Restoring Control: Real-World Success with Imipenem–Relebactam in Critical MDR Infections—A Multicenter Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Inclusion and Exclusion Criteria
- Age ≥ 18 years.
- Treated with imipenem–relebactam for ≥48 h.
- Documented or suspected infection caused by Gram-negative MDR pathogens, including the following:
- ○
- Complicated intra-abdominal infections (cIAIs);
- ○
- Complicated urinary tract infections (cUTIs);
- ○
- Hospital-acquired pneumonia (HAP) or ventilator-associated pneumonia (VAP);
- ○
- Bloodstream infections (BSIs) due to pathogens susceptible to imipenem–relebactam.
- Availability of complete microbiological and clinical outcome data.
- Patients were excluded based on the following criteria:
- Received imipenem–relebactam for <48 h.
- Had incomplete clinical documentation.
- Had co-infections with pathogens resistant to imipenem–relebactam that were not covered by concurrent antimicrobial therapy.
- Were pregnant, breastfeeding, or receiving palliative care.
- Had a life expectancy <48 h or <30 days due to non-infectious causes.
- Demographics (age, sex);
- Comorbidities (e.g., diabetes, chronic kidney disease, cardiovascular disease);
- Charlson Comorbidity Index (CCI);
- Infection type and source;
- ICU admission and duration;
- Use of invasive devices (mechanical ventilation, arterial catheters);
- Antimicrobial regimen details (dose, duration, concurrent therapies);
- Laboratory parameters (CRP, PCT, bilirubin, platelets, renal function) at baseline and after 48 h of therapy.
2.3. Definitions
2.4. Outcomes
- Clinical success at the end of therapy, defined as complete resolution or significant improvement in signs and symptoms of infection without the need for modification of antibiotic therapy.
- Thirty-day all-cause mortality, defined as death from any cause within 30 days from initiation of imipenem–relebactam.
- Microbiological eradication, defined as documented negative cultures following completion of therapy.
- Duration of hospital and ICU stay.
- Infection recurrence or re-infection within 30 days of treatment completion.
- Incidence of therapy-related adverse events.
- Associations between demographical/clinical factors and mortality.
2.5. Microbiological Evaluation
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
Study Population
- Clinical Success: A total of 22 of 29 patients (75.9%) achieved clinical success at the end of the therapy. Early clinical improvement within 72 h was observed in 14 of 28 evaluable patients (50%).
- Thirty-day Mortality: Seven patients (24.1%) died within 30 days of therapy initiation. Compared to survivors, non-survivors had significantly longer MV duration (34.5 vs. 12 days, p = 0.013) and higher rates of sepsis at presentation (100% vs. 54.5%, p = 0.04), candidemia (71.4% vs. 27.3%, p = 0.036), parenteral nutrition (83.3% vs. 28.6%, p = 0.016), and arterial catheter use (85.7% vs. 38.1%, p = 0.029) (Table 1).
- Microbiological Eradication: Among 27 patients with positive cultures, 10/27 (30%) had positive blood cultures. Among those patients with BSI, the median time to culture negativization was 10 days (IQR 5.25–12.25) with no significant difference between survivors and non-survivors (p = 0.46). Overall eradication was confirmed in all patients with BSI.
- Infections and Pathogens: Hospital-acquired infections predominated (82.8% vs. 13.8% community-acquired). Klebsiella pneumoniae was the most common isolate (18/29, 62.1%), followed by Pseudomonas aeruginosa (3/29, 10.3%). Polymicrobial infections occurred in 12 of 27 patients (44.4%), and 16 of 28 (57.1%) were colonized with KPC-producing microorganisms prior to infection.
- Recurrence and Re-infection: Three out of twenty-three patients (13%) experienced recurrence within 30 days of treatment completion, with a higher percentage among non-survived patients compared to alive patients (25% vs. 10.5%, respectively) without statistically significant differences (Table 2).
Overall (n = 29) | Dead (n = 7) | Alive (n = 22) | p-Value | |
---|---|---|---|---|
CA infection | 4/29 (13.8%) | 2/7 (28.6%) | 2/22 (9.1%) | 0.193 |
HA infection | 24/29 (82.8%) | 6/7 (85.7%) | 18/22 (81.8%) | 0.8 |
MV | 20/28 (71.4%) | 6/6 (100%) | 14/22 (63.6%) | 0.08 |
ECMO | 1/28 (3.6%) | 1/6 (16.7%) | 0/22 | 0.051 |
Parenteral nutrition | 11/27 (40.7%) | 5/6 (83.3%) | 6/21 (28.6%) | 0.016 |
Dialysis | 5/28 (17.9%) | 1/6 (16.7%) | 4/22 (18.2%) | 0.93 |
Central vein | 25/28 (89.3%) | 7/7 (100%) | 18/21 (85.7%) | 0.29 |
CVC | 22/28 (78.6%) | 7/7 (100%) | 15/21 (71.4%) | 0.11 |
Arterial catheter | 14/28 (50%) | 6/7 (85.7%) | 8/21 (38.1%) | 0.029 |
PICC/midline | 15/28 (35.6%) | 2/7 (28.6%) | 13/21 (61.9%) | 0.13 |
PORT-a-Cath | 2/29 (6.9%) | 0/7 | 2/22 (9.1%) | 0.4 |
KPC colonized (RS) | 16/28 (57.1%) | 6/7 (85.7%) | 10/21 (47.6%) | 0.078 |
COVID-19 | 1/29 (3.5%) | 0/7 | 1/22 (4.5%) | 0.5 |
Sepsis | 19/29 (65.5%) | 7/7 (100%) | 12/22 (54.5%) | 0.04 |
Shock | 16/29 (55.2%) | 5/7 (71.4%) | 11/22 (50%) | 0.32 |
Polymicrobial isolates | 12/27 (44.4%) | 4/6 (66.7%) | 8/21 (38.1%) | 0.33 |
Isolates type distribution | 0.035 | |||
K. pneumoniae | 18 | 1 | 17 | |
P. aeruginosa | 3 | 1 | 2 | |
S. marcescens | 1 | 1 | 0 | |
M. morganii | 1 | 1 | 0 | |
Previous ATB | 26/26 (100%) | 7/7 | 19/19 | 0.3 |
Targeted therapy | 21/29 (72.4%) | 5/7 (71.4%) | 16/22 (72.7%) | 0.95 |
Combination ATB | 14/29 (48.3%) | 4/7 (57.1%) | 10/22 (45.5%) | 0.36 |
Early clinical improvement | 14/29 (50%) | 2/7 (28.6%) | 12/22 (54.5%) | 0.23 |
C. difficile infection | 1/29 (3.5%) | 0/7 | 1/22 (4.5%) | 0.57 |
Candidemia | 11/29 (37.9%) | 5/7 (71.4%) | 6/22 (27.3%) | 0.036 |
Re-infection | 3/23 (13%) | 1/4 (25%) | 2/19 (10.5%) | 0.45 |
- Overall Change (T0→T1 at 48 h): In the entire cohort, median CRP declined from 16.8 to 9.15 mg/dL (p = 0.027), and PCT from 3.0 to 1.0 ng/mL (p = 0.004). Other parameters, including hemoglobin, WBC, creatinine, bilirubin, and fibrinogen, showed no significant shifts.
- Survivors: Among survivors (n = 22), CRP fell from 10.8 to 5.3 mg/dL (p = 0.03), PCT from 3.1 to 0.93 ng/mL (p = 0.01), and total bilirubin from 1.0 to 0.85 mg/dL (p = 0.02). Other markers, including platelet count, did not change significantly.
- Non-survivors: No laboratory parameter demonstrated a statistically significant change at 48 h in non-survivors (Table 3).
Parameter | Overall T0 (n = 29) | Overall T1 (n = 29) | p-Value | Survivors T0 (n = 22) | Survivors T1 (n = 22) | p-Value | Non-Survivors T0 (n = 7) | Non-Survivors T1 (n = 7) | p-Value |
---|---|---|---|---|---|---|---|---|---|
CRP (mg/dL) | 16.8 (6.4–22.7) | 9.15 (3.81–20.3) | 0.027 | 10.8 (5.6–20.6) | 5.3 (3.2–16.9) | 0.03 | 20.6 (12.2–25.0) | 14.9 (10.1–23.0) | 0.16 |
Procalcitonin (ng/mL) | 3.0 (0.67–8.67) | 1.0 (0.4–5.6) | 0.004 | 3.1 (0.39–11.46) | 0.93 (0.34–5.42) | 0.01 | 3.0 (1.94–4.7) | 2.26 (0.73–8.9) | 0.73 |
Total bilirubin (mg/dL) | 1.0 (0.64–1.48) | 0.85 (0.48–1.2) | 0.12 | 1.0 (0.6–1.32) | 0.85 (0.43–1.04) | 0.02 | 0.7 (0.67–2.32) | 1.1 (0.5–8.7) | 1.00 |
Platelet count (/µL) | 180,000 (98,500–317,500) | 235,000 (100,500–336,250) | 0.93 | 190,000 (99,250–346,500) | 273,500 (135,500–341,500) | 0.45 | 122,000 (82,000–254,000) | 95,500 (64,250–155,000) | 0.06 |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Accurso, G.; Corcione, S.; Vena, A.; Schenone, M.; Diella, L.; Fasciana, T.; Giannella, M.; Giacobbe, D.R.; Mornese Pinna, S.; et al. Antipseudomonal Cephalosporins versus Piperacillin/Tazobactam or Carbapenems for the Definitive Antibiotic Treatment of Pseudomonas Aeruginosa Bacteraemia: New Kids on the ICU Block? J. Antimicrob. Chemother. 2025, 80, 1342–1353. [Google Scholar] [CrossRef]
- La Via, L.; Sangiorgio, G.; Stefani, S.; Marino, A.; Nunnari, G.; Cocuzza, S.; La Mantia, I.; Cacopardo, B.; Stracquadanio, S.; Spampinato, S.; et al. The Global Burden of Sepsis and Septic Shock. Epidemiologia 2024, 5, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Uhlemann, A.-C.; Peleg, A.Y. Multidrug-Resistant Gram-Negative Bacterial Infections. Lancet 2025, 405, 257–272. [Google Scholar] [CrossRef]
- Marino, A.; Campanella, E.; Stracquadanio, S.; Calvo, M.; Migliorisi, G.; Nicolosi, A.; Cosentino, F.; Marletta, S.; Spampinato, S.; Prestifilippo, P.; et al. Ceftazidime/Avibactam and Meropenem/Vaborbactam for the Management of Enterobacterales Infections: A Narrative Review, Clinical Considerations, and Expert Opinion. Antibiotics 2023, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- Machuca, I.; Dominguez, A.; Amaya, R.; Arjona, C.; Gracia-Ahufinger, I.; Carralon, M.; Giron, R.; Gea, I.; De Benito, N.; Martin, A.; et al. Real-World Experience of Imipenem-Relebactam Treatment as Salvage Therapy in Difficult-to-Treat Pseudomonas Aeruginosa Infections (IMRECOR Study). Infect. Dis. Ther. 2025, 14, 283–292. [Google Scholar] [CrossRef]
- Sansone, P.; Giaccari, L.G.; Di Flumeri, G.; Pace, M.C.; Pota, V.; Coppolino, F.; Brunetti, S.; Aurilio, C. Imipenem/Cilastatin/Relebactam for Complicated Infections: A Real-World Evidence. Life 2024, 14, 614. [Google Scholar] [CrossRef] [PubMed]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-Blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-Nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Shorr, A.F.; Kollef, M.H.; Du, J.; Losada, M.C.; Paschke, A.; DeRyke, C.A.; Wong, M.; Jensen, E.H.; Chen, L.F. Participant- and Disease-Related Factors as Independent Predictors of Treatment Outcomes in the RESTORE-IMI 2 Clinical Trial: A Multivariable Regression Analysis. Open Forum Infect. Dis. 2023, 10, ofad225. [Google Scholar] [CrossRef]
- Shields, R.K.; Yücel, E.; Turzhitsky, V.; Merchant, S.; Min, J.S.; Watanabe, A.H. Real-World Evaluation of Imipenem/Cilastatin/Relebactam across US Medical Centres. J. Glob. Antimicrob. Resist. 2024, 37, 190–194. [Google Scholar] [CrossRef]
- Caniff, K.E.; Rebold, N.; Xhemali, X.; Tran, N.; Eubank, T.A.; Garey, K.W.; Guo, Y.; Chang, M.; Barber, K.E.; Krekel, T.; et al. Real-World Applications of Imipenem-Cilastatin-Relebactam: Insights From a Multicenter Observational Cohort Study. Open Forum Infect. Dis. 2025, 12, ofaf112. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Tseng, W.-P.; Chen, Y.-C.; Yang, B.-J.; Chen, S.-Y.; Lin, J.-J.; Huang, Y.-H.; Fu, C.-M.; Chang, S.-C.; Chen, S.-Y. Predicting Multidrug-Resistant Gram-Negative Bacterial Colonization and Associated Infection on Hospital Admission. Infect. Control Hosp. Epidemiol. 2017, 38, 1216–1225. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Eucast: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 28 June 2025).
- Pipitone, G.; Di Bella, S.; Maraolo, A.E.; Granata, G.; Gatti, M.; Principe, L.; Russo, A.; Gizzi, A.; Pallone, R.; Cascio, A.; et al. Intravenous Fosfomycin for Systemic Multidrug-Resistant Pseudomonas Aeruginosa Infections. Antibiotics 2023, 12, 1653. [Google Scholar] [CrossRef]
- Marino, A.; Stracquadanio, S.; Campanella, E.; Munafò, A.; Gussio, M.; Ceccarelli, M.; Bernardini, R.; Nunnari, G.; Cacopardo, B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics 2022, 12, 49. [Google Scholar] [CrossRef]
- Rete Dei Laboratori Di Microbiologia (Rete MIC) per La Sorveglianza Delle Resistenze Batteriche|Qualità Sicilia SSR. Available online: https://www.qualitasiciliassr.it/?q=rete-laboratori (accessed on 29 June 2025).
- Calvo, M.; Maugeri, G.; Bongiorno, D.; Migliorisi, G.; Stefani, S. Integrating an LFA Carbapenemase Detection System into the Laboratory Diagnostic Routine: Preliminary Data and Effectiveness Against Enzyme Variants. Diagnostics 2025, 15, 1434. [Google Scholar] [CrossRef]
- Wangchinda, W.; Pogue, J.M.; Abbo, L.M.; Klatt, M.; Kline, E.G.; Kubat, R.C.; Gilboa, M.; Vega, A.; Zhou, Y.; Yucel, E.; et al. P-1105. Effectiveness of Imipenem-Relebactam for Multidrug-Resistant Pseudomonas Aeruginosa in Pneumonia and Bloodstream Infections in the United States (MIRAGE). Open Forum Infect. Dis. 2025, 12, ofae631. [Google Scholar] [CrossRef]
- Vu, C.A.; Bec, E.; Deronde, K.; Rosa, R.; Abbo, L.M. 670. Real-Life Experience of Imipenem-Cilistatin-Relebactam for the Treatment of Extensively Drug-Resistant and Difficult-to-Treat Pseudomonas Infections. Open Forum Infect. Dis. 2022, 9, ofac492.722. [Google Scholar] [CrossRef]
- Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-Blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-Acquired or Ventilator-Associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
- Sahra, S.; Jahangir, A.; Hamadi, R.; Jahangir, A.; Glaser, A. Clinical and Microbiologic Efficacy and Safety of Imipenem/Cilastatin/Relebactam in Complicated Infections: A Meta-Analysis. Infect. Chemother. 2021, 53, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Leanza, C.; Mascellino, M.T.; Volpicelli, L.; Covino, S.; Falletta, A.; Cancelli, F.; Franchi, C.; Carnevalini, M.; Mastroianni, C.M.; Oliva, A. Real-World Use of Imipenem/Cilastatin/Relebactam for the Treatment of KPC-Producing Klebsiella Pneumoniae Complex and Difficult-to-Treat Resistance (DTR) Pseudomonas Aeruginosa Infections: A Single-Center Preliminary Experience. Front. Microbiol. 2024, 15, 1432296. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, D.; Ambretti, S.; Lazzarotto, T.; Gaibani, P. In Vitro Activity of Imipenem-Relebactam against KPC-Producing Klebsiella Pneumoniae Resistant to Ceftazidime-Avibactam and/or Meropenem-Vaborbactam. Clin. Microbiol. Infect. 2022, 28, 749–751. [Google Scholar] [CrossRef]
- Palomba, E.; Comelli, A.; Saluzzo, F.; Di Marco, F.; Matarazzo, E.; Re, N.L.; Bielli, A.; Vismara, C.S.; Muscatello, A.; Rossi, M.; et al. Activity of Imipenem/Relebactam against KPC-Producing Klebsiella Pneumoniae and the Possible Role of Ompk36 Mutation in Determining Resistance: An Italian Retrospective Analysis. Ann. Clin. Microbiol. Antimicrob. 2025, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.; Fennie, K.; Munoz-Price, L.S.; Ibrahimou, B.; Abbo, L.M.; Martinez, O.; Sposato, K.; Doi, Y.; Trepka, M.J. Risk Factors for the Development of Infections Associated with Carbapenemase-Producing Enterobacteriaceae among Previously Colonized Patients: A Retrospective Cohort Study. Infect. Control Hosp. Epidemiol. 2021, 42, 763–766. [Google Scholar] [CrossRef]
- Tompkins, K.; van Duin, D. Treatment for Carbapenem-Resistant Enterobacterales Infections: Recent Advances and Future Directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2053–2068. [Google Scholar] [CrossRef]
Overall (n = 29) | Dead (n = 7) | Alive (n = 22) | p-Value | |
---|---|---|---|---|
Age (years, IQR) | 66 (57–74.5) | 59 (55–72) | 66.5 (58.25–72.25) | 0.72 |
Sex (M) | 16/29 (55.2%) | 3/7 (42.9%) | 13/22 (59.1%) | 0.67 |
BMI > 30 | 7/29 (24.1%) | 1/7 (14.3%) | 6/22 (27.3%) | 0.65 |
COPD | 5/29 (17.2%) | 1/7 (14.3%) | 4/22 (18.2%) | 1 |
CKD | 9/29 (31%) | 2/7 (28.6%) | 7/22 (31.8%) | 1 |
Neoplasm | 5/29 (17.2%) | 1/7 (14.3%) | 4/22 (18.2%) | 1 |
Diabetes | 8/29 (27.6%) | 3/7 (42.9%) | 5/22 (22.7%) | 0.36 |
CHD | 11/29 (37.9%) | 4/7 (57.1%) | 7/22 (31.8%) | 0.38 |
Cirrhosis | 2/29 (6.9%) | 0/7 | 2/22 (9.1%) | 1 |
CAD | 2/29 (6.9%) | 1/7 (14.3%) | 1/22 (4.5%) | 0.43 |
Stroke | 3/29 (10.3%) | 1/7 (14.3%) | 2/22 (9.1%) | 1 |
Pulmonary diseases | 6/29 (20.7%) | 1/7 (14.3%) | 5/22 (22.7%) | 1 |
CCI (median, IQR) | 4 (2–6) | 5 (2–7) | 4 (2.75–6) | 0.59 |
Days of therapy (IQR) | 11 (7.5–14.4) | 10 (8–14) | 11 (7–15) | 0.94 |
Days in hospital (IQR) | 48 (29.5–89.5) | 49 (42–60) | 45 (27–94.5) | 0.59 |
Days on MV | 26 (5–37) | 34.5 (29.75–54.25) | 12 (3–27) | 0.013 |
ICU | 17/29 (58.6%) | 6/7 (85.7%) | 11/22 (50%) | 0.19 |
Days from sampling to ATB | 5 (2–7.75) | 6 (0–14.5) | 5 (2–7.75) | 0.82 |
Time to BC clearance | 10 (5.25–12.25) | 6 (5-) | 10 (7–13) | 0.46 |
Source of infection | 0.24 | |||
HAP/VAP | 5/27 (18.5%) | 2/6 (33.3%) | 3/21 (14.3%) | |
BSI | 6/27 (22.2%) | 2/6 (33.3%) | 4/21(19%) | |
cIAI | 6/27 (22.2%) | 0/6 | 6/21 (28.6%) | |
UTI | 3/27 (11.1%) | 0/6 | 3/21 (14.3%) | |
BSI + HAP/VAP | 4/27 (14.8%) | 1/6 (16.7%) | 3/21 (14.3%) | |
SSTI | 2/27 (7.4%) | 0/6 | 2/21 (9.5%) | |
CSF | 1/27 (3.7%) | 1/6 (16.7%) | 0/21 |
95% Confidence Intervals (2-Tailed) | p-Value | |||
---|---|---|---|---|
Thirty-day mortality | Spearman’s rho | Lower | Upper | |
Parenteral nutrition | 0.27 | 0.053 | 0.696 | 0.023 |
Mechanical Ventilation | 0.315 | −0.069 | 0.618 | 0.096 |
Arterial catheter | 0.384 | 0.009 | 0.664 | 0.04 |
Sepsis | 0.378 | 0.002 | 0.661 | 0.043 |
Candidemia | 0.354 | −0.018 | 0.64 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, A.; Pipitone, G.; Venanzi Rullo, E.; Cosentino, F.; Ippolito, R.; Costa, R.; Bagarello, S.; Russotto, Y.; Iaria, C.; Cacopardo, B.; et al. Restoring Control: Real-World Success with Imipenem–Relebactam in Critical MDR Infections—A Multicenter Observational Study. Pathogens 2025, 14, 685. https://doi.org/10.3390/pathogens14070685
Marino A, Pipitone G, Venanzi Rullo E, Cosentino F, Ippolito R, Costa R, Bagarello S, Russotto Y, Iaria C, Cacopardo B, et al. Restoring Control: Real-World Success with Imipenem–Relebactam in Critical MDR Infections—A Multicenter Observational Study. Pathogens. 2025; 14(7):685. https://doi.org/10.3390/pathogens14070685
Chicago/Turabian StyleMarino, Andrea, Giuseppe Pipitone, Emmanuele Venanzi Rullo, Federica Cosentino, Rita Ippolito, Roberta Costa, Sara Bagarello, Ylenia Russotto, Chiara Iaria, Bruno Cacopardo, and et al. 2025. "Restoring Control: Real-World Success with Imipenem–Relebactam in Critical MDR Infections—A Multicenter Observational Study" Pathogens 14, no. 7: 685. https://doi.org/10.3390/pathogens14070685
APA StyleMarino, A., Pipitone, G., Venanzi Rullo, E., Cosentino, F., Ippolito, R., Costa, R., Bagarello, S., Russotto, Y., Iaria, C., Cacopardo, B., & Nunnari, G. (2025). Restoring Control: Real-World Success with Imipenem–Relebactam in Critical MDR Infections—A Multicenter Observational Study. Pathogens, 14(7), 685. https://doi.org/10.3390/pathogens14070685