |
RNA | Ribonucleic Acid |
qPCR | Quantitative Polymerase Chain Reaction |
qRT-PCR | Quantitative Reverse Transcriptase PCR |
CT | Cycle Threshold |
EEV | Extracellular Enveloped Virus |
ORF | Open Reading Frame |
SNP | Single-Nucleotide Polymorphism |
Indel | Insertion or Deletion Mutation |
NCBI | National Center for Biotechnology Information |
MAFFT | Multiple Alignment using Fast Fourier Transform |
IQTREE2 | Efficient software for phylogenomic inference |
iTOL | Interactive Tree of Life |
BWA | Burrows-Wheeler Aligner |
NUCmer | Nucleotide MUMmer (alignment software) |
SnpEff | SNP Effect Predictor |
PCR | Polymerase Chain Reaction |
SPSS | Statistical Package for the Social Sciences |
MUMmer | Maximal Unique Match aligner |
AWK | A pattern scanning and processing language |
VirCapSeq-VERT | Virus Capture Sequencing for Vertebrates |
IGH | Institute of Genomics and Global Health |
USA | United State of America |
References
- Khan, L. A comprehensive review on lumpy skin disease. Pure Appl. Biol. 2024, 13, 341–350. [Google Scholar] [CrossRef]
- Rajendran, V.O.; Govindaraj, G.; Arivazhagan, A.; Premkumar, D.; Jayakumar, V.; Saravanan, B.C.; Nandi, S.; Panday, S.; Singh, B.R. Estimation of the economic impact of Lumpy Skin Disease (LSD) outbreaks (2022-23) in dairy cattle farmers of Uttar Pradesh, India. The Microbe 2025, 8, 100513. [Google Scholar] [CrossRef]
- Adedeji, A.J.; Adole, J.A.; Dogonyaro, B.B.; Kujul, N.; Tekki, I.S.; Asala, O.O.; Chima, N.C.; Dyek, Y.D.; Maguda, A.S.; Aba-Adulugba, E.P. Recurrent outbreaks of lumpy skin disease and its economic impact on a dairy farm in Jos, Plateau State, Nigeria. Niger. Vet. J. 2017, 38, 151–158. [Google Scholar]
- Modethed, W.; Kreausukon, K.; Singhla, T.; Boonsri, K.; Pringproa, K.; Sthitmatee, N.; Vinitchaikul, P.; Srisawang, S.; Salvador, R.; Gubbins, S.; et al. An evaluation of financial losses due to lumpy skin disease outbreaks in dairy farms of northern Thailand. Front. Vet. Sci. 2025, 11, 1501460. [Google Scholar] [CrossRef]
- Molla, W.; de Jong, M.C.; Gari, G.; Frankena, K. Economic impact of lumpy skin disease and cost effectiveness of vaccination for the control of outbreaks in Ethiopia. Prev. Vet. Med. 2017, 147, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Sprygin, A.; Artyuchova, E.; Babin, Y.; Prutnikov, P.; Kostrova, E.; Byadovskaya, O.; Kononov, A. Epidemiological characterization of lumpy skin disease outbreaks in Russia in 2016. Transbound. Emerg. Dis. 2018, 65, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qi, C.; Li, J.; Nan, W.; Wang, Y.; Chang, X.; Chi, T.; Gong, M.; Ha, D.; De, J.; et al. Quantitative real-time PCR detection and analysis of a lumpy skin disease outbreak in Inner Mongolia Autonomous Region, China. Front. Vet. Sci. 2022, 9, 936581. [Google Scholar] [CrossRef]
- Şevik, M.; Doğan, M. Doğan Epidemiological and Molecular Studies on Lumpy Skin Disease Outbreaks in Turkey during 2014–2015. Transbound. Emerg. Dis. 2017, 64, 1268–1279. [Google Scholar] [CrossRef]
- Adedeji, A.; Akanbi, O.; Adole, J.; Chima, N.; Baje, M. Outbreak of lumpy skin disease in a dairy farm in Keffi, Nasarawa State, Nigeria. Sokoto J. Vet. Sci. 2018, 16, 80. [Google Scholar] [CrossRef]
- Machado, G.; Korennoy, F.; Alvarez, J.; Picasso-Risso, C.; Perez, A.; VanderWaal, K. Mapping changes in the spatiotemporal distribution of lumpy skin disease virus. Transbound. Emerg. Dis. 2019, 66, 2045–2057. [Google Scholar] [CrossRef]
- Moudgil, G.; Chadha, J.; Khullar, L.; Chhibber, S.; Harjai, K. Lumpy skin disease: Insights into current status and geographical expansion of a transboundary viral disease. Microb. Pathog. 2023, 186, 106485. [Google Scholar] [CrossRef]
- Chihota, C.M.; Rennie, L.F.; Kitching, R.P.; Mellor, P.S. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiol. Infect. 2001, 126, 317–321. [Google Scholar] [CrossRef]
- Paslaru, A.I.; Maurer, L.M.; Vögtlin, A.; Hoffmann, B.; Torgerson, P.R.; Mathis, A.; Veronesi, E. Putative roles of mosquitoes (Culicidae) and biting midges (Culicoides spp.) as mechanical or biological vectors of lumpy skin disease virus. Med. Vet. Entomol. 2022, 36, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Paslaru, A.I.; Verhulst, N.O.; Maurer, L.M.; Brendle, A.; Pauli, N.; Vögtlin, A.; Renzullo, S.; Ruedin, Y.; Hoffmann, B.; Torgerson, P.R.; et al. Potential mechanical transmission of Lumpy skin disease virus (LSDV) by the stable fly (Stomoxys calcitrans) through regurgitation and defecation. Curr. Res. Insect Sci. 2020, 1, 100007. [Google Scholar] [CrossRef]
- Gubbins, S. Using the basic reproduction number to assess the risk of transmission of lumpy skin disease virus by biting insects. Transbound. Emerg. Dis. 2019, 66, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Tuppurainen, E.S.M.; Lubinga, J.C.; Stoltsz, W.H.; Troskie, M.; Carpenter, S.T.; Coetzer, J.A.W.; Venter, E.H.; Oura, C.A.L. Mechanical transmission of lumpy skin disease virus by Rhipicephalus appendiculatus male ticks. Epidemiol. Infect. 2013, 141, 425–430. [Google Scholar] [CrossRef]
- Lubinga, J.C.; Tuppurainen, E.S.M.; Coetzer, J.A.W.; Stoltsz, W.H.; Venter, E.H. Venter Transovarial passage and transmission of LSDV by Amblyomma hebraeum, Rhipicephalus appendiculatus and Rhipicephalus decoloratus. Exp. Appl. Acarol. 2013, 62, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Shumilova, I.; Nesterov, A.; Byadovskaya, O.; Prutnikov, P.; Wallace, D.B.; Mokeeva, M.; Pronin, V.; Kononov, A.; Chvala, I.; Sprygin, A. A Recombinant Vaccine-like Strain of Lumpy Skin Disease Virus Causes Low-Level Infection of Cattle through Virus-Inoculated Feed. Pathogens 2022, 11, 920. [Google Scholar] [CrossRef]
- Faris, D.N.; El-Bayoumi, K.; El-Tarabany, M.; Kamel, E.R. Prevalence and Risk Factors for Lumpy Skin Disease in Cattle and Buffalo under Subtropical Environmental Conditions. Adv. Anim. Vet. Sci. 2021, 9, 1311–1316. [Google Scholar] [CrossRef]
- Zewdie, G.; Mammo, B.; Gelaye, E.; Getachew, B.; Bayssa, B. Isolation and molecular characterisation of lumpy skin disease virus from diary farms of central ethiopia. World Appl. Sci. J. 2019, 37, 764–775. [Google Scholar] [CrossRef]
- Ben-Gera, J.; Klement, E.; Khinich, E.; Stram, Y.; Shpigel, N. Shpigel Comparison of the efficacy of Neethling lumpy skin disease virus and x10RM65 sheep-pox live attenuated vaccines for the prevention of lumpy skin disease–The results of a randomized controlled field study. Vaccine 2015, 33, 4837–4842. [Google Scholar] [CrossRef] [PubMed]
- Klement, E.; Broglia, A.; Antoniou, S.-E.; Tsiamadis, V.; Plevraki, E.; Petrović, T.; Polaček, V.; Debeljak, Z.; Miteva, A.; Alexandrov, T.; et al. Neethling vaccine proved highly effective in controlling lumpy skin disease epidemics in the Balkans. Prev. Vet. Med. 2020, 181, 104595. [Google Scholar] [CrossRef] [PubMed]
- Sprygin, A.; Babin, Y.; Pestova, Y.; Kononova, S.; Wallace, D.B.; Van Schalkwyk, A.; Byadovskaya, O.; Diev, V.; Lozovoy, D.; Melcher, U.; et al. Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS ONE 2018, 13, e0207480. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, Y.; Shao, J.; Sun, M.; He, W.; Chen, J.; Liu, Q. Genomic characterization of lumpy skin disease virus in southern China. Transbound. Emerg. Dis. 2021, 69, 2788–2799. [Google Scholar] [CrossRef]
- Byadovskaya, O.; Prutnikov, P.; Shalina, K.; Babiuk, S.; Perevozchikova, N.; Korennoy, F.; Chvala, I.; Kononov, A.; Sprygin, A. The changing epidemiology of lumpy skin disease in Russia since the first introduction from 2015 to 2020. Transbound. Emerg. Dis. 2022, 69, E2551–E2562. [Google Scholar] [CrossRef]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. Genome of Lumpy Skin Disease Virus. J. Virol. 2001, 75, 7122–7130. [Google Scholar] [CrossRef]
- Krotova, A.; Byadovskaya, O.; Shumilova, I.; van Schalkwyk, A.; Sprygin, A. An in-depth bioinformatic analysis of the novel recombinant lumpy skin disease virus strains: From unique patterns to established lineage. BMC Genom. 2022, 23, 396. [Google Scholar] [CrossRef]
- Ochwo, S.; VanderWaal, K.; Ndekezi, C.; Nkamwesiga, J.; Munsey, A.; Witto, S.G.; Nantima, N.; Mayanja, F.; Okurut, A.R.A.; Atuhaire, D.K.; et al. Molecular detection and phylogenetic analysis of lumpy skin disease virus from outbreaks in Uganda 2017–2018. BMC Vet. Res. 2020, 16, 66. [Google Scholar] [CrossRef]
- Sudhakar, S.B.; Mishra, N.; Kalaiyarasu, S.; Jhade, S.K.; Singh, V.P. Singh Genetic and phylogenetic analysis of lumpy skin disease viruses (LSDV) isolated from the first and subsequent field outbreaks in India during 2019 reveals close proximity with unique signatures of historical Kenyan NI-2490/Kenya/KSGP-like field strains. Transbound. Emerg. Dis. 2021, 69, E451–E462. [Google Scholar] [CrossRef]
- Kapoor, V.; Briese, T.; Ranjan, A.; Donovan, W.M.; Mansukhani, M.M.; Chowdhary, R.; Lipkin, W.I.; Mellmann, A. Validation of the VirCapSeq-VERT system for differential diagnosis, detection, and surveillance of viral infections. J. Clin. Microbiol. 2024, 62, e0061223. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Langmead Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019, 20, 8. [Google Scholar] [CrossRef]
- Mazloum, A.; Van Schalkwyk, A.; Babiuk, S.; Venter, E.; Wallace, D.B.; Sprygin, A. Lumpy skin disease: History, current understanding and research gaps in the context of recent geographic expansion. Front. Microbiol. 2023, 14, 1266759. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9, 286–298. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- A Butche, S. Computational Biology: Unix/Linux, Data Processing and Programming. Hum. Genom. 2004, 1, 389–390. [Google Scholar] [CrossRef]
- Cingolani, P. Variant Annotation and Functional Prediction: SnpEff. Methods Mol. Biol. 2022, 2493, 289–314. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Fang, Y.; Liao, Z.; Cui, L.; Niu, K.; Ren, S.; Zhu, J.; Wu, W.; Jing, Z.; Peng, C.; et al. A poxvirus ankyrin protein LSDV012 inhibits IFIT1 in a host-species-specific manner by compromising its RNA binding ability. PLoS Pathog. 2025, 21, e1012994. [Google Scholar] [CrossRef]
- Schlosser-Perrin, L.; Holzmuller, P.; Fernandez, B.; Miotello, G.; Dahmani, N.; Neyret, A.; Bertagnoli, S.; Armengaud, J.; Caufour, P.; Walsh, D. Constitutive proteins of lumpy skin disease virion assessed by next-generation proteomics. J. Virol. 2023, 97, e0072323. [Google Scholar] [CrossRef]
- Nicholls, R.; Gray, T. Cellular source of the poxviral N1R/p28 gene family. Virus Genes. 2004, 29, 359–364. [Google Scholar] [CrossRef]
- Sung, T.-C. Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J. 1997, 16, 4519–4530. [Google Scholar] [CrossRef]
- Husain, M.; Moss, B. Similarities in the Induction of Post-Golgi Vesicles by the Vaccinia Virus F13L Protein and Phospholipase D. J. Virol. 2002, 76, 7777–7789. [Google Scholar] [CrossRef]
- Yuan, X.; Dong, J.; Xiang, Z.; Zhang, Q.; Tao, P.; Guo, A. A Genome-Wide Screening of Novel Immunogenic TrLSDV103 Protein of Lumpy Skin Disease Virus and Its Application for DIVA. FASEB J. 2025, 39, e70676. [Google Scholar] [CrossRef] [PubMed]
- Kara, P.D.; Afonso, C.L.; Wallace, D.B.; Kutish, G.F.; Abolnik, C.; Lu, Z.; Vreede, F.T.; Taljaard, L.C.F.; Zsak, A.; Viljoen, G.J.; et al. Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of Lumpy skin disease virus. Arch. Virol. 2003, 148, 1335–1356. [Google Scholar] [CrossRef]
- Wallace, D.B.; Viljoen, G.J. Viljoen Importance of thymidine kinase activity for normal growth of lumpy skin disease virus (SA-Neethling). Arch. Virol. 2002, 147, 659–663. [Google Scholar] [CrossRef]
- Suwankitwat, N.; Deemagarn, T.; Bhakha, K.; Songkasupa, T.; Lekcharoensuk, P.; Arunvipas, P. Monitoring of genetic alterations of lumpy skin disease virus in cattle after vaccination in Thailand. J. Anim. Sci. Technol. 2025, 67, 352–360. [Google Scholar] [CrossRef]
- Reading, P.C.; Smith, G.L. Vaccinia Virus Interleukin-18-Binding Protein Promotes Virulence by Reducing Gamma Interferon Production and Natural Killer and T-Cell Activity. J. Virol. 2003, 77, 9960–9968. [Google Scholar] [CrossRef]
- Abduljalil, J.M.; Al-Madhagi, H.A.; Elfiky, A.A.; AlKhazindar, M.M. Serine/threonine kinase of Mpox virus: Computational modeling and structural analysis. J. Biomol. Struct. Dyn. 2023, 42, 12434–12445. [Google Scholar] [CrossRef]
- Carter, G.C.; Law, M.; Hollinshead, M.; Smith, G.L. Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J. Gen. Virol. 2005, 86, 1279–1290. [Google Scholar] [CrossRef]
- Meng, X.; Embry, A.; Sochia, D.; Xiang, Y. Vaccinia Virus A6L Encodes a Virion Core Protein Required for Formation of Mature Virion. J. Virol. 2007, 81, 1433–1443. [Google Scholar] [CrossRef]
- Haga, I.R.; Shih, B.B.; Tore, G.; Polo, N.; Ribeca, P.; Gombo-Ochir, D.; Shura, G.; Tserenchimed, T.; Enkhbold, B.; Purevtseren, D.; et al. Sequencing and Analysis of Lumpy Skin Disease Virus Whole Genomes Reveals a New Viral Subgroup in West and Central Africa. Viruses 2024, 16, 557. [Google Scholar] [CrossRef]
- Breman, F.C.; Haegeman, A.; Krešić, N.; Philips, W.; De Regge, N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023, 15, 1471. [Google Scholar] [CrossRef]
- Agianniotaki, E.I.; Tasioudi, K.E.; Chaintoutis, S.C.; Iliadou, P.; Mangana-Vougiouka, O.; Kirtzalidou, A.; Alexandropoulos, T.; Sachpatzidis, A.; Plevraki, E.; Dovas, C.I.; et al. Lumpy skin disease outbreaks in Greece during 2015–2016, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet. Microbiol. 2017, 201, 78–84. [Google Scholar] [CrossRef]
- Van Schalkwyk, A.; Byadovskaya, O.; Shumilova, I.; Wallace, D.B.; Sprygin, A. Estimating evolutionary changes between highly passaged and original parental lumpy skin disease virus strains. Transbound. Emerg. Dis. 2021, 69, E486–E496. [Google Scholar] [CrossRef]
- Schalkwyk, A.; Kara, P.; Ebersohn, K.; Mather, A.; Annandale, C.H.; Venter, E.H.; Wallace, D.B. Potential link of single nucleotide polymorphisms to virulence of vaccine-associated field strains of lumpy skin disease virus in South Africa. Transbound. Emerg. Dis. 2020, 67, 2946–2960. [Google Scholar] [CrossRef]
- Saltykov, Y.V.; Kolosova, A.A.; Filonova, N.N.; Chichkin, A.N.; Feodorova, V.A. Genetic Evidence of Multiple Introductions of Lumpy Skin Disease Virus into Saratov Region, Russia. Pathogens 2021, 10, 716. [Google Scholar] [CrossRef]
- Krotova, A.; Mazloum, A.; Byadovskaya, O.; Sprygin, A. Phylogenetic analysis of lumpy skin disease virus isolates in Russia in 2019–2021. Arch. Virol. 2022, 167, 1693–1699. [Google Scholar] [CrossRef]
- Atai, R.; Olaolu, O.; Adole, J.; Haruna, I.; Ijoma, S.; Maurice, N.; Omoniwa, D.; Dogonyaro, B.; Adedeji, A. Epidemiological features of lumpy skin disease outbreaks amongst herds of cattle in Bokkos, north-central Nigeria. Sokoto J. Veter Sci. 2021, 19, 81–88. [Google Scholar] [CrossRef]
- Khan, Y.R.; Ali, A.; Hussain, K.; Ijaz, M.; Rabbani, A.H.; Khan, R.L.; Abbas, S.N.; Aziz, M.U.; Ghaffar, A.; Sajid, H.A. A review: Surveillance of lumpy skin disease (LSD) a growing problem in Asia. Microb. Pathog. 2021, 158, 105050. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, L.; Ward, M.P.; Korennoy, F. The Spread of Lumpy Skin Disease Virus across Southeast Asia: Insights from Surveillance. Transbound. Emerg. Dis. 2023, 2023, e3972359. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesan, G.; Kushwaha, A.; Poulinlu, G.; Saha, T.; A Ramakrishnan, M.; Dhar, P.; Kumar, G.S.; Singh, R. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop. 2023, 241, 106838. [Google Scholar] [CrossRef]
- Balinsky, C.A.; Delhon, G.; Afonso, C.L.; Risatti, G.R.; Borca, M.V.; French, R.A.; Tulman, E.R.; Geary, S.J.; Rock, D.L. Sheeppox Virus Kelch-Like Gene SPPV-019 Affects Virus Virulence. J. Virol. 2007, 81, 11392–11401. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Pallett, M.A.; French, J.; Ren, H.; Smith, G.L. Vaccinia virus BTB-Kelch proteins C2 and F3 inhibit NF-κB activation. J. Gen. Virol. 2022, 103, 001786. [Google Scholar] [CrossRef]
- Shumilova, I.; Shalina, K.; Alhussen, M.A.; Prutnikov, P.; Krotova, A.; Byadovskaya, O.; Prokhvatilova, L.; Chvala, I.; Sprygin, A. An Attenuated Vaccine Virus of the Neethling Lineage Protects Cattle against the Virulent Recombinant Vaccine-like Isolate of the Lumpy Skin Disease Virus Belonging to the Currently Established Cluster 2.5. Vaccines 2024, 12, 598. [Google Scholar] [CrossRef]
- Smith, G.L.; Vanderplasschen, A.; Law, M. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 2002, 83, 2915–2931. [Google Scholar] [CrossRef]
- Gurt, I.; Abdalrhman, I.; Katz, E. Pathogenicity and immunogenicity in mice of vaccinia viruses mutated in the viral envelope proteins A33R and B5R. Antivir. Res. 2006, 69, 158–164. [Google Scholar] [CrossRef]
- Sudhakar, S.B.; Mishra, N.; Kalaiyarasu, S.; Jhade, S.K.; Hemadri, D.; Sood, R.; Bal, G.C.; Nayak, M.K.; Pradhan, S.K.; Singh, V.P. Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: Epidemiological features and molecular studies. Transbound. Emerg. Dis. 2020, 67, 2408–2422. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Kaur, S.J.; Pabby, S.; Singh, M. Clinical management of Pseudo-cowpox and its zoonotic significance: A report of three cows. J. Entomol. Zool. Stud. 2020, 8, 1939–1941. [Google Scholar]
- Habte, D.; Addis, H.; Wondimagegnehu, K. Clinical and Laboratory Diagnosis of Dermatophilosis (Cutaneous Streptothricosis) in Cattle in Ethiopia: Case Report. Veter Med. Sci. 2025, 11, e70245. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A. Wound Myiasis in Urban and Suburban United States. Arch. Intern. Med. 2000, 160, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
Country | Nodule Aspirate (n, %) | Skin Scab (n, %) | Oral & Nasal Swab (n, %) | Total (n, %) |
---|---|---|---|---|
Benin | 0 (0) | 40 (48.2) | 43 (51.8) | 83 (27.9) |
Cameroon | 10 (10.6) | 28 (29.8) | 56 (59.6) | 94 (31.6) |
Nigeria | 0 (0) | 60 (50.0) | 60 (50) | 120 (40.4) |
Total | 10 (3.4) | 128 (43.1) | 159 (53.5) | 297 (100.0) |
Country | Type of Fly | Number of Pools | LSDV PCR Positive Pool | Illustration |
---|---|---|---|---|
Cameroon | Green Bottle Fly | 2 | 0 | |
House Fly | 1 | 0 | ||
Blue Bottle Fly | 1 | 0 | ||
Flesh Fly | 1 | 1 | ||
Nigeria | House Fly | 2 | 0 | |
Green Bottle Fly | 1 | 0 | ||
Black Scavenger Fly | 1 | 0 | ||
Tachinid Fly | 1 | 0 | ||
Benin | House Fly | 8 | 0 | |
Picture Wing Fly | 3 | 0 | ||
Flesh Fly | 4 | 0 | ||
Green Bottle Fly | 4 | 0 | ||
Picture Wing Fly | 2 | 0 | ||
Tachinid Fly | 2 | 0 | ||
Sweat Fly | 1 | 0 | ||
Black Scavenger Fly | 1 | 0 | ||
Syrphid Fly | 2 | 0 | ||
Horn Fly | 3 | 0 | ||
Blue Bottle Fly | 1 | 0 |
Category | Variable | Total | PCR Positive | %Positivity | χ2 | p Value |
---|---|---|---|---|---|---|
Country (n = 172 cattle) | Benin Rep | 55 | 1 | 1.8 | 19.01 | <0.001 |
Cameroon | 57 | 12 | 21.1 | |||
Nigeria | 60 | 1 | 1.7 | |||
Sample type (n = 297) | Nodule aspirate | 10 | 1 | 10 | 3.9 | 0.139 |
Skin scab | 128 | 12 | 9.4 | |||
Oral & Nasal Swab | 159 | 6 | 3.8 |
Strain | Single Base Substitutions or SNPs | Insertions | Deletions |
---|---|---|---|
AF409137.1_Warmbaths2000 | 123 | 78 | 24 |
CAYDCAT29 | 124 | 14 | 22 |
CAYDCAT30 | 136 | 24 | 25 |
KX894508.1_Israel2012 | 134 | 39 | 45 |
MH893760.2_Dagestan2015 | 147 | 20 | 15 |
OK318001.1_Nigeria2018 | 134 | 44 | 25 |
Metric/Variant Type | CAYDCAT29 | CAYDCAT30 |
---|---|---|
Missense variant | 40 | 43 |
Stop gained | 0 | 1 |
Synonymous variant | 86 | 85 |
Upstream gene variant | 3 | 4 |
Number of genes with variations | 82 | 81 |
Unique genes with variations | 1 (LSDV154) | 0 |
Genes with ≥2 variations | 23 | 25 |
Genes with non-synonymous variations | 35 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadele, J.; Ogunsanya, O.; Adedokun, O.; Ayinla, A.; Pami, M.; Sijuwola, A.; Saibu, F.; Soumare, H.; Fanou, U.; Brown, C.; et al. Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster. Pathogens 2025, 14, 922. https://doi.org/10.3390/pathogens14090922
Fadele J, Ogunsanya O, Adedokun O, Ayinla A, Pami M, Sijuwola A, Saibu F, Soumare H, Fanou U, Brown C, et al. Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster. Pathogens. 2025; 14(9):922. https://doi.org/10.3390/pathogens14090922
Chicago/Turabian StyleFadele, John, Olusola Ogunsanya, Oluwatobi Adedokun, Akeemat Ayinla, Mbitkebeyo Pami, Ayotunde Sijuwola, Femi Saibu, Harouna Soumare, Urbain Fanou, Corrie Brown, and et al. 2025. "Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster" Pathogens 14, no. 9: 922. https://doi.org/10.3390/pathogens14090922
APA StyleFadele, J., Ogunsanya, O., Adedokun, O., Ayinla, A., Pami, M., Sijuwola, A., Saibu, F., Soumare, H., Fanou, U., Brown, C., Faburay, B., Happi, C., & Happi, A. (2025). Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster. Pathogens, 14(9), 922. https://doi.org/10.3390/pathogens14090922