Biochemical Defense Mechanisms of Olive Varieties Against Pythium schmitthenneri, the Causal Agent of Root Rot Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pathogen Inoculum Preparation
2.3. Olive Roots Inoculation
2.3.1. Disease Severity
- 1:
- 0% root rot; roots appear healthy and white with no symptoms of disease;
- 2:
- Up to 25% root rot or mostly healthy roots with initial symptoms of rot;
- 3:
- Up to 50% root rot with noticeable early browning;
- 4:
- Up to 75% root rot with significant browning of the root system;
- 5:
- 100% root rot, indicating completely dead roots.
2.3.2. Plant Growth Parameters of Olive Plants
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.4. Effect of P. schmitthenneri on the Content of Total Polyphenols and Flavonoids in Olive Roots
2.4. Statistical Analysis
3. Results
3.1. Disease Severity in Olive Varieties
3.2. Impact of Pathogens Infection on Plant Growth Parameters in the Olive Varieties
3.3. Impact of Pathogens Infection on the Functional Groups of Olive Roots
3.4. Content of Total Polyphenols and Flavonoids of Olive Roots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouledali, S.; Ennajeh, M.; Zrig, A.; Gianinazzi, S.; Khemira, H. Estimating the Contribution of Arbuscular Mycorrhizal Fungi to Drought Tolerance of Potted Olive Trees (Olea europaea). Acta Physiol. Plant. 2018, 40, 81. [Google Scholar] [CrossRef]
- Aitouguinane, M.; El Alaoui-Talibi, Z.; Rchid, H.; Fendri, I.; Abdelkafi, S.; El-Hadj, M.D.O.; Boual, Z.; Dubessay, P.; Michaud, P.; Traïkia, M.; et al. Polysaccharides from Moroccan Green and Brown Seaweed and Their Derivatives Stimulate Natural Defenses in Olive Tree Leaves. Appl. Sci. 2022, 12, 8842. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/statistics/en/ (accessed on 6 May 2025).
- Cardoni, M.; Jesús, M.-B. Confronting Stresses Affecting Olive Cultivation from the Holobiont Perspective. Front. Plant Sci. 2023, 14, 1261754. [Google Scholar] [CrossRef]
- Legrifi, I.; Al Figuigui, J.; Radouane, N.; Ezrari, S.; Belabess, Z.; Tahiri, A.; Amiri, S.; Lahlali, R. First Report of Pythium schmitthenneri on Olive Trees and in Morocco. Australas. Plant Dis. Notes 2022, 17, 3. [Google Scholar] [CrossRef]
- Gharbi, Y.; Bouazizi, E.; Cheffi, M.; Amar, F. Ben Investigation of Soil-Borne Fungi, Causal Agents of Olive Trees Wilt and Dieback in Tunisia. Arch. Phytopathol. Plant Prot. 2020, 53, 828–843. [Google Scholar] [CrossRef]
- González, M.; Serrano, M.S.; Sánchez, M.E. First Report of Pythium spiculum Causing Root Rot on Wild-Olive in Spain. Plant Dis. 2016, 100, 1023. [Google Scholar] [CrossRef]
- Sánchez-Hernández, M.E.; Ruiz-Dávila, A.; Trapero-Casas, A. First Report of Phytophthora megasperma and Pythium irregulare as Olive Tree Root Pathogens. Plant Dis. 1997, 81, 1214–1216. [Google Scholar] [CrossRef] [PubMed]
- Legrifi, I.; Lazraq, A.; Al Figuigui, J.; Belabess, Z.; El Jarroudi, M.; Lahlali, R. Characterization of Phytophthora and Pythium Species Associated with Root Rot of Olive Trees in Morocco. Agriculture 2025, 15, 435. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Faedda, R.; Pane, A.; Scarito, G. Root and Crown Rot of Olive Trees Caused by Phytophtora spp. Olive Dis. Disord. 2015, 661, 305–327. [Google Scholar]
- Pscheidt, J.W.; Ocamb, C.M. Diagnosis and Management of Phytophthora Diseases. In Pacific Northwest Plant Disease Management Handbook; Oregon State University: Corvallis, OR, USA, 2015. [Google Scholar]
- Trouillas, F.P.; Nouri, M.T.; Bourret, T.B. Identification and Characterization of Phytophthora Species Associated with Crown and Root Rot of Pistachio Trees in California. Plant Dis. 2022, 106, 197–206. [Google Scholar] [CrossRef]
- Ni, L.; Punja, Z.K. Management of Fungal Diseases on Cucumber (Cucumis sativus L.) and Tomato (Solanum lycopersicum L.) Crops in Greenhouses Using Bacillus subtilis. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Springer: Cham, Switzerland, 2019; Volume 2, pp. 1–28. [Google Scholar]
- Kaniyassery, A.; Thorat, S.A.; Kiran, K.R.; Murali, T.S.; Muthusamy, A. Fungal Diseases of Eggplant (Solanum melongena L.) and Components of the Disease Triangle: A Review. J. Crop Improv. 2022, 37, 543–594. [Google Scholar] [CrossRef]
- Aleandri, M.P.; Chilosi, G.; Bruni, N.; Tomassini, A.; Vettraino, A.M.; Vannini, A. Use of Nursery Potting Mixes Amended with Local Trichoderma Strains with Multiple Complementary Mechanisms to Control Soil-Borne Diseases. Crop Prot. 2015, 67, 269–278. [Google Scholar] [CrossRef]
- Legrifi, I.; Taoussi, M.; Al Figuigui, J.; Lazraq, A.; Hussain, T.; Lahlali, R. Oomycetes Root Rot Caused by Pythium spp. and Phytophthora spp.: Host Range, Detection, and Management Strategies, Special Case of Olive Trees. Gesunde Pflanz. 2023, 76, 19–47. [Google Scholar] [CrossRef]
- Farooq, Q.U.A.; McComb, J.; Hardy, G.E.S.J.; Burgess, T. Soil Amendments and Suppression of Phytophthora Root Rot in Avocado (Persea americana). Australas. Plant Pathol. 2023, 52, 1–11. [Google Scholar] [CrossRef]
- Turkolmez, S.; Dervis, S. Activity of Metalaxyl-M plus Mancozeb, Fosetyl-Al, and Phosphorous Acid against Phytophthora Crown and Root Rot of Apricot and Cherry Caused by Phytophthora palmivora. Plant Prot. Sci. 2017, 53, 216–225. [Google Scholar] [CrossRef]
- Winski, C.J.; Qian, Y.; Mobashery, S.; Santiago-Tirado, F.H. An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. mBio 2022, 13, e0153922. [Google Scholar] [CrossRef]
- Kazan, K.; Gardiner, D.M. Targeting Pathogen Sterols: Defence and Counterdefence? PLoS Pathog. 2017, 13, e1006297. [Google Scholar] [CrossRef]
- Markakis, E.A.; Krasagakis, N.; Manolikaki, I.; Papadaki, A.A.; Kostelenos, G.; Koubouris, G. Evaluation of Olive Varieties Resistance for Sustainable Management of Verticillium Wilt. Sustainability 2022, 14, 9342. [Google Scholar] [CrossRef]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How Do Plants Defend Themselves against Pathogens-Biochemical Mechanisms and Genetic Interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef]
- Kulbat, K. The Role of Phenolic Compounds in Plant Resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Saini, N.; Anmol, A.; Kumar, S.; Bakshi, M.; Dhiman, Z. Exploring Phenolic Compounds as Natural Stress Alleviators in Plants—A Comprehensive Review. Physiol. Mol. Plant Pathol. 2024, 133, 102383. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pathak, S.; Prakash, N.; Priya, U.; Ghatak, A. Application of Spectroscopic Techniques in Early Detection of Fungal Plant Pathogens. In Diagnostics of Plant Diseases; IntechOpen: Winchester, UK, 2021. [Google Scholar]
- Cuello, C.; Marchand, P.; Laurans, F.; Grand-Perret, C.; Laine-Prade, V.; Pilate, G.; Déjardin, A. ATR-FTIR Microspectroscopy Brings a Novel Insight into the Study of Cell Wall Chemistry at the Cellular Level. Front. Plant Sci. 2020, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Zuo, Y.; Zhi, Z.; Shi, Y.; Liu, G.; Ou, Q. Diagnosis of Corn Leaf Diseases by FTIR Spectroscopy Combined with Machine Learning. Vib. Spectrosc. 2024, 135, 103744. [Google Scholar] [CrossRef]
- He, Z.; Liu, Y.; Kim, H.J.; Tewolde, H.; Zhang, H. Fourier Transform Infrared Spectral Features of Plant Biomass Components during Cotton Organ Development and Their Biological Implications. J. Cotton Res. 2022, 5, 11. [Google Scholar] [CrossRef]
- Gautam, A.K.; Singh, P.K.; Aravind, M. Defensive Role of Plant Phenolics against Pathogenic Microbes for Sustainable Agriculture. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; Volume 1, pp. 579–594. [Google Scholar]
- Santilli, E.; Riolo, M.; La Spada, F.; Pane, A.; Cacciola, S.O. First Report of Root Rot Caused by Phytophthora bilorbang on Olea europaea in Italy. Plants 2020, 9, 826. [Google Scholar] [CrossRef]
- Legrifi, I.; Al Figuigui, J.; El Hamss, H.; Lazraq, A.; Belabess, Z.; Tahiri, A.; Amiri, S.; Barka, E.A.; Lahlali, R. Potential for Biological Control of Pythium schmitthenneri Root Rot Disease of Olive Trees (Olea europaea L.) by Antagonistic Bacteria. Microorganisms 2022, 10, 1635. [Google Scholar] [CrossRef]
- Zoubi, B.; Mokrini, F.; Rafya, M.; Benkebboura, A. Citrus Rootstocks vs. Nematodes: A Battle for Resistance against Tylenchulus semipenetrans. Sci. Hortic. 2024, 331, 113115. [Google Scholar] [CrossRef]
- Chow, Y.Y.; Su, A.; Ting, Y. Influence of Fungal Infection on Plant Tissues: FTIR Detects Compositional Changes to Plant Cell Walls. Fungal Ecol. 2019, 37, 38–47. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Khali, M.; Mahmoudi, N. Etude de l’extraction Des Composés Phénoliques de Différentes Parties de La Fleur d’artichaut (Cynara scolymus L.). Nat. Technol. 2013, 5, 35. [Google Scholar]
- Kumar, S.; Lahlali, R.; Liu, X.; Karunakaran, C. Infrared Spectroscopy Combined with Imaging: A New Developing Analytical Tool in Health and Plant Science. Appl. Spectrosc. Rev. 2016, 51, 466–483. [Google Scholar] [CrossRef]
- Lahlali, R.; Kumar, S.; Wang, L.; Forseille, L.; Sylvain, N.; Korbas, M.; Muir, D.; Swerhone, G.; Lawrence, J.R.; Fobert, P.R. Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat. Front. Microbiol. 2016, 7, 910. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef]
- Skolik, P.; McAinsh, M.R.; Martin, F.L. ATR-FTIR Spectroscopy Non-Destructively Detects Damage-Induced Sour Rot Infection in Whole Tomato Fruit. Planta 2019, 249, 925–939. [Google Scholar] [CrossRef]
- Barth, A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta (BBA) Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Oliveira, H.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A.; Santos, C. Effects of Fungus Inoculation and Salt Stress on Physiology and Biochemistry of In Vitro Grapevines: Emphasis on Sugar Composition Changes by FT-IR Analyses. Environ. Exp. Bot. 2009, 65, 1–10. [Google Scholar] [CrossRef]
- Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS Analysis of the Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. Appl. Surf. Sci. 2013, 280, 799–805. [Google Scholar] [CrossRef]
- Morello, P.; Díez, C.M.; Codes, M.; Rallo, L.; Barranco, D.; Trapero, A.; Moral, J. Sanitation of Olive Plants Infected by Verticillium dahliae Using Heat Treatments. Plant Pathol. 2016, 65, 412–421. [Google Scholar] [CrossRef]
- Gharbi, Y.; Barkallah, M.; Bouazizi, E.; Hibar, K. Lignification, Phenols Accumulation, Induction of PR Proteins and Antioxidant-Related Enzymes Are Key Factors in the Resistance of Olea europaea to Verticillium Wilt of Olive. Acta Physiol. Plant. 2017, 39, 43. [Google Scholar] [CrossRef]
- Trapero, C.; Rallo, L.; López-Escudero, F.J.; Barranco, D.; Díez, C.M. Variability and Selection of Verticillium Wilt Resistant Genotypes in Cultivated Olive and in the Olea Genus. Plant Pathol. 2015, 64, 890–900. [Google Scholar] [CrossRef]
- Mercado-Blanco, J.; Collado-Romero, M.; Parrilla-Araujo, S.; Rodríguez-Jurado, D.; Jiménez-Dıaz, R.M. Quantitative Monitoring of Colonization of Olive Genotypes by Verticillium Dahliae Pathotypes with Real-Time Polymerase Chain Reaction. Physiol. Mol. Plant Pathol. 2003, 63, 91–105. [Google Scholar] [CrossRef]
- Markakis, E.A.; Tjamos, S.E.; Antoniou, P.P.; Paplomatas, E.J.; Tjamos, E.C. Symptom Development, Pathogen Isolation and Real-Time QPCR Quantification as Factors for Evaluating the Resistance of Olive Cultivars to Verticillium Pathotypes. Eur. J. Plant Pathol. 2009, 124, 603–611. [Google Scholar] [CrossRef]
- Gorshkov, V.; Tsers, I. Plant Susceptible Responses: The Underestimated Side of Plant–Pathogen Interactions. Biol. Rev. 2022, 97, 45–66. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated Induction of Systemic Resistance and Physiochemical Alterations in Plants against the Pathogens: Current Perspectives. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef]
- Khanday, A.H.; Badroo, I.A.; Wagay, N.A.; Rafiq, S. Role of Phenolic Compounds in Disease Resistance to Plants. In Plant Phenolics in Biotic Stress Management; Springer: Singapore, 2024; pp. 455–479. [Google Scholar]
- Schäfer, E.D.; Owen, M.R.; Band, L.R.; Farcot, E.; Bennett, M.J.; Lynch, J.P. Modeling Root Loss Reveals Impacts on Nutrient Uptake and Crop Development. Plant Physiol. 2022, 190, 2260–2278. [Google Scholar] [CrossRef]
- Fanton, A.C.; Furze, M.E.; Brodersen, C.R. Pathogen-induced Hydraulic Decline Limits Photosynthesis and Starch Storage in Grapevines (Vitis sp.). Plant Cell Environ. 2022, 45, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Azammi, A.M.N.; Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Asrofi, M.; Atiqah, A. Characterization Studies of Biopolymeric Matrix and Cellulose Fibres Based Composites Related to Functionalized Fibre-Matrix Interface. In Interfaces in Particle and Fibre Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–93. [Google Scholar]
- Zhao, Z.; Liu, H.; Wang, C.; Xu, J.-R. Comparative Analysis of Fungal Genomes Reveals Different Plant Cell Wall Degrading Capacity in Fungi. BMC Genom. 2014, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jaroszuk-Ściseł, J.; Kurek, E.; Słomka, A.; Janczarek, M.; Rodzik, B. Activities of Cell Wall Degrading Enzymes in Autolyzing Cultures of Three Fusarium Culmorum Isolates: Growth-Promoting, Deleterious and Pathogenic to Rye (Secale cereale). Mycologia 2011, 103, 929–945. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Giraldo, M.D.; Griffith, J.G.; Laird, E.W.; Mingora, C. The CAZyome of Phytophthora Spp.: A Comprehensive Analysis of the Gene Complement Coding for Carbohydrate-Active Enzymes in Species of the Genus Phytophthora. BMC Genom. 2010, 11, 525. [Google Scholar] [CrossRef]
- Underwood, W. The Plant Cell Wall: A Dynamic Barrier against Pathogen Invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef]
- Hückelhoven, R. Cell Wall-Associated Mechanisms of Disease Resistance and Susceptibility. Annu. Rev. Phytopathol. 2007, 45, 101–127. [Google Scholar] [CrossRef]
- Tyler, B.M. Phytophthora sojae: Root Rot Pathogen of Soybean and Model Oomycete. Mol. Plant Pathol. 2007, 8, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Chen, Y.; Wang, Y.; Zhou, Z.; Tu, J.; Guo, L.; Yao, X. The Roles of Cell Wall Polysaccharides in Response to Waterlogging Stress in Brassica napus L. Root. BMC Biol. 2024, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Munnik, T.; Nielsen, E. Green Light for Polyphosphoinositide Signals in Plants. Curr. Opin. Plant Biol. 2011, 14, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Koskimäki, J.J.; Hokkanen, J.; Jaakola, L.; Suorsa, M.; Tolonen, A.; Mattila, S.; Pirttilä, A.M.; Hohtola, A. Flavonoid Biosynthesis and Degradation Play a Role in Early Defence Responses of Bilberry (Vaccinium myrtillus) against Biotic Stress. Eur. J. Plant Pathol. 2009, 125, 629–640. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, D.; Gao, L.; Liu, N.; Lian, S.; Ren, W.; Li, B. β-Glucosidase VmGlu1 Is Required for Toxin Production and Pathogenicity of Valsa Mali. Phytopathol. Res. 2025, 7, 7. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; Volume 1, pp. 517–532. [Google Scholar]
- Wang, L.; Chen, M.; Lam, P.Y.; Andreote, F.D.; Dai, L.; Wei, Z. Multifaceted Roles of Flavonoids Mediating Plant–Microbe Interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Yamamoto, F.; Iwanaga, F.; Al-Busaidi, A.; Yamanaka, N. Roles of Ethylene, Jasmonic Acid, and Salicylic Acid and Their Interactions in Frankincense Resin Production in Boswellia sacra Flueck. Trees. Sci. Rep. 2020, 10, 16760. [Google Scholar] [CrossRef]
- Marchica, A.; Cotrozzi, L.; Detti, R.; Lorenzini, G.; Pellegrini, E.; Petersen, M.; Nali, C. The Biosynthesis of Phenolic Compounds Is an Integrated Defence Mechanism to Prevent Ozone Injury in Salvia officinalis. Antioxidants 2020, 9, 1274. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Gautam, C.; Kumar, R.; Tilgam, J.; Natta, S. Phenolic Biosynthesis and Metabolic Pathways to Alleviate Stresses in Plants. In Plant Phenolics in Abiotic Stress Management; Lone, R., Khan, S., Mohammed Al-Sadi, A., Eds.; Springer Nature: Singapore, 2023; pp. 63–87. ISBN 978-981-19-6426-8. [Google Scholar]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic Acids Act as Signaling Molecules in Plant-Microbe Symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as Antioxidants in Plants: Location and Functional Significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
Code | Variety Name | Origin | Disease Severity (%) | Disease Reaction |
---|---|---|---|---|
Variety 1 | Picholine Marocaine | Morocco | 100 c | HS |
Variety 2 | Arbosana | Spain | 56.25 b | S |
Variety 3 | Menara | Morocco | 65.62 b | S |
Variety 4 | Arbiquina | Spain | 0 a | R |
Variety 5 | Picual | Spain | 62.5 b | S |
Variety 6 | Koroniki | Greece | 0 a | R |
Variety 7 | Picholine Languedoc | France | 100 c | HS |
Variety 8 | Haouziya | Morocco | 0 a | R |
Root | Shoot | ||||||
---|---|---|---|---|---|---|---|
RL (cm) | RFW (g) | RDW (g) | SL (cm) | SFW (g) | SDW (g) | ||
Variety 1 | Infected | 17.33 ± 2.51 a | 18.3 ± 0.91 a | 9.32 ± 0.65 a | 131.93 ± 1.9 a | 92 ± 4.71 a | 52.93 ± 2.16 a |
Control | 28 ± 2.64 b | 25.86 ± 2.28 b | 15.73 ± 1.17 b | 134.16 ± 3.68 a | 131.26 ± 10.13 b | 63.9 ± 4.28 b | |
Variety 2 | Infected | 25 ± 1.73 a | 27.53 ± 1.67 a | 19.03 ± 1.35 a | 85 ± 1 a | 52.13 ± 2.10 a | 29.13 ± 1.6 a |
Control | 27.33 ± 2.51 a | 33.83 ± 2.11 b | 21.33 ± 1.65 a | 90.30 ± 1.52 a | 68.4 ± 1.99 b | 32.16 ± 2.62 a | |
Variety 3 | Infected | 18.3 ± 1.04 a | 23.5 ± 0.96 a | 14.66 ± 0.46 a | 112.33 ± 4.5 a | 66.63 ± 3.77 a | 35.7 ± 4.37 a |
Control | 21 ± 1.73 a | 28.8 ± 0.78 b | 18.36 ± 1.10 b | 119.66 ± 9.04 a | 93.96 ± 5.04 b | 39.2 ± 3.43 a | |
Variety 4 | Infected | 20.37 ± 1.38 a | 24.03 ± 1.51 a | 14.27 ± 1.30 a | 107.96 ± 2.03 a | 71.20 ± 2.35 a | 36.8 ± 1.13 a |
Control | 20.9 ± 1.47 a | 24.13 ± 2.25 a | 14.96 ± 1.59 a | 112.1 ± 3.8 a | 73.47 ± 3.34 b | 38.3 ± 1.75 a | |
Variety 5 | Infected | 21.96 ± 2.22 a | 27.23 ± 2.20 a | 18.80 ± 1.85 a | 114.4 ± 2.77 a | 90.36 ± 5.9 a | 59.27 ± 3.66 a |
Control | 23.56 ± 2.39 a | 30.2 ± 2.9 b | 19 ± 1.21 a | 118.36 ± 1.43 a | 112.03 ± 9.34 b | 64.8 ± 4.92 a | |
Variety 6 | Infected | 26.83 ± 2.12 a | 31.2 ± 1.74 a | 18.86 ± 2.09 a | 78.97 ± 2.95 a | 52.43 ± 1.8 a | 24.94 ± 3.56 a |
Control | 27.7 ± 2.35 a | 34.16 ± 2.43 a | 20.33 ± 2.76 a | 81.37 ± 3.19 a | 56.97 ± 3.23 a | 26.3 ± 3.91 a | |
Variety 7 | Infected | 14.93 ± 1.45 a | 21.17 ± 2.04 a | 11.10 ± 0.36 a | 109.36 ± 4.58 a | 73.35 ± 4.46 a | 44.2 ± 1 a |
Control | 24.2 ± 1.25 b | 33.90 ± 1.15 b | 20.43 ± 0.06 b | 112.4 ± 7.55 a | 95.03 ± 5.79 b | 50.86 ± 2.11 b | |
Variety 8 | Infected | 30.8 ±1.21 a | 38.8 ± 1.57 a | 20.47 ± 1.01 a | 123.33 ± 6.11 a | 104.63 ± 4.94 a | 54.8 ± 3.53 a |
Control | 30.6 ± 1.24 a | 40.03 ± 1.30 a | 20.9 ± 1.30 a | 127 ± 1.04 a | 111.3 ± 3.21 a | 55 ± 1.61 a |
Wavenumber (cm−1) | Biochemical Markers | Functional Group/Assignment | References |
---|---|---|---|
3310 | Water | O–H stretching of the hydroxyl group | [38,39] |
2917 | Lipids | C–H asymmetric stretching in –CH2 groups | [34,40] |
2850 | Lipids | C–H symmetric stretching in –CH2 groups | [34,40] |
1630 | Proteins | C=O stretching (amide I) | [40,41] |
1429 | Lignin | C–H deformation (methyl/methylene groups) | [34,36] |
1317 | Polysaccharides | C–O stretching and C–H deformation, linked to carbohydrate structure | [36,42] |
1256 | Pectins | C–O–C stretching, associated with ester groups | [36,37] |
1030 | Cellulose | C–O stretching, indicative of polysaccharide backbone structures | [36,42] |
Absorbance Bands (cm−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Pectin | Proteins (Amide I) | Lignin | Hemicellulose | Cellulose | ||||
1760–1720 | 1710–1620 | 1615–1590 | 1480–1455 | 1455–1410 | 1261–1200 | 1090–1022 | ||
Variety 1 | Infected | 0.24 ± 0.07 a | 1.20 ± 0.28 a | 0.37 ± 0.09 a | 0.28 ± 0.06 a | 0.66 ± 0.13 a | 0.33 ± 0.13 a | 2.72 ± 0.57 a |
Control | 0.55 ± 0.02 b | 2.44 ± 0.15 b | 0.78 ± 0.02 b | 0.7 ± 0.07 b | 1.55 ± 0.05 b | 0.77 ± 0.02 b | 6.65 ± 0.21 b | |
Variety 2 | Infected | 0.26 ± 0.01 a | 1.28 ± 0.05 a | 0.43 ± 0.01 a | 0.19 ± 0.08 a | 0.45 ± 0.08 a | 0.47 ± 0.02 a | 2.58 ± 0.08 a |
Control | 0.33 ± 0.02 b | 1.37 ± 0.03 b | 0.47 ± 0.2 b | 0.27 ± 0.07 b | 0.63 ± 0.04 b | 0.57 ± 0.01 b | 3.33 ± 0.03 b | |
Variety 3 | Infected | 0.29 ± 0.01 a | 1.47 ± 0.01 a | 0.51 ± 0.01 a | 0.24 ± 0.01 a | 0.55 ± 0.01 a | 0.61 ± 0.01 b | 2.58 ± 0.01 a |
Control | 0.35 ± 0.01 b | 1.60 ± 0.02 b | 0.53 ± 0.02 a | 0.26 ± 0.01 a | 0.61 ± 0.03 b | 0.56 ± 0.01 a | 3.66 ± 0.03 b | |
Variety 4 | Infected | 0.29 ± 0.01 b | 1.55 ± 0.17 b | 0.51 ± 0.06 b | 0.33 ± 0.03 b | 0.73 ± 0.06 b | 0.64 ± 0.05 b | 3.07 ± 0.08 b |
Control | 0.24 ± 0.01 a | 1.01 ± 0.02 a | 0.32 ± 0.01 a | 0.21 ± 0.01 a | 0.51 ± 0.01 a | 0.36 ± 0.02 a | 2.67 ± 0.03 a | |
Variety 5 | Infected | 0.28 ± 0.02 a | 1.27 ± 0.02 a | 0.40 ± 0.02 a | 0.23 ± 0.02 a | 0.54 ± 0.06 a | 0.49 ± 0.06 a | 3.03 ± 0.02 a |
Control | 0.35 ± 0.01 b | 1.56 ± 0.02 b | 0.52 ± 0.01 b | 0.27 ± 0.01 b | 0.63 ± 0.01 b | 0.59 ± 0.01 b | 3.88 ± 0.05 b | |
Variety 6 | Infected | 0.29 ± 0.04 a | 1.32 ± 0.01 a | 0.39 ± 0.01 a | 0.27 ± 0.02 a | 0.63 ± 0.03 a | 0.51 ± 0.13 a | 3.12 ± 0.8 a |
Control | 0.36 ± 0.3 b | 1.39 ± 0.09 b | 0.44 ± 0.02 b | 0.28 ± 0.02 a | 0.68 ± 0.03 b | 0.57 ± 0.12 b | 3.75 ± 0.26 b | |
Variety 7 | Infected | 0.17 ± 0.01 a | 1.36 ± 0.06 a | 0.23 ± 0.01 a | 0.13 ± 0.01 a | 0.29 ± 0.05 a | 0.29 ± 0.05 a | 1.61 ± 0.02 a |
Control | 0.49 ± 0.01 b | 2.12 ± 0.01 b | 0.73 ± 0.06 b | 0.33 ± 0.01 b | 0.73 ± 0.06 b | 0.89 ± 0.01 b | 3.92 ± 0.03 b | |
Variety 8 | Infected | 0.33 ± 0.01 b | 1.44 ± 0.08 b | 0.44 ± 0.03 b | 0.24 ± 0.01 b | 0.55 ± 0.04 b | 0.46 ± 0.02 b | 3.6 ± 0.11 b |
Control | 0.28 ± 0.05 a | 1.29 ± 0.03 a | 0.39 ± 0.01 a | 0.21 ± 0.01 a | 0.45 ± 0.01 a | 0.4 ± 0.05 a | 3.07 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legrifi, I.; Radi, M.; Taoussi, M.; Khadiri, M.; Hari, A.; Sagouti, T.; Figuigui, J.A.; Belabess, Z.; Lazraq, A.; Lahlali, R. Biochemical Defense Mechanisms of Olive Varieties Against Pythium schmitthenneri, the Causal Agent of Root Rot Disease. Pathogens 2025, 14, 803. https://doi.org/10.3390/pathogens14080803
Legrifi I, Radi M, Taoussi M, Khadiri M, Hari A, Sagouti T, Figuigui JA, Belabess Z, Lazraq A, Lahlali R. Biochemical Defense Mechanisms of Olive Varieties Against Pythium schmitthenneri, the Causal Agent of Root Rot Disease. Pathogens. 2025; 14(8):803. https://doi.org/10.3390/pathogens14080803
Chicago/Turabian StyleLegrifi, Ikram, Mohammed Radi, Mohammed Taoussi, Mohammed Khadiri, Amal Hari, Tourya Sagouti, Jamila Al Figuigui, Zineb Belabess, Abderrahim Lazraq, and Rachid Lahlali. 2025. "Biochemical Defense Mechanisms of Olive Varieties Against Pythium schmitthenneri, the Causal Agent of Root Rot Disease" Pathogens 14, no. 8: 803. https://doi.org/10.3390/pathogens14080803
APA StyleLegrifi, I., Radi, M., Taoussi, M., Khadiri, M., Hari, A., Sagouti, T., Figuigui, J. A., Belabess, Z., Lazraq, A., & Lahlali, R. (2025). Biochemical Defense Mechanisms of Olive Varieties Against Pythium schmitthenneri, the Causal Agent of Root Rot Disease. Pathogens, 14(8), 803. https://doi.org/10.3390/pathogens14080803