Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. DNA Isolation
2.3. Detection of Virulence, β-Lactamases, and Efflux Pump Genes
2.4. ERIC-PCR (Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction) Typing
2.5. REP-PCR Typing
2.6. Electrophoresis and Computer Analysis
2.7. Statistical Analysis
3. Results
3.1. The Presence of Genes Encoding β-Lactam Resistance, Efflux Pumps, and Virulence in K. pneumoniae Isolates
3.2. ERIC- and REP-PCR Typing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kochan, T.J.; Nozick, S.H.; Medernach, R.L.; Cheung, B.H.; Gatesy, S.W.M.; Lebrun-Corbin, M.; Mitra, S.D.; Khalatyan, N.; Krapp, F.; Qi, C.; et al. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect. Dis. 2022, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep. 2016, 6, 38929. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.-L.; Ko, W.-C.; Cheng, K.-C.; Lee, H.-C.; Ke, D.-S.; Lee, C.-C.; Fung, C.-P.; Chuang, Y.-C. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin. Infect. Dis. 2006, 42, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Bengoechea, J.A.; Sa Pessoa, J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol. Rev. 2019, 1, 123–144. [Google Scholar] [CrossRef]
- Pruss, A.; Wrona, M.; Kwiatkowski, P.; Masiuk, H.; Cettler, M.; Giedrys-Kalemba, S.; Dudzińska, E.; Dołęgowska, B. Virulence genes and antibiotic resistance among clinical Klebsiella pneumoniae strains. Pomer. J. Life Sci. 2023, 69, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect. Drug Resist. 2024, 17, 1107–1119. [Google Scholar] [CrossRef]
- Shrivastava, S.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76–77. [Google Scholar] [CrossRef]
- Ambler, R.P.; Coulson, A.F.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G.A. Standard numbering scheme for the class A-lactamases. Biochem. J. 1991, 276, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Kot, B.; Piechota, M.; Szweda, P.; Mitrus, J.; Wicha, J.; Grużewska, A.; Witeska, M. Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci. Rep. 2023, 13, 4448. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ensor, V.; Gossain, S.; Nye, K.; Hawkey, P. Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J. Med. Microbiol. 2005, 54, 1183–1187. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Ghasemian, A.; Nojoomi, F.; Eslami, M. The Rep-PCR typing of TEM type ESBL producing clinical isolates of Klebsiella pneumonia. MOJ Cell Sci. Rep. 2017, 4, 98–102. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 16, dlab092. [Google Scholar] [CrossRef]
- Bradford, P.A. Extended-spectrum b-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Ojdana, D.; Sacha, P.; Wieczorek, P.; Czaban, S.; Michalska, A.; Jaworowska, J.; Jurczak, A.; Poniatowski, B.; Tryniszewska, E. The occurrence of blaCTX-M, blaSHV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int. J. Antibiot. 2014, 2014, 935842. [Google Scholar] [CrossRef]
- Tsang, K.K.; Lam, M.M.C.; Wick, R.R.; Wyres, K.L.; Bachman, M.; Baker, S.; Barry, K.; Brisse, S.; Campino, S.; Chiaverini, A.; et al. Diversity, functional classification and genotyping of SHV β-lactamases in Klebsiella pneumoniae. Microb. Genom. 2024, 10, 001294. [Google Scholar] [CrossRef]
- Ford, P.J.; Avison, M.B. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 2004, 54, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Ghenea, A.E.; Zlatian, O.M.; Cristea, O.M.; Ungureanu, A.; Mititelu, R.R.; Balasoiu, A.T.; Vasile, C.M.; Salan, A.I.; Iliuta, D.; Popescu, M.; et al. TEM, CTX-M, SHV genes in ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from clinical samples in a County Clinical Emergency Hospital Romania-predominance of CTX-M-15. Antibiotics 2022, 11, 503. [Google Scholar] [CrossRef] [PubMed]
- Dehshiri, M.; Khoramrooz, S.S.; Zoladl, M.; Khosravani, S.A.; Parhizgari, N.; Motazedian, M.H.; Jahedi, S.; Sharifi, A. The frequency of Klebsiella pneumonia encoding genes for CTX-M, TEM-1 and SHV-1 extended-spectrum beta lactamases enzymes isolated from urinary tract infection. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, U.M.A.; Abdul-Kareem, I.Q. Molecular identification of virulence and antimicrobial resistance genes of Klebsiella pneumonia isolated from the patients. J. Med. Pharmac. Chem. Res. 2025, 7, 733–744. [Google Scholar] [CrossRef]
- Bonnet, R. Growing group of extended-spectrum beta-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef]
- Baraniak, A.; Fiett, J.; Sulikowska, A.; Hryniewicz, W.; Gniadkowski, M. Countrywide spread of CTX-M-3 extended-spectrum beta-lactamase producing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob. Agents Chemother. 2002, 46, 151–159. [Google Scholar] [CrossRef]
- Baraniak, A.; Fiett, J.; Hryniewicz, W.; Nordmann, P.; Gniadkowski, M. Ceftazidime-hydrolysing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J. Antimicrob. Chemother. 2002, 50, 393–396. [Google Scholar] [CrossRef]
- Ochońska, D.; Ścibik, Ł.; Brzychczy-Włoch, M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy tubes and their association with antimicrobial resistance, virulence and genetic diversity. Pathogens 2021, 10, 1345. [Google Scholar] [CrossRef]
- Poirel, L.; Naas, T.; Guibert, M.; Chaibi, E.B.; Labia, R.; Nordmann, P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 1999, 43, 573–581. [Google Scholar] [CrossRef]
- Girlich, D.; Naas, T.; Leelaporn, A.; Poirel, L.; Fennewald, M.; Nordmann, P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin. Infect. Dis. 2002, 34, 603–611. [Google Scholar] [CrossRef]
- Naas, T.; Coignard, B.; Carbonne, A.; Blanckaert, K.; Bajolet, O.; Bernet, C.; Verdeil, X.; Astagneau, P.; Desenclos, J.C.; Nordmann, P. French nosocomial infection early warning investigation and surveillance network. VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg. Infect. Dis. 2006, 12, 1214–1222. [Google Scholar] [CrossRef]
- Latifpour, M.; Gholipour, A.; Damavandi, M.S. Prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in nosocomial and community-acquired urinary tract infections. Jundishapur. J. Microbiol. 2016, 9, e31179. [Google Scholar] [CrossRef] [PubMed]
- Kiratisin, P.; Apisarnthanarak, A.; Laesripa, C.; Saifon, P. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother. 2008, 52, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, Y.; Wang, R.; Wang, Q.; Jin, L.; Wang, H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. eBioMedicine 2020, 51, 102599. [Google Scholar] [CrossRef]
- Ain, N.U.; Hannan, A.; Imran, N.; Ali, A.; Rasheed, F.; Sultan, S.; McHugh, T.; Riaz, S. New Delhi metallo-β-lactamases among extensively drug-resistant clinical isolates from Lahore, Pakistan. Future Microbiol. 2024, 19, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Safavi, M.; Bostanshirin, N.; Hajikhani, B.; Yaslianifard, S.; van Belkum, A.; Goudarzi, M.; Hashemi, A.; Darban-Sarokhalil, D.; Dadashi, M. Global genotype distribution of human clinical isolates of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae; A systematic review. J. Glob. Antimicrob. Resist. 2020, 23, 420–429. [Google Scholar] [CrossRef]
- Hammoudi, H.D.; Ayoub, M.C. The current burden of carbapenemases: Review of significant properties and dissemination among Gram-negative bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Kamalakar, S.; Rameshkumar, M.R.; Jyothi, T.L.; Sundaramurthy, R.; Senthamilselvan, B.; Nishanth, A.; Krithika, C.; Alodaini, H.A.; Hatamleh, A.A.; Arunagirinathan, N. Molecular detection of blaNDM and blaOXA-48 genes in carbapenem-resistant Klebsiella pneumoniae isolates from a tertiary care hospital. J. King Saud Univ. Sci. 2024, 36, 103233. [Google Scholar] [CrossRef]
- Taha, M.S.; Hagras, M.M.; Shalaby, M.M.; Zamzam, Y.A.; Elkolaly, R.M.; Abdelwahab, M.A.; Maxwell, S.Y. Genotypic characterization of carbapenem resistant Klebsiella pneumoniae isolated from an Egyptian university hospital. Pathogens 2023, 12, 121. [Google Scholar] [CrossRef]
- Srinivasan, V.B.; Singh, B.B.; Priyadarshi, N.; Chauhan, N.K.; Rajamohan, G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS ONE 2014, 9, e96288. [Google Scholar] [CrossRef] [PubMed]
- Pages, J.M.; Lavigne, J.P.; Leflon-Guibout, V.; Marcon, E.; Bert, F.; Noussair, L.; Nicolas-Chanoine, M.H. Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 2009, 4, e4817. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, A.; Ranjbar, R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Expr. 2021, 11, 122. [Google Scholar] [CrossRef]
- Wand, M.E.; Darby, E.M.; Blair, J.M.A.; Sutton, J.M. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J. Med. Microbiol. 2022, 71, 001496. [Google Scholar] [CrossRef]
- Kusakizako, T.; Miyauchi, H.; Ishitani, R.; Nureki, O. Structural biology of the multidrug and toxic compound extrusion superfamily transporters. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183154. [Google Scholar] [CrossRef] [PubMed]
- Remya, P.; Shanthi, M.; Sekar, U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Ind. J. Med. Microbiol. 2019, 37, 210–218. [Google Scholar] [CrossRef]
- Izquierdo, L.; Coderch, N.; Piqué, N.; Bedini, E.; Corsaro, M.M.; Merino, S.; Fresno, S.; Tomás, J.M.; Regué, M. The Klebsiella pneumoniae wabG gene: Role in biosynthesis of the core lipopolysaccharide and virulence. J. Bacteriol. 2003, 185, 7213–7221. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-F.; Hu, R.-Y.; Chang, H.-Y.; Lin, F.-Y.; Kuo, C.-H.; Su, L.-H.; Peng, H.-L. The role of urease in the acid stress response and fimbriae expression in Klebsiella pneumoniae CG43. J. Microbiol. Immunol. Infect. 2022, 55, 620–633. [Google Scholar] [CrossRef]
- Maroncle, N.; Rich, C.; Forestier, C. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res. Microbiol. 2006, 157, 184e93. [Google Scholar] [CrossRef]
- Konieczna, I.; Żarnowiec, P.; Kwinkowski, M.; Kolesińska, B.; Frączyk, J.; Kamiński, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef] [PubMed]
- Mora, D.; Arioli, S. Microbial urease in health and disease. PLoS Pathog. 2014, 10, e1004472. [Google Scholar] [CrossRef]
- Mulrooney, S.B.; Hausinger, R.P. Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J. Bacteriol. 1990, 172, 5837–5843. [Google Scholar] [CrossRef]
- Lee, M.H.; Mulrooney, S.B.; Renner, M.J.; Markowicz, Y.; Hausinger, R.P. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J. Bacteriol. 1992, 174, 4324–4330. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, Z.; Kong, J.; Zhao, Y.; Xu, M.; Zhou, B.; Zheng, X.; Ye, D.; Zhou, T.; Cao, J.; et al. Effects of aerobactin-encoding gene iucB and regulator of mucoid phenotype rmpA on the virulence of Klebsiella pneumoniae causing liver abscess. Front. Cell. Infect. Microbiol. 2022, 12, 968955. [Google Scholar] [CrossRef]
- Russo, T.A.; Olson, R.; MacDonald, U.; Beanan, J.; Davidson, B.A. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect. Immun. 2015, 83, 3325–3333. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Zhao, Z.Y.; Sun, Y. The pathogenicity of rmpA or aerobactin-positive Klebsiella pneumoniae in infected mice. J. Int. Med. Res. 2019, 47, 4344–4352. [Google Scholar] [CrossRef] [PubMed]
- Bachman, M.A.; Lenio, S.; Schmidt, L.; Oyler, J.E.; Weiser, J.N. Interaction of lipocalin 2, transferrin, and siderophores determines the replicative niche of Klebsiella pneumoniae during pneumonia. MBio 2012, 3, e00224-11. [Google Scholar] [CrossRef]
- Kundu, J.; Kansal, S.; Rathore, S.; Kaundal, M.; Angrup, A.; Biswal, M.; Walia, K.; Ray, P. Evaluation of ERIC-PCR and MALDI-TOF as typing tools for multidrug resistant Klebsiella pneumoniae clinical isolates from a tertiary care center in India. PLoS ONE 2022, 17, e0271652. [Google Scholar] [CrossRef]
- Mehr, V.P.; Shokoohizadeh, L.; Mirzaee, M.; Savari, M. Molecular Typing of clinical isolates of Klebsiella pneumoniae by Enterobacterial Repetitive Intergenic Consensus (ERIC)–PCR. Infect. Epidemiol. Microbiol. 2017, 3, 112–116. [Google Scholar]
Resistance Genes | Isolates with Gene (n, %) | ||
---|---|---|---|
Total | Source of Isolates | Hospital Wards | |
blaSHV-1 | 101 (92.7) | Respiratory tract (15, 92.3), anus (17, 100), blood (20, 90.9), urine (36, 92.3), wound (11, 84.6), no data (2, 100) | Internal (30, 96.7), Nephrology (17, 85), Neurology (14, 100), Surgery (11, 84.6), Intensive Care (14, 93.3), Orthopedics (3, 100), Urology (2, 100), Pediatrics (1, 100), Dialysis Station (1, 100), Gynecology and Obstetrics (1, 100), No data (6, 100) |
blaCTX-M group 1 | 91 (83.5) | Respiratory tract (14, 87.5), anus (16, 94.1), blood (17, 77.3), urine (34, 87.2), wound (9, 69.2), no data (1, 50) | Internal (27, 87.1), Nephrology (16, 80), Neurology (14, 100), Surgery (10, 76.9), Intensive Care (13, 86.7), Orthopedics (2, 66.7), Urology (2, 100), Dialysis Station (1, 100), No data (6, 100) |
blaCTX-M group 9 | 4 (3.7) | Urine (3, 7.7), wound (1, 7.7) | Nephrology (1, 5), Surgery (1, 7.7), Emergency Department (1, 100), Orthopedics (1, 33.3), |
blaTEM-1 | 31 (28.4) | Respiratory tract (4, 25), anus (2, 11.8), blood (3, 13.7), urine (18, 46.1), wound (4, 30.8) | Nephrology (11, 55), Internal (6, 19.6), Surgery (4, 30.8), Neurology (2, 14.3), Emergency Department (1, 100), Intensive Care (4, 26.7), No data (3, 50) |
blaNDM-1 | 18 (16.5) | Anus (10, 58.8), blood (4, 18.2), respiratory tract (2, 12.5), urine (1, 2.6), wound (1, 7.7) | Internal (3, 9.7), Neurology (3, 21.4), Surgery (4, 30.8), Intensive Care (6, 40), Urology (2, 100) |
blaKPC | 2 (1.8) | Anus (1, 5.9), blood (1, 4.6) | Internal (1, 3.2), Intensive Care (1, 6.7) |
blaVEB-1 | 12 (11.0) | Urine (9, 23.1), blood (2, 9.1), wound (1, 7.7) | Nephrology (7, 35), Internal (1, 3.2), Surgery (2, 15.4), Emergency Department (1, 100), Intensive Care (1, 6.7) |
Genes | Isolates with Gene (n, %) | ||
---|---|---|---|
Total | Source of Isolates (n, %) | Hospital Wards (n, %) | |
AcrAB | 109 (100) | Blood (22, 100), urine (39, 100), anus (17, 100), respiratory tract (16, 100), wound (13, 100), no data (2, 100) | Internal (31, 100), Nephrology (20, 100), Surgery (13, 100), Neurology (14, 100), Intensive Care (15, 100), Gynecology and Obstetrics (1, 100), Orthopedics (3, 100), Pediatrics (1, 100), Dialysis Station (1, 100), Emergency Department (1, 100), Urology (2, 100), No data (7, 100) |
tolC | 102 (93.6) | Blood (22, 100), urine (37, 94.9), anus (16, 94.1), respiratory tract (14, 87.5), wound (11, 84.6), no data (1, 50) | Internal (28, 90.3), Nephrology (19, 94.0), Surgery (12, 93.3), Neurology (14, 100), Intensive Care (13, 86.7), Orthopedics (3, 100), Gynecology and Obstetrics (1, 100), Pediatrics (1, 100) Dialysis Station (1, 100), Emergency Department (1, 100), Urology (2, 100), No data (6, 100) |
mdtk | 66 (60.5) | Blood (10, 45.5), urine (30, 76.9), anus (9, 52.9), respiratory tract (12, 75.0), wound (5, 38.5) | Internal (16, 51.6), Nephrology (16, 80.0), Surgery (10, 76.9), Neurology (8, 57.1), Intensive Care (10, 66.7), Orthopedics (2, 66.7), Dialysis Station (1, 100), Emergency Department (1, 100), Urology (2, 100) |
Virulence Genes | Isolates with Gene (n, %) | ||
---|---|---|---|
Total | Source of Isolates (n) | Hospital Wards (n) | |
Endotoxin-related genes | |||
wabG | 101 (92.7) | Blood (22, 100), urine (37, 94.9), anus (16, 94.1), respiratory tract (14, 87.5), wound (10, 76.9), no data (2, 100) | Internal (28, 90.3), Nephrology (19, 95.0), Surgery (11, 84.6), Neurology (14, 100), Intensive Care (13, 86.7), Gynecology and Obstetrics (1, 100) Orthopedics (3, 100), Pediatrics (1, 100), Dialysis Station (1, 100), Emergency Department (1, 100), Urology (2, 100), No data (7, 100) |
uge | 70 (64.2) | Blood (13, 59.1), urine (27, 69.2), anus (13, 76.5), respiratory tract (7, 43.8), wound (8, 61.5), no data (2, 100) | Internal (19, 61.3), Nephrology (13, 65.0), Surgery (9, 69.2), Neurology (7, 50.0), Intensive Care (8, 53.3), Orthopedics (3, 100), Pediatrics (1, 100), Dialysis Station (1, 100), Emergency Department (1, 100), Urology (1, 50), No data (7, 100) |
Siderophore gene | |||
iucB | 4 (3.7) | Blood (2, 9.1), wound (2, 15.4) | Internal (2, 6.45), Orthopedics (2, 66.7) |
Subunit of urease gene | |||
ureA | 103 (94.5) | Blood (22, 100), urine (37, 94.9), anus (16, 94.1), respiratory tract (15, 93.8), wound (11, 84.6), no data (2, 100) | Internal (28, 90.3), Nephrology (19, 95.0), Surgery (12, 92.3), Neurology (14, 100), Intensive Care (14, 93.3), Orthopedics (3, 100), Gynecology and Obstetrics (1, 100), Pediatrics (1, 100), Dialysis Station (1, 100), Emergency Department (1, 100), Urology (2, 100), No data (7, 100) |
No. of Isolates | Genes Coding Resistance to β-Lactams (bla Genes) | Genes Coding Efflux Pumps | Profile of | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SHV-1 | CTX-M gr1 | CTX-M gr9 | TEM-1 | VEB-1 | NDM-1 | KPC | IMP | OXA-48 | mdt | tolC | AcrA | ERIC (n) | REP (n) | |
18 | + | + | − | − | − | − | − | − | − | + | + | + | E1(3), E2(8), E3, E4(4), E9, E10 | R1(2), R2(4), R3(7), R6, R7, R9, R10, R14 |
17 | + | + | − | − | − | − | − | − | − | − | + | + | E1(4), E2(8), E3(3), E4 | R1(2), R2, R3, R4(4), R5(6), R12, R14, R19 |
13 | + | + | − | − | − | + | − | − | − | + | + | + | E1(9), E3(4) | R1(11), R6, R7 |
10 | + | + | − | + | − | − | − | − | − | + | + | + | E1(3), E2(4), E4, E11, E19 | R1, R2, R3(2), R4(2), R6(3), R18 |
7 | + | + | − | + | − | − | − | − | − | − | + | + | E1(2), E2, E6, E8, E14, E15 | R2, R4, R7(2), R8, R10, R13 |
7 | + | − | − | − | − | − | − | − | − | − | + | + | E1(2), E3, E4, E5, E6, E12 | R1(2), R2, R4(2), R6(2) |
5 | + | − | − | − | − | − | − | − | − | + | + | + | E2(2), E3, E4, E9 | R1, R2(2) R3, R5 |
3 | + | + | − | + | + | − | − | − | − | − | − | − | E3(2), E10 | R2, R4, R5 |
2 | + | + | − | − | − | + | + | − | − | + | + | + | E1(2) | R1(2) |
2 | + | + | − | + | + | − | − | − | − | − | + | + | E3, E16 | R3, R12 |
2 | − | + | − | + | + | − | − | − | − | + | + | + | E1, E6 | R11, R13 |
2 | + | + | − | + | − | − | − | − | − | + | + | + | E2, E4 | R3, R4 |
2 | − | + | − | − | − | − | − | − | − | + | + | + | E1, E6 | R2, R13 |
2 | + | + | − | − | − | − | − | − | − | − | + | + | E13, E18 | R4, R11 |
1 | + | + | − | + | + | − | − | − | − | + | + | + | E1 | R4 |
1 | − | − | + | + | + | − | − | − | − | + | + | + | E7 | R16 |
1 | + | + | − | + | + | − | − | − | − | + | + | + | E3 | R2 |
1 | − | + | − | − | + | − | − | − | − | + | + | + | E20 | R8 |
1 | + | + | − | + | + | − | − | − | − | − | + | + | E1 | R4 |
1 | + | + | − | − | − | + | − | − | − | − | + | + | E3 | R1 |
1 | − | + | − | − | − | − | − | − | − | + | + | + | E7 | R8 |
1 | + | + | − | + | + | − | − | − | − | − | − | + | E5 | R9 |
1 | + | + | − | − | − | − | − | − | − | + | + | + | E3 | R2 |
1 | + | + | − | − | − | + | − | − | − | + | − | + | E1 | R1 |
1 | − | − | − | − | − | − | − | − | − | + | + | + | E21 | R15 |
1 | − | + | − | − | − | − | − | − | − | − | + | + | E5 | R1 |
1 | + | + | − | − | − | + | − | − | − | − | − | + | E1 | R1 |
1 | + | + | − | + | − | − | − | − | − | − | − | + | E8 | R2 |
1 | + | + | − | − | − | − | − | − | − | − | − | + | E1 | R3 |
1 | + | + | − | − | − | − | − | − | − | + | − | + | E1 | R1 |
1 | + | − | − | − | − | − | − | − | − | − | − | + | E2 | R1 |
No. of Isolates | Virulence Genes | Profile of: | ||||
---|---|---|---|---|---|---|
wabG | uge | iucB | ureA | ERIC | REP | |
4 | + | + | + | + | E3, E4, E5, E11 | R1, R4(2), R17 |
65 | + | + | − | + | E1(18), E2(12), E3(14), E4(5), E5(2), E6(2), E7(2), E8(1), E9(1), E10(1), E11(1), E12(1), E13(1), E14(1), E15(1), E16(1), E18(1) | R1 (16), R2(11), R3(9), R4(10), R5(1), R6(5), R7(3), R8(2), R11(1), R12(1), R13(2), R14(2), R16(1), R19(1) |
32 | + | − | − | + | E1(11), E2(12), E3(1), E4(3), E9(1), E10(1), E17(1), E19(1), E20(1) | R1(6), R2(3), R3(4), R4(2), R5(7), R6(2), R7(1), R8(1), R9(1), R10(2), R11(1), R12(1), R18(1) |
1 | − | − | − | + | E1 | R3 |
1 | − | + | − | − | E21 | R15 |
6 | − | − | − | − | E1(3), E2, E5, E8 | R1(4), R2, R9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, B.; Witeska, M.; Szweda, P.; Piechota, M.; Kondera, E.; Horoszewicz, E.; Balak, I.; Bin Hafeez, A.; Synowiec, A. Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland. Pathogens 2025, 14, 648. https://doi.org/10.3390/pathogens14070648
Kot B, Witeska M, Szweda P, Piechota M, Kondera E, Horoszewicz E, Balak I, Bin Hafeez A, Synowiec A. Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland. Pathogens. 2025; 14(7):648. https://doi.org/10.3390/pathogens14070648
Chicago/Turabian StyleKot, Barbara, Małgorzata Witeska, Piotr Szweda, Małgorzata Piechota, Elżbieta Kondera, Elżbieta Horoszewicz, Izabela Balak, Ahmer Bin Hafeez, and Alicja Synowiec. 2025. "Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland" Pathogens 14, no. 7: 648. https://doi.org/10.3390/pathogens14070648
APA StyleKot, B., Witeska, M., Szweda, P., Piechota, M., Kondera, E., Horoszewicz, E., Balak, I., Bin Hafeez, A., & Synowiec, A. (2025). Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland. Pathogens, 14(7), 648. https://doi.org/10.3390/pathogens14070648