Independent Development of Resistance to Main Classes of Anthelmintics by Gastrointestinal Nematodes of Ruminants and Horses
Abstract
1. Introduction
2. Material and Methods
2.1. Evaluation of the Main Traits of Anthelmintic Resistance in the Literature
2.2. The Set of Data Relating to Ruminants
2.3. The Set of Data Relating to Horses (Table 2)
3. Results
3.1. Main Characteristics of Anthelmintic Use and Resistance
3.2. Anthelmintic Associations in Ruminants (Table 2)
3.3. Anthelmintic Associations in Horses
3.3.1. Strongyles
3.3.2. Parascaris
4. Discussion
4.1. The Necessity of Combining Anthelmintics
4.2. How to Evaluate Efficacy of Combinations?
4.3. The Independence of Resistance to Major Anthelmintics
4.4. The Pros and Cons of Combining Anthelmintics
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vineer, H.R.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, C.; de Waal, T.; Hendrickx, G.; et al. Increasing importance of anthelmintic resistance in European livestock: Creation and meta-analysis of an open database. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Hoste, H.; Jacquiet, P.; Traversa, D.; Sotiraki, S.; di Regalbono, A.F.; Tzanidakis, N.; Kostopoulou, D.; Gaillac, C.; Privat, S.; et al. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy. Vet. Parasitol. 2014, 201, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Overend, D.J.; Phillips, M.L.; Poulton, A.L.; Foster, C. Anthelmintic resistance in Australian sheep nematode populations. Aust. Vet. J. 1994, 71, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, T.S.; Leathwick, D.M.; Rhodes, A.P.; Lawrence, K.E.; Jackson, R.; Pomroy, W.E.; West, D.M.; Moffat, J.R. Prevalence of anthelmintic resistance on sheep farms in New Zealand. N. Z. Vet. J. 2006, 54, 271–277. [Google Scholar] [CrossRef]
- Echevarria, F.; Borba, M.F.; Pinheiro, A.C.; Waller, P.J.; Hansen, J.W. The prevalence of anthelmintic resistance in nematode parasites of sheep in Southern Latin America: Brazil. Vet. Parasitol. 1996, 62, 199–206. [Google Scholar] [CrossRef]
- Baudinette, E.; O’Handley, R.; Trengove, C. Anthelmintic resistance of gastrointestinal nematodes in goats: A systematic review and meta-analysis. Vet. Parasitol. 2022, 15, 109809. [Google Scholar] [CrossRef]
- Cabaret, J. Anthelmintic resistance in goats: From fiction to facts. In 7th Conférence Internationale sur les Caprins; Institut de l’Élevage: Paris, France, 2000. [Google Scholar]
- Mejía, M.; Igartúa, B.M.; Schmidt, E.; Cabaret, J. Multispecies and multiple anthelmintic resistance on cattle nematodes in a farm in Argentina: The beginning of high resistance? Vet. Res. 2003, 34, 461–467. [Google Scholar] [CrossRef]
- Baiak, B.H.; Lehnen, C.R.; da Rocha, R.A. Anthelmintic resistance in cattle: A systematic review and meta-analysis. Livestock Sci. 2018, 217, 127–135. [Google Scholar] [CrossRef]
- Borgsteede, F.H.; Roos, M.H.; Smith, G.; Prichard, R.K. Anthelminthics resistance. Vet. Parasitol. 1996, 64, 129–132. [Google Scholar] [CrossRef]
- Drudge, J.H.; Elam, G. Preliminary observations on the resistance of the horse strongyles to phenothiazine. J. Parasitol. 1961, 47, 38–39. [Google Scholar]
- Pereira, M.C.; Kohek Junior, I.; Campos, R.; Lima, S.B.; Foz, R.P. A field evaluation of anthelmintics for control of cyathostomes of horses in Brazil. Vet. Parasitol. 1991, 38, 121–129. [Google Scholar] [CrossRef]
- Traversa, D.; von Samson-Himmelstjerna, G.; Demeler, J.; Milillo, P.; Schürmann, S.; Barnes, H.; Otranto, D.; Perrucci, S.; di Regalbono, A.F.; Beraldo, P.; et al. Anthelmintic resistance in cyathostomin populations from horse yards in Italy, United Kingdom and Germany. Parasites Vectors 2009, 2, S2. [Google Scholar] [CrossRef] [PubMed]
- Reinemeyer, C.R.; Craig, R. Diagnosis and control of anthelmintic-resistant Parascaris equorum. Parasites Vectors 2009, 2, S8. [Google Scholar] [CrossRef]
- Bauer, C.; Merkt, J.C.; Janke-Grimm, G.; Bürger, H.J. Prevalence and control of benzimidazole-resistant small strongyles on German thoroughbred studs. Vet. Parasitol. 1986, 21, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M.; Klei, T.R.; Lyons, E.T.; Lester, G.; Courtney, C.H.; French, D.D.; Tolliver, S.C.; Vidyashankar, A.N.; Zhao, Y. Prevalence of anthelmintic resistant cyathostomes on horse farms. J. Am. Vet. Med. Assoc. 2004, 225, 903–910. [Google Scholar] [CrossRef]
- Cabaret, J. Reliable phenotypic evaluations of anthelmintic resistance in herbivores: How and when should they be done. In Anthelmintics: Clinical Pharmacology, Uses in Veterinary Medicine and Efficacy; Nova Science Publisher: New York, NY, USA, 2014; pp. 1–26. [Google Scholar]
- Jabbar, A.; Iqbal, Z.; Kerboeuf, D.; Muhammad, G.; Khan, M.N.; Afaq, M. Anthelmintic resistance: The state of play revisited. Life Sci. 2006, 79, 2413–2431. [Google Scholar] [CrossRef]
- Robertson, A.P.; Buxton, S.K.; Puttachary, S.; Williamson, S.M.; Wolstenholme, A.J.; Neveu, C.; Cabaret, J.; Charvet, C.L.; Martin, R.J. Antinematodal drugs—Modes of action and resistance: And worms will not come to thee (Shakespeare: Cymbeline: IV, ii). In Parasitic Helminths: Targets, Screens, Drugs and Vaccines; Caffrey, C.R., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 233–249. [Google Scholar]
- Charvet, C.L.; Guégnard, F.; Courtot, E.; Cortet, J.; Neveu, C. Nicotine-sensitive acetylcholine receptors are relevant pharmacological targets for the control of multidrug resistant parasitic nematodes. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 540–549. [Google Scholar] [CrossRef]
- Kerboeuf, D.; Blackhall, W.; Kaminsky, R.; von Samson-Himmelstjerna, G. P-glycoprotein in helminth: Function and perspectives for anthelmintic treatment and reversal of resistance. Int. J. Antimicrob. Agents. 2003, 22, 332–346. [Google Scholar] [CrossRef]
- Mottier, M.D.; Prichard, R.K. Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus. Pharmacogenet. Genom. 2008, 18, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.K.L.; Blackhall, W.J.; Osei-Atweneboana, M.Y. Ivermectin selection on beta-tubulin: Evidence in Onchocerca volvulus and Haemonchus contortus. Mol. Biochem. Parasitol. 2006, 150, 229–235. [Google Scholar] [CrossRef]
- Silvestre, A.; Leignel, V.; Berrag, B.; Gasnier, N.; Humbert, J.F.; Chartier, C.; Cabaret, J. Sheep and goat nematode resistance to anthelmintics: Pro and cons among breeding management factors. Vet. Res. 2002, 33, 465–480. [Google Scholar] [CrossRef]
- Sallé, G.; Cortet, J.; Bois, I.; Guyot-Sionest, Q.; Larrieu, C.; Landrin, V.; Majorel, G.; Wittreck, S.; Woringer, E.; Couroucé, A.; et al. Risk factor analysis of equine strongyle resistance to anthelmintics. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 407–415. [Google Scholar] [CrossRef]
- Geary, T.G.; Hosking, B.C.; Skuce, P.J.; von Samson-Himmelstjerna, G.; Maeder, S.; Holdsworth, P.; Pomroy, W.; Vercruysse, J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Guideline: Anthelmintic combination products targeting nematode infections of ruminants and horses. Vet. Parasitol. 2012, 190, 306–316. [Google Scholar] [CrossRef]
- Bartram, D.J.; Leathwick, D.M.; Taylor, M.A.; Geurden, T.; Maeder, S.J. The role of combination anthelmintic formulations in the sustainable control of sheep nematodes. Vet. Parasitol. 2012, 186, 151–158. [Google Scholar] [CrossRef]
- Alvarez, L.; Lifschitz, A.; Entrocasso, C.; Manazza, J.; Mottier, L.; Borda, B.; Virkel, G.; Lanusse, L. Evaluation of the interaction between ivermectin and albendazole following their combined use in lambs. J. Vet. Pharmacol. Therap. 2008, 31, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Abongwa, M.; Buxton, S.K.; Robertson, A.P.; Martin, R.J. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms. PLoS ONE 2016, 11, e0146854. [Google Scholar] [CrossRef] [PubMed]
- Suarez, G.; Alvarez, L.; Castells, D.; Moreno, L.; Fagiolino, P.; Lanusse, C. Evaluation of pharmacological interactions after administration of a levamisole, albendazole and ivermectin triple combination in lambs. Vet. Parasitol. 2014, 201, 110–119. [Google Scholar] [CrossRef]
- Allworth, M.B.; Goonan, B.; Nelson, J.E.; Kelly, G.; McGrath, S.R.; Woodgate, R.G. Comparison of the efficacy of macrocyclic lactone anthelmintics, either singly or in combination with other anthelmintic(s), in nine beef herds in southern NSW. Aust. Vet. J. 2023, 101, 293–295. [Google Scholar] [CrossRef]
- Wrigley, J.; McArthur, M.; McKenna, P.B.; Mariadass, B. Resistance to a triple combination of broad-spectrum anthelmintics in naturally acquired Ostertagia circumcincta infections in sheep. N. Z. Vet. J. 2006, 54, 47–49. [Google Scholar] [CrossRef]
- Anziani, O.S.; Muchiut, S. Resistencia antihelmíntica múltiple (closantel, fenbendazol, ivermectina y levamisol) en Haemonchus spp parasitando ovinos en la provincia de Santa Fe. Ineficacia de una triple combinación de estas drogas para su control. Rev. Med. Vet. 2014, 95, 23–27. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Waghorn, T.S.; Leathwick, D.M.; Rhodes, A.P.; Jackson, R.; Pomroy, W.E.; West, D.M.; Moffat, J.R. Prevalence of anthelmintic resistance on 62 beef cattle farms in the North Island of New Zealand. N. Z. Vet. J. 2006, 54, 278–282. [Google Scholar] [CrossRef]
- Ventsel, H. Théorie des Probabilités; Editions Mir: Moscow, Russia, 1973; 563p. [Google Scholar]
- Silva Vieira, L.; Rocha Cavalcante, A.C. Resistencia anti-helmíntica em rebanhos caprinos no Estado do Ceara. Pesq. Vet. Bras. 1999, 19, 99–103. [Google Scholar] [CrossRef]
- Chartier, C.; Soubirac, F.; Pors, I.; Silvestre, A.; Hubert, J.; Couquet, C.; Cabaret, J. Prevalence of anthelmintic resistance in gastrointestinal nematodes of dairy goats under extensive management conditions in southwestern France. J. Helm. 2001, 75, 325–330. [Google Scholar] [CrossRef]
- Melo, A.C. Resistance to Benzimidazoles in Nematode Haemonchus contortus in Ceara State. Ph.D. Thesis, Universida de Ceara, Fortaleza, Brazil, 2005; 170p. [Google Scholar]
- Bentounsi, B.; Attir, B.; Meradi, S.; Cabaret, J. Repeated treatment faecal egg counts to identify gastrointestinal nematode resistance in a context of low-level infection of sheep on farms in eastern Algeria. Vet. Parasitol. 2007, 144, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zuiten, H. Résistance des Nématodes aux Antiparasitaires Etude Comparée chez les Ovins et les Chevaux. Ph.D. Thesis, Faculté des Sciences, Université Mohamed V-Agdal, Rabat, Morrocco, 2006; 137p. [Google Scholar]
- Álvarez-Sánchez, M.A.; Pérez-García, J.; Cruz-Rojo, M.A.; Rojo-Vázquez, F.A. Anthelmintic resistance in trichostrongylid nematodes of sheep farms in Northwest Spain. Parasitol. Res. 2006, 99, 78–83. [Google Scholar] [CrossRef]
- Chartier, C.; Pors, I.; Hubert, J.; Rocheteau, D.; Benoit, C.; Bernard, N. Prevalence of anthelmintic resistant nematodes in sheep and goats in Western France. Small Rum. Res. 1998, 29, 33–41. [Google Scholar] [CrossRef]
- Cristel, S.L.; Suárez, V.H. Resistencia antihelmíntica: Evaluación de la prueba de reducción del conteo de huevos. Rev. Investig. Agropecu. 2006, 35, 29–43. [Google Scholar]
- Soutello, R.G.V.; Seno, M.C.Z.; Amarante, A.F.T. Anthelmintic resistance in cattle nematodes in northwestern Sao Paulo state, Brazil. Vet. Parasitol. 2007, 148, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Craven, J.; Bjørn, H.; Barnes, E.H.; Henriksen, S.A.; Nansen, P. A comparison of in vitro tests and a faecal egg count reduction test in detecting anthelmintic resistance in horse strongyles. Vet. Parasitol. 1999, 85, 49–59. [Google Scholar] [CrossRef]
- Ihler, C.F. A Field Survey on Anthelmintic Resistance in Equine Small Strongyles in Norway. Acta Vet. Scand. 1995, 36, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Lind, E.O.; Rautalinko, E.; Uggla, A.; Waller, P.J.; Morrison, D.A.; Höglund, J. Parasite control practices on Swedish horse farms. Acta Vet. Scand. 2007, 49, 25. [Google Scholar] [CrossRef]
- Canever, R.J.; Braga, P.R.C.; Boeckh, A.; Grycajuck, M.; Bier, D.; Molento, M.B. Lack of Cyathostomin sp. reduction after anthelmintic treatment in horses in Brazil. Vet. Parasitol. 2013, 194, 35–39. [Google Scholar] [CrossRef]
- Pagnon, R. Résistance aux Anthelminthiques des Strongles chez les Équidés: Enquête dans un Centre Équestre du Sud de la France. Ph.D. Thesis, Ecole Nationale Vétérinaire, Toulouse, France, 2005; 121p. [Google Scholar]
- Traversa, D.; Castagna, P.; von Samson-Himmelstjerna, G.; Meloni, S.; Bartolini, R.; Geurden, T.; Pearce, M.C.; Woringer, E.; Besognet, B.; Milillo, P.; et al. Efficacy of major anthelmintics against horse cyathostomins in France. Vet. Parasitol. 2012, 188, 294–300. [Google Scholar] [CrossRef]
- Traversa, D.; Klei, R.T.; Iorio, R.; Paoletti, B.; Lia, R.P.; Otranto, D.; Sparagano, O.A.E.; Giangaspero, A. Occurrence of anthelmintic resistant equine cyathostome populations in central and southern Italy. Prev.Vet. Med. 2007, 82, 314–320. [Google Scholar] [CrossRef]
- Guerrero, C. (Departamento de Parasitologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma, Mexico City, Mexico). Personal communication, 2010.
- Zouiten, H.; Berrag, B.; Oukessou, M.; Sadak, A.; Cabaret, J. Poor efficacy of the most commonly used anthelmintics in sport horse nematodes in Morocco in relation to resistance. Parasite 2005, 12, 347–351. [Google Scholar] [CrossRef]
- Kuzmina, T.A.; Kharchenko, V.O. Anthelmintic resistance in cyathostomins of brood horses in Ukraine and influence of anthelmintic treatments on strongylid community structure. Vet. Parasitol. 2008, 154, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.; West, E.; Norat-Collazo, L.; Vargas, J. A combination treatment strategy using pyrantel pamoate and oxibendazole demonstrates additive effects for controlling equine cyathostomins. Equine Vet. Edu. 2014, 26, 485–491. [Google Scholar] [CrossRef]
- Cooper, L.G.; Caffe, G.; Cerutti, J.; Nielsen, M.K.; Anziani, O.S. Reduced efficacy of ivermectin and moxidectin against Parascaris spp. in foals from Argentina. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100388. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.K.; Woodgate, R.G.; Gough, S.; Heller, J.; Sangster, N.C.; Hughes, K.J. The efficacy of ivermectin, pyrantel and fenbendazole against Parascaris equorum infection in foals on farms in Australia. Vet. Parasitol. 2014, 205, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Molento, M.B.; Antunes, J.; Bentes, R.N.; Coles, G.C. Anthelmintic resistant nematodes in Brazilian horses. Vet. Rec. 2008, 162, 384. [Google Scholar] [CrossRef]
- Lignon, J.S.; Pappen, F.G.; Böhm, B.C.; Pinto, D.M. Antiparasitic action of ivermectin, moxidectin and piperazine against Parascaris spp. in foals at southern Rio Grande do Sul, Brazil. Ciência Anim. 2023, 33, 41–47. [Google Scholar]
- Lassen, B.; Peltola, S.-M. Anthelmintic resistance of intestinal nematodes to ivermectin and pyrantel in Estonian horses. J. Helm. 2015, 89, 760–763. [Google Scholar] [CrossRef]
- Aromaa, M.; Hautala, K.; Oksanen, A.; Sukura, A.; Näreaho. Parasite infections and their risk factors in foals and young horses in Finland. Vet. Parasitol. Reg. Stud. Rep. 2018, 12, 35–38. [Google Scholar] [CrossRef]
- Lyons, E.T.; Tolliver, S.C.; Ionita, M.; Collins, S.S. Evaluation of parasiticidal activity of fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate in horse foals with emphasis on ascarids (Parascaris equorum) in field studies on five farms in Central Kentucky in 2007. Parasitol. Res. 2008, 103, 287–291. [Google Scholar] [CrossRef]
- Lyons, E.T.; Tolliver, S.C.; Kuzmina, T.A.; Collins, S.S. Further evaluation in field tests of the activity of three anthelmintics (fenbendazole, oxibendazole, and pyrantel pamoate) against the ascarid Parascaris equorum in horse foals on eight farms in Central Kentucky (2009–2010). Parasitol. Res. 2011, 109, 1193–1197. [Google Scholar] [CrossRef]
- Reinemeyer, C.R. Anthelmintic resistance in non-strongylid parasites of horses. Vet. Parasitol. 2012, 185, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Voigt, K.; Geiger, M.; Jäger, M.C.; Knubben-Schweizer, G.; Strube, C.; Zablotski, Y. Effectiveness of anthelmintic treatments in small ruminants in Germany. Animals 2022, 12, 1501. [Google Scholar] [CrossRef]
- Chou, T.C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C.; Martin, N. CompuSyn Software for Drug Combinations and for General Dose Effect Analysis, and User’s Guide; ComboSyn, Inc.: Paramus, NJ, USA, 2007; Available online: https://www.combosyn.com/ (accessed on 26 August 2025).
- Keiser, J.; Tritten, L.; Adelfio, T.; Vaegas, M. Effect of combinations of marketed human anthelmintic drugs against Trichuris muris in vitro and in vivo. Parasites Vectors 2012, 5, 292. [Google Scholar] [CrossRef] [PubMed]
- Sauermann, C.; Waghorn, T.; Miller, C.; Leathwick, D. Simultaneous resistance to multiple anthelmintic classes in nematode parasites of cattle in New Zealand. Vet. Parasitol. 2024, 325, 110079. [Google Scholar] [CrossRef]
- Gianchini, L.S.; Paras, K.L.; George, M.M.; Howell, S.B.; Storey, B.; Denwood, M.J.; Ray, M. Kaplan RM. Multiple-species resistance to avermectin anthelmintics on beef cattle farms in Georgia, USA. Vet. Parasitol. 2025, 336, 110435. [Google Scholar] [CrossRef]
- Cabaret, J.; Nicourt, C. Farmers’ and Experts’ Knowledge Coping with Sheep Health, Control and Anthelmintic Resistance of Their Gastrointestinal Nematodes. Pathogens 2024, 13, 297. [Google Scholar] [CrossRef]
- Van Wyk, J.A. Refugia-overlooked as perhaps the most potent factor concerning the development of anthelmintic. Onderstepoort J. Vet. Res. 2001, 68, 55–67. [Google Scholar]
- Jouffroy, S. Resistance to Eprinomectin in Haemonchus Contortus: Diagnostic, Risk factors and Solutions for Dairy Sheep Farms in France. Ph.D. Thesis, Ecole Vétérinaire de Toulouse, Toulouse, France, 2024; 250p. [Google Scholar]
- Le Jambre, L.F.; Martin, P.J.; Johnston, A. Efficacy of combination anthelmintics against multiple resistant strains of sheep nematodes. Anim. Prod. Sci. 2010, 50, 946–952. [Google Scholar] [CrossRef]
- Leathwick, D.M. Modelling the benefits of a new class of anthelmintic in combination. Vet. Parasitol. 2012, 186, 96–100. [Google Scholar]
- Abbas, G.; Ghafar, A.; Hurley, J.; Bauquier, J.; Beasley, A.; Wilkes, E.J.; Jacobson, C.; El-Hage, C.; Cudmore, L.; Carrigan, P.; et al. Cyathostomin resistance to moxidectin and combinations of anthelmintics in Australian horses. Parasites Vectors 2021, 14, 597. [Google Scholar] [CrossRef]
- Lanusse, C.; Canton, C.; ∙Virkel, G.; Alvarez, L.; Costa-Junior, L. Adrian Lifschitz. A. Strategies to Optimize the Efficacy of Anthelmintic Drugs in Ruminants. Trends Parasitol. 2018, 34, 664–682. [Google Scholar] [CrossRef]
- de la Crúz-Crúz, H.A.; Higuera-Piedrahita, R.I.; Zamilpa, A.; Alcalá-Canto, Y.; Ocampo-Gutiérrez, A.Y.; Arango-de la Pava, L.D.; López-Arellano, M.E.; Hernandez-Patlan, D.; Cuéllar-Ordaz, J.A.; Mendoza-de Gives, P. Using an Aqueous Suspension of Duddingtonia flagrans Chlamydospores and a Hexane Extract of Artemisia cina as Sustainable Methods to Reduce the Fecal Egg Count and Larvae of Haemonchus contortus in the Feces of Periparturient Ewes. Pathogens 2025, 14, 105. [Google Scholar] [CrossRef] [PubMed]
Anthelmintic | Hosts | % of Papers on Use of Anthelmintic (Number of Papers with One Anthelmintic in a Host Species/Number of Papers on All Anthelmintics) | % of Resistance (Number of Papers on Use/Number of Papers on Resistance) |
---|---|---|---|
Benzimidazoles | Sheep | 10.5 | 76 |
Goat | 8.4 | 56 | |
Cattle | 9.5 | 74 | |
Horse | 6.0 | 74 | |
Levamisole | Sheep | 10 | 70 |
Goat | 2.0 | 100 | |
Cattle | 1.0 | 100 | |
Ivermectin | Sheep | 15.0 | 73 |
Goat | 10.4 | 71 | |
Cattle | 9.5 | 63 | |
Horse | 9.3 | 64 | |
Pyrantel | Horse | 2.4 | 76 |
Survey | Resistance Based on FECRT < 90% | ||||||||
---|---|---|---|---|---|---|---|---|---|
% of Farms with Resistance to | % of Farms with Association Between Resistances | ||||||||
Host | No Farms | Country (Reference) | Bz | Lev | Ml | BzLev | BzMl | LevMl | BzLevMl |
Goats | 34 | Brazil [39] | 56 | 53 | nd * | 35 | nd | nd | nd |
18 | France [40] | 67 | 0 | nd | 6 | nd | nd | nd | |
Sheep and goats | 25 | Brazil [41] | 92 | 68 | 52 | 65 | 48 | 44 | 40 |
Sheep | 10 | Algeria [42] | 50 | nd | 8 | nd | 8 | nd | nd |
10 | Morocco [43] | 50 | 10 | 1 | 3 | 1 | 0 | 0 | |
336 | Australia [4] | 86 | 65 | 0 | 56 | 0 | 0 | 0 | |
118 | Australia [4] | 93 | 72 | 0 | 69 | 0 | 0 | 0 | |
56 | Australia [4] | 89 | 29 | 0 | 28 | 0 | 0 | 0 | |
315 | Australia [4] | 81 | 67 | 0 | 57 | 0 | 0 | 0 | |
56 | Australia [4] | 88 | 80 | 0 | 73 | 0 | 0 | 0 | |
80 | New-Zealand [37] | 41 | 24 | 25 | 18 | 13 | 10 | 8 | |
85 | Spain [44] | 13 | 9 | 16 | 1 | 0 | 2 | 0 | |
23 | France [45] | 61 | 17 | 0 | 13 | 0 | 0 | 0 | |
Cattle | 13 | Argentina [46] | 8 | 0 | 54 | 0 | 8 | 0 | 0 |
25 | Brazil [47] | 20 | 8 | 70 | 0 | 12 | 0 | 8 | |
61 | New-Zealand [37] | 76 | 8 | 92 | 8 | 74 | 8 | 5 |
Survey Location (No of Farms) | Reference | % of Resistant Farms Based on FECRT < 90%f | |||
---|---|---|---|---|---|
Bz | Pyr | BzPyr Observed | BzPyr Calculated | ||
Denmark (24) | [48] | 82 | 42 | 16 | 34 |
Norway (17) | [49] | 94 | 12 | 12 | 11 |
Sweden (25) | [50] | 100 | 28 | 28 | 28 |
Survey | FECRT (%) | |||
---|---|---|---|---|
Country | Reference | Benzimidazole | Pyrantel | Ivermectin |
Brazil | [51] | 14 | 66 | 99 |
61 | 89 | 96 | ||
0 | 94 | 100 | ||
0 | 59 | 89 | ||
0 | 93 | 99 | ||
0 | 79 | 96 | ||
12 | 96 | 91 | ||
29 | 99 | 98 | ||
0 | 69 | 100 | ||
40 | 94 | 100 | ||
48 | 97 | 100 | ||
Denmark | [48] | 46 | 0 | nd * |
100 | 0 | nd | ||
87 | 0 | nd | ||
18 | 0 | nd | ||
100 | 87 | nd | ||
99 | 0 | nd | ||
81 | 0 | nd | ||
88 | 0 | nd | ||
71 | 92 | nd | ||
34 | 100 | nd | ||
France | [27] | 40 | 81 | 99 |
45 | 98 | 94 | ||
50 | 95 | 100 | ||
[52] | 60 | nd | 96 | |
45 | nd | 100 | ||
[53] | 87 | 95 | 100 | |
82 | 85 | 100 | ||
21 | 86 | 100 | ||
20 | 100 | 100 | ||
58 | 94 | 100 | ||
88 | 100 | 100 | ||
88 | 94 | 100 | ||
0 | 100 | 100 | ||
14 | 100 | 100 | ||
43 | 100 | 100 | ||
40 | 100 | 100 | ||
64 | 96 | 100 | ||
90 | 100 | 100 | ||
31 | 100 | 100 | ||
Italy | [54] | 60 | 91 | 100 |
96 | 95 | 100 | ||
96 | 82 | 100 | ||
91 | 96 | 100 | ||
Mexico | [55] | 89 | nd | 98 |
93 | nd | 100 | ||
Morocco | [56] | 16 | 95 | nd |
Norway | [49] | 60 | 91 | 100 |
96 | 95 | 100 | ||
96 | 82 | 100 | ||
91 | 96 | 100 | ||
Ukraine | [57] | 69 | nd | 100 |
99 | nd | 100 | ||
97 | nd | 100 | ||
USA | [58] | 36 | 80 | 99 |
21 | 70 | 99 | ||
34 | 42 | 99 |
Survey | FECRT (%) | |||
---|---|---|---|---|
Country (No of Farms) | Reference | Benzimidazole | Pyrantel | Ivermectin |
Argentina (1) | [59] | 100 | nd * | 39 |
Australia (1) | [60] | 44 | 74 | 98 |
Brazil (1) | [61] | 100 | 94 | 93 |
Brazil (9) | [62] | 89 | 0 | nd |
94 | 99 | nd | ||
53 | 100 | nd | ||
73 | 100 | nd | ||
Estonia (4) | [63] | nd | 94 | 88 |
France (18) | [61] | 100 | 100 | 45 |
Finland (1) | [64] | nd | 52 | 43 |
Sweden (9) | [50] | 100 | 90 | nd |
USA (7) | [65] | 84 | 0 | 0 |
USA (8) | [66] | 80 | 2 | nd |
USA (1) | [67] | nd | 97 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabaret, J. Independent Development of Resistance to Main Classes of Anthelmintics by Gastrointestinal Nematodes of Ruminants and Horses. Pathogens 2025, 14, 898. https://doi.org/10.3390/pathogens14090898
Cabaret J. Independent Development of Resistance to Main Classes of Anthelmintics by Gastrointestinal Nematodes of Ruminants and Horses. Pathogens. 2025; 14(9):898. https://doi.org/10.3390/pathogens14090898
Chicago/Turabian StyleCabaret, Jacques. 2025. "Independent Development of Resistance to Main Classes of Anthelmintics by Gastrointestinal Nematodes of Ruminants and Horses" Pathogens 14, no. 9: 898. https://doi.org/10.3390/pathogens14090898
APA StyleCabaret, J. (2025). Independent Development of Resistance to Main Classes of Anthelmintics by Gastrointestinal Nematodes of Ruminants and Horses. Pathogens, 14(9), 898. https://doi.org/10.3390/pathogens14090898