Mass Spectrometry Imaging: Revolutionizing Molecular Insights in Infectious Diseases Research
Abstract
1. Introduction
Mass Spectrometry Imaging: Concepts and Workflows
2. Application of MSI in Infectious Diseases
2.1. Identify Biomarkers of Infectious Disease Progression
Reference | Infectious Disease | Technology | Biomarker |
---|---|---|---|
[36] | Hepatitis B virus (HBV)-related liver cirrhosis (LC) | Airflow-assisted ionization (AFAI) MSI | Arginine, proline, phosphatidylcholines (PCs), lysoPCs, and fatty acids |
[38] | Leishmaniasis | MALDI-MSI | 34 histology-registered lipids, such as phosphatidylglycerols (PGs) |
[39] | Aeromonas infection in kidney tissue | Fourier transform infrared (FT-IR) spectroscopy and MALDI-MSI | I/amide II or CH2/CH3 absorbance index, Lysophosphatidylcholine (LPC), PCs, and diacylglycerol (DAG) |
[40] | Hidradenitis suppurativa (HS) | Laser desorption ionization (LDI) MSI and scanning electron microscopy (SEM) | Hexosylceramides (HexCers) and galabiosyl-/lactosylceramides |
[41] | Staphylococcus aureus-induced infective endocarditis (IE) | Laser ablation inductively coupled plasma (LA-ICP) MSI | Calcium, magnesium, and zinc |
2.2. Capturing Host-Pathogen Interactions
2.3. Visualizing Therapeutic Mechanisms
3. Aspects Worth Considering
3.1. Formalin-Fixed Paraffin-Embedded Tissues
3.2. Highly Infectious Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MSI | Mass spectrometry imaging |
PAMPs | Pathogen-associated molecular patterns |
DAMPs | Damage-associated molecular patterns |
IHC | Immunohistochemical staining |
FISH | Fluorescence in situ hybridization |
MS | Mass spectrometry |
SNP | Single nucleotide polymorphism |
MALDI | Matrix-assisted laser desorption/ionization |
3D | Three-dimensional |
DESI | Desorption electrospray ionization |
SIMS | Secondary ion mass spectrometry |
LAESI | Laser ablation electrospray ionization |
FFPE | Formalin-fixed paraffin-embedded |
SIMS-MSI | Secondary ion mass spectrometric imaging |
TOF | Time-of-flight |
FT-ICR | Fourier transform ion cyclotron resonance |
IMS | Ion mobility spectrometry |
CCS | Collision cross-section |
AFAI | Airflow-assisted ionization |
HBV | Hepatitis B virus |
LC | Liver cirrhosis |
PCs | Phosphatidylcholines |
PGs | Phosphatidylglycerols |
FT-IR | Fourier transform infrared |
NAPA | Nanopost arrays |
LPC | Lysophosphatidylcholine |
DAG | Diacylglycerol |
HS | Hidradenitis suppurativa |
LDI | Laser desorption ionization |
TGs | Triglycerides |
SEM | Scanning electron microscopy |
HexCers | Hexosylceramides |
LA-ICP | Laser ablation inductively coupled plasma |
IE | Infective endocarditis |
LESA | Liquid extraction surface analysis |
Kp ST258 | Klebsiella pneumoniae sequence type 258 |
AP | Atmospheric pressure |
SR-micro-CT | Synchrotron radiation-based micro-computed X-ray tomography |
PK | Pharmacokinetics |
PD | Pharmacodynamics |
ARVs | Antiretroviral drugs |
LNs | Lymph nodes |
vRNA | Viral RNA |
RT-SHIV | Reverse transcriptase-SIV expressing HIV-1 envelope |
TB | Tuberculosis |
TAF | Tenofovir alafenamide |
TFV | Tenofovir |
PZQ | Praziquantel |
AP-SMALDI-MSI | AP scanning microprobe MALDI-MSI |
PET | Positron emission tomography |
FF | Fresh frozen |
AP-IR-LA-PPI | AP infrared laser-ablation plasma post-ionization |
PFA | Paraformaldehyde |
VEEV | Venezuelan equine encephalitis virus |
UV-C | Ultraviolet-C |
References
- Garau, J.; Bassetti, M. Role of pharmacists in antimicrobial stewardship programmes. Int. J. Clin. Pharm. 2018, 40, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, H.H.; Kim, H.N.; Seo, D.; Hong, K.S.; Jang, J.G.; Seo, E.U.; Kim, I.Y.; Jeon, S.Y.; Son, B.; et al. The TOX-RAGE axis mediates inflammatory activation and lung injury in severe pulmonary infectious diseases. Proc. Natl. Acad. Sci. USA 2024, 121, e2319322121. [Google Scholar] [CrossRef]
- Leng, L.; Cao, R.; Ma, J.; Lv, L.; Li, W.; Zhu, Y.; Wu, Z.; Wang, M.; Zhou, Y.; Zhong, W. Pathological features of COVID-19-associated liver injury-a preliminary proteomics report based on clinical samples. Signal Transduct. Target. Ther. 2021, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mao, L.; Jiang, Y.; Liu, H.; Wang, X.; Meng, L.; Du, Q.; Han, J.; He, L.; Huang, H.; et al. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS Nano 2023, 17, 4463–4473. [Google Scholar] [CrossRef]
- Eisfeld, A.J.; Halfmann, P.J.; Wendler, J.P.; Kyle, J.E.; Burnum-Johnson, K.E.; Peralta, Z.; Maemura, T.; Walters, K.B.; Watanabe, T.; Fukuyama, S.; et al. Multi-platform ‘Omics Analysis of Human Ebola Virus Disease Pathogenesis. Cell Host Microbe 2017, 22, 817–829.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sokol, H.; Cao, Q.; Zhang, H.; Yan, Y.; Xie, L.; Wang, H. Systemic inflammatory response to daily exposure to microcystin-LR and the underlying gut microbial mechanisms. J. Hazard. Mater. 2024, 480, 135855. [Google Scholar] [CrossRef]
- Nie, H.; Wang, X.; Dong, X.; Wei, Y.; Wei, J.; Yip, K.C.; Zhang, Q.; Li, R. Down-regulation of CORO1C mediated by lncMALAT1/miR-133a-3p axis contributes to trophoblast dysfunction and preeclampsia. Placenta 2024, 156, 67–76. [Google Scholar] [CrossRef]
- Li, M.; Lu, H.; Ruan, C.; Ke, Q.; Hu, L.; Li, Z.; Liu, X. CircMAPK1 induces cell pyroptosis in sepsis-induced lung injury by mediating KDM2B mRNA decay to epigenetically regulate WNK1. Mol. Med. 2024, 30, 155. [Google Scholar] [CrossRef]
- Campbell, S.; Taylor, B.; Menouhos, D.; Hennessy, J.; Mayo, M.; Baird, R.; Currie, B.J.; Meumann, E.M. Performance of MALDI-TOF MS, real-time PCR, antigen detection, and automated biochemical testing for the identification of Burkholderia pseudomallei. J. Clin. Microbiol. 2024, 62, e0096124. [Google Scholar] [CrossRef]
- Li, Y.; Hou, G.; Zhou, H.; Wang, Y.; Tun, H.M.; Zhu, A.; Zhao, J.; Xiao, F.; Lin, S.; Liu, D. Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal Transduct. Target. Ther. 2021, 6, 155. [Google Scholar] [CrossRef]
- Lupberger, J.; Croonenborghs, T.; Roca Suarez, A.A.; Van Renne, N.; Jühling, F.; Oudot, M.A.; Virzì, A.; Bandiera, S.; Jamey, C.; Meszaros, G.; et al. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated with Disease Development. Gastroenterology 2019, 157, 537–551. [Google Scholar] [CrossRef]
- Huang, Y.; Bergant, V.; Grass, V.; Emslander, Q.; Hamad, M.S.; Hubel, P.; Mergner, J.; Piras, A.; Krey, K.; Henrici, A.; et al. Multi-omics characterization of the monkeypox virus infection. Nat. Commun. 2024, 15, 6778. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Charkoftaki, G. A Guide to MALDI Imaging Mass Spectrometry for Tissues. J. Proteome Res. 2023, 22, 3401–3417. [Google Scholar] [CrossRef]
- Wang, G.; Qiu, M.; Xing, X.; Zhou, J.; Yao, H.; Li, M.; Yin, R.; Hou, Y.; Li, Y.; Pan, S.; et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci. Transl. Med. 2022, 14, eabk2756. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger-Haber, M.; Stancliffe, E.; Anbukumar, D.S.; Sells, B.; Yi, J.; Cho, K.; Adkins-Travis, K.; Chheda, M.G.; Shriver, L.P.; Patti, G.J. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat. Commun. 2023, 14, 2876. [Google Scholar] [CrossRef]
- Shariatgorji, M.; Nilsson, A.; Fridjonsdottir, E.; Vallianatou, T.; Källback, P.; Katan, L.; Sävmarker, J.; Mantas, I.; Zhang, X.; Bezard, E.; et al. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 2019, 16, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Mezger, S.T.P.; Mingels, A.M.A.; Bekers, O.; Cillero-Pastor, B.; Heeren, R.M.A. Trends in mass spectrometry imaging for cardiovascular diseases. Anal. Bioanal. Chem. 2019, 411, 3709–3720. [Google Scholar] [CrossRef]
- Sun, C.; Wang, A.; Zhou, Y.; Chen, P.; Wang, X.; Huang, J.; Gao, J.; Wang, X.; Shu, L.; Lu, J.; et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat. Commun. 2023, 14, 2692. [Google Scholar] [CrossRef]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef]
- Amstalden van Hove, E.R.; Smith, D.F.; Heeren, R.M. A concise review of mass spectrometry imaging. J. Chromatogr. A 2010, 1217, 3946–3954. [Google Scholar] [CrossRef]
- Grgic, A.; Krestensen, K.K.; Heeren, R.M.A. Optimized protocol for MALDI MSI of N-glycans using an on-tissue digestion in fresh frozen tissue sections. Sci. Rep. 2023, 13, 2776. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, L.; Xiang, Y.; Ye, N.; Liu, K. Systematic study of tissue section thickness for MALDI MS profiling and imaging. Analyst 2023, 148, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Vandenbosch, M.; Nauta, S.P.; Svirkova, A.; Poeze, M.; Heeren, R.M.A.; Siegel, T.P.; Cuypers, E.; Marchetti-Deschmann, M. Sample preparation of bone tissue for MALDI-MSI for forensic and (pre)clinical applications. Anal. Bioanal. Chem. 2021, 413, 2683–2694. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Jang, M.; de Jesus, J.; Steven, R.T.; Nikula, C.J.; Elia, E.; Bunch, J.; Bellew, A.T.; Watts, J.F.; Hinder, S.; et al. Imaging mass spectrometry: A new way to distinguish dermal contact from administration of cocaine, using a single fingerprint. Analyst 2021, 146, 4010–4021. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, F.; Liu, Y.; Deng, B.; Wang, Y.; Chen, D.; Zuo, L. Recent strategies for improving MALDI mass spectrometry imaging performance towards low molecular weight compounds. Trends Analyt. Chem. 2024, 175, 117727. [Google Scholar] [CrossRef]
- Dreisewerd, K.; Bien, T.; Soltwisch, J. MALDI-2 and t-MALDI-2 Mass Spectrometry Imaging. Methods Mol. Biol. 2022, 2437, 21–40. [Google Scholar] [CrossRef]
- Chandra, S.; Pumphrey, G.; Abraham, J.M.; Madsen, E.L. Dynamic SIMS ion microscopy imaging of individual bacterial cells for studies of isotopically labeled molecules. Appl. Surf. Sci. 2008, 255, 847–851. [Google Scholar] [CrossRef]
- Nieves-Morión, M.; Flores, E.; Whitehouse, M.J.; Thomen, A.; Foster, R.A. Single-Cell Measurements of Fixation and Intercellular Exchange of C and N in the Filaments of the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. mBio 2021, 12, e0131421. [Google Scholar] [CrossRef]
- Meng, Y.; Song, X.; Zare, R.N. Laser Ablation Electrospray Ionization Achieves 5 µm Resolution Using a Microlensed Fiber. Anal. Chem. 2022, 94, 10278–10282. [Google Scholar] [CrossRef]
- Yin, R.; Burnum-Johnson, K.E.; Sun, X.; Dey, S.K.; Laskin, J. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 2019, 14, 3445–3470. [Google Scholar] [CrossRef]
- Colley, M.E.; Esselman, A.B.; Scott, C.F.; Spraggins, J.M. High-Specificity Imaging Mass Spectrometry. Annu. Rev. Anal. Chem. 2024, 17, 1–24. [Google Scholar] [CrossRef]
- Meng, Y.; Hang, W.; Zare, R.N. Microlensed fiber allows subcellular imaging by laser-based mass spectrometry. Nat. Protoc. 2023, 18, 2558–2578. [Google Scholar] [CrossRef] [PubMed]
- Esselman, A.B.; Moser, F.A.; Tideman, L.E.M.; Migas, L.G.; Djambazova, K.V.; Colley, M.E.; Pingry, E.L.; Patterson, N.H.; Farrow, M.A.; Yang, H.; et al. In situ molecular profiles of glomerular cells by integrated imaging mass spectrometry and multiplexed immunofluorescence microscopy. Kidney Int. 2024, 107, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Cai, Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. Mass Spectrom. Rev. 2022, 41, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Wang, X.; Zhong, X.; Zhao, D.; Zeng, Z.; Cai, W.; Zhong, Y.; Huang, J.; Tang, D.; Dai, Y. Dysregulation of lipid metabolism in the pseudolobule promotes region-specific autophagy in hepatitis B liver cirrhosis. Hepatol. Commun. 2023, 7, e0187. [Google Scholar] [CrossRef]
- Kloehn, J.; Boughton, B.A.; Saunders, E.C.; O’Callaghan, S.; Binger, K.J.; McConville, M.J. Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021, 12, e00129-21. [Google Scholar] [CrossRef]
- Tans, R.; Dey, S.; Dey, N.S.; Cao, J.H.; Paul, P.S.; Calder, G.; O’Toole, P.; Kaye, P.M.; Heeren, R.M.A. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front. Immunol. 2022, 13, 862104. [Google Scholar] [CrossRef]
- Matys, J.; Turska-Szewczuk, A.; Gieroba, B.; Kurzylewska, M.; Pękala-Safińska, A.; Sroka-Bartnicka, A. Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging. Int. J. Mol. Sci. 2022, 23, 12551. [Google Scholar] [CrossRef]
- Fincher, J.A.; Jones, D.R.; Korte, A.R.; Dyer, J.E.; Parlanti, P.; Popratiloff, A.; Brantner, C.A.; Morris, N.J.; Pirlo, R.K.; Shanmugam, V.K.; et al. Mass Spectrometry Imaging of Lipids in Human Skin Disease Model Hidradenitis Suppurativa by Laser Desorption Ionization from Silicon Nanopost Arrays. Sci. Rep. 2019, 9, 17508. [Google Scholar] [CrossRef]
- Schwarz, C.; Buchholz, R.; Jawad, M.; Hoesker, V.; Terwesten-Solé, C.; Karst, U.; Linsen, L.; Vogl, T.; Hoerr, V.; Wildgruber, M.; et al. Fingerprints of Element Concentrations in Infective Endocarditis Obtained by Mass Spectrometric Imaging and t-Distributed Stochastic Neighbor Embedding. ACS Infect. Dis. 2022, 8, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Anschütz, N.H.; Gerbig, S.; Ghezellou, P.; Silva, L.M.R.; Vélez, J.D.; Hermosilla, C.R.; Taubert, A.; Spengler, B. Mass Spectrometry Imaging of In Vitro Cryptosporidium parvum-Infected Cells and Host Tissue. Biomolecules 2023, 13, 1200. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Hasegawa, Y.; McNulty, N.P.; Gordon, J.I.; Borisy, G.G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl. Acad. Sci. USA 2017, 114, E9105–E9114. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, E.; Daguerre, Y.; Giampà, M. Unravel the Local Complexity of Biological Environments by MALDI Mass Spectrometry Imaging. Int. J. Mol. Sci. 2021, 22, 12393. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, E.U.; Potthoff, A.; Tortorella, S.; Soltwisch, J.; Dreisewerd, K. Infrared MALDI Mass Spectrometry with Laser-Induced Postionization for Imaging of Bacterial Colonies. J. Am. Soc. Mass Spectrom. 2021, 32, 1053–1064. [Google Scholar] [CrossRef]
- Teixeira, T.S.; Neto, J.C.R.; Silva, E.A.; Conceiçao, A.A.; de Siqueira, F.G.; Abdelnur, P.V. Mass Spectrometry Imaging for Fungal Interaction Analysis: Classic versus Imprinting Methods. Braz. J. Anal. Chem. 2023, 10, 71–78. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Wang, J.; Xie, P.; Xie, C.; Chen, Y.; Banaei, N.; Ren, K.; Cai, Z. High-resolution 3D spatial distribution of complex microbial colonies revealed by mass spectrometry imaging. J. Adv. Res. 2024, 73, 329–340. [Google Scholar] [CrossRef]
- Yannarell, S.M.; Veličković, D.; Anderton, C.R.; Shank, E.A. Direct Visualization of Chemical Cues and Cellular Phenotypes throughout Bacillus subtilis Biofilms. mSystems 2021, 6, e0103821. [Google Scholar] [CrossRef]
- Frydenlund Michelsen, C.; Hossein Khademi, S.M.; Krogh Johansen, H.; Ingmer, H.; Dorrestein, P.C.; Jelsbak, L. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction. ISME J. 2016, 10, 1323–1336. [Google Scholar] [CrossRef]
- Slimani, F.; Hotel, L.; Deveau, A.; Aigle, B.; Chaimbault, P.; Carré, V. Membrane-based preparation for mass spectrometry imaging of cultures of bacteria. Anal. Bioanal. Chem. 2024, 416, 7161–7172. [Google Scholar] [CrossRef]
- Romanowicz, K.J.; Zhang, F.; Wang, S.; Veličković, D.; Chu, R.K.; Shaked, Y.; Boiteau, R.M. Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes. mSystems 2024, 9, e0115224. [Google Scholar] [CrossRef] [PubMed]
- Wong Fok Lung, T.; Charytonowicz, D.; Beaumont, K.G.; Shah, S.S.; Sridhar, S.H.; Gorrie, C.L.; Mu, A.; Hofstaedter, C.E.; Varisco, D.; McConville, T.H. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab. 2022, 34, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Geier, B.; Oetjen, J.; Ruthensteiner, B.; Polikarpov, M.; Gruber-Vodicka, H.R.; Liebeke, M. Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography. Proc. Natl. Acad. Sci. USA 2021, 118, e2023773118. [Google Scholar] [CrossRef]
- Perry, W.J.; Spraggins, J.M.; Sheldon, J.R.; Grunenwald, C.M.; Heinrichs, D.E.; Cassat, J.E.; Skaar, E.P.; Caprioli, R.M. Staphylococcus aureus exhibits heterogeneous siderophore production within the vertebrate host. Proc. Natl. Acad. Sci. USA 2019, 116, 21980–21982. [Google Scholar] [CrossRef]
- Rosen, E.P.; Deleage, C.; White, N.; Sykes, C.; Brands, C.; Adamson, L.; Luciw, P.; Estes, J.D.; Kashuba, A.D.M. Antiretroviral drug exposure in lymph nodes is heterogeneous and drug dependent. J. Int. AIDS Soc. 2022, 25, e25895. [Google Scholar] [CrossRef] [PubMed]
- Prideaux, B.; Via, L.E.; Zimmerman, M.D.; Eum, S.; Sarathy, J.; O’Brien, P.; Chen, C.; Kaya, F.; Weiner, D.M.; Chen, P.Y.; et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 2015, 21, 1223–1227. [Google Scholar] [CrossRef]
- Diacon, A.H.; Dawson, R.; von Groote-Bidlingmaier, F.; Symons, G.; Venter, A.; Donald, P.R.; van Niekerk, C.; Everitt, D.; Hutchings, J.; Burger, D.A.; et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am. J. Respir. Crit. Care Med. 2015, 191, 943–953. [Google Scholar] [CrossRef]
- Irwin, S.M.; Gruppo, V.; Brooks, E.; Gilliland, J.; Scherman, M.; Reichlen, M.J.; Leistikow, R.; Kramnik, I.; Nuermberger, E.L.; Voskuil, M.I.; et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob. Agents Chemother. 2014, 58, 4026–4034. [Google Scholar] [CrossRef]
- Wang, N.; Dartois, V.; Carter, C.L. An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. J. Mass Spectrom. 2021, 56, e4708. [Google Scholar] [CrossRef]
- Gunawardana, M.; Remedios-Chan, M.; Sanchez, D.; Webster, S.; Castonguay, A.E.; Webster, P.; Buser, C.; Moss, J.A.; Trinh, M.; Beliveau, M.; et al. Fundamental aspects of long-acting tenofovir alafenamide delivery from subdermal implants for HIV prophylaxis. Sci. Rep. 2022, 12, 8224. [Google Scholar] [CrossRef]
- Mokosch, A.S.; Gerbig, S.; Grevelding, C.G.; Haeberlein, S.; Spengler, B. High-resolution AP-SMALDI MSI as a tool for drug imaging in Schistosoma mansoni. Anal. Bioanal. Chem. 2021, 413, 2755–2766. [Google Scholar] [CrossRef]
- Cheng, S.H.; Groseclose, M.R.; Mininger, C.; Bergstrom, M.; Zhang, L.; Lenhard, S.C.; Skedzielewski, T.; Kelley, Z.D.; Comroe, D.; Hong, H.; et al. Multimodal imaging distribution assessment of a liposomal antibiotic in an infectious disease model. J. Control. Release 2022, 352, 199–210. [Google Scholar] [CrossRef]
- Hermann, J.; Noels, H.; Theelen, W.; Lellig, M.; Orth-Alampour, S.; Boor, P.; Jankowski, V.; Jankowski, J. Sample preparation of formalin-fixed paraffin-embedded tissue sections for MALDI-mass spectrometry imaging. Anal. Bioanal. Chem. 2020, 412, 1263–1275. [Google Scholar] [CrossRef]
- Denti, V.; Piga, I.; Guarnerio, S.; Clerici, F.; Ivanova, M.; Chinello, C.; Paglia, G.; Magni, F.; Smith, A. Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue. J. Am. Soc. Mass Spectrom. 2020, 31, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.; Ly, A.; Balluff, B.; Sun, N.; Gorzolka, K.; Feuchtinger, A.; Janssen, K.P.; Kuppen, P.J.; van de Velde, C.J.; Weirich, G.; et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 2015, 237, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Steven, R.T.; Niehaus, M.; Taylor, A.J.; Nasif, A.; Elia, E.; Goodwin, R.J.A.; Takats, Z.; Bunch, J. Atmospheric-Pressure Infrared Laser-Ablation Plasma-Postionization Mass Spectrometry Imaging of Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh-Frozen Tissue Sections with No Sample Preparation. Anal. Chem. 2022, 94, 9970–9974. [Google Scholar] [CrossRef] [PubMed]
- Cazares, L.H.; Van Tongeren, S.A.; Costantino, J.; Kenny, T.; Garza, N.L.; Donnelly, G.; Lane, D.; Panchal, R.G.; Bavari, S. Heat fixation inactivates viral and bacterial pathogens and is compatible with downstream MALDI mass spectrometry tissue imaging. BMC Microbiol. 2015, 15, 101. [Google Scholar] [CrossRef]
- Dannhorn, A.; Ling, S.; Powell, S.; McCall, E.; Maglennon, G.; Jones, G.N.; Pierce, A.J.; Strittmatter, N.; Hamm, G.; Barry, S.T.; et al. Evaluation of UV-C Decontamination of Clinical Tissue Sections for Spatially Resolved Analysis by Mass Spectrometry Imaging (MSI). Anal. Chem. 2021, 93, 2767–2775. [Google Scholar] [CrossRef]
Parameter | Matrix-Assisted Laser Desorption/Ionization (MALDI) | Desorption Electrospray Ionization (DESI) | Secondary Ion Mass Spectrometry (SIMS) | Laser Ablation Electrospray Ionization (LAESI) |
---|---|---|---|---|
Sample | Fresh frozen tissue/formalin-fixed paraffin embedding | Fresh frozen tissue | Fresh frozen tissue/single cell | Fresh frozen tissue |
Required sample preparation | Matrix application | No | Freeze fracture and drying for subcellular imaging | Hydrous |
Ionization conditions | Atmospheric/medium/high vacuum | Atmospheric vacuum | Ultrahigh vacuum | Atmospheric vacuum |
Mass range | 10–100,000 | 100–10,000 | 1–3000 | 1–5000 |
Spatial resolution | 5–200 µm | 10–200 µm | 0.05–100 µm | 5–300 µm |
Probing depth | 0.1–20 µm | 1–500 µm | 0.001–10 µm | 40–400 µm |
Coupled analyzer | TOF/Q-TOF/FT-ICR/Orbitrap | Q-TOF/FT-ICR/Orbitrap | TOF/Q-TOF/FT-ICR | TOF/FT-ICR/Orbitrap |
Destructive | Minor | Minor | Significant | Significant |
Usage rate | Far beyond the average | Above the average | On average | Below average |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, X.; Su, X.; Yimamu, A.; Li, L.; Sun, Z. Mass Spectrometry Imaging: Revolutionizing Molecular Insights in Infectious Diseases Research. Pathogens 2025, 14, 645. https://doi.org/10.3390/pathogens14070645
Zhang M, Wang X, Su X, Yimamu A, Li L, Sun Z. Mass Spectrometry Imaging: Revolutionizing Molecular Insights in Infectious Diseases Research. Pathogens. 2025; 14(7):645. https://doi.org/10.3390/pathogens14070645
Chicago/Turabian StyleZhang, Minmin, Xiao Wang, Xiaoling Su, Aidiya Yimamu, Lanjuan Li, and Zeyu Sun. 2025. "Mass Spectrometry Imaging: Revolutionizing Molecular Insights in Infectious Diseases Research" Pathogens 14, no. 7: 645. https://doi.org/10.3390/pathogens14070645
APA StyleZhang, M., Wang, X., Su, X., Yimamu, A., Li, L., & Sun, Z. (2025). Mass Spectrometry Imaging: Revolutionizing Molecular Insights in Infectious Diseases Research. Pathogens, 14(7), 645. https://doi.org/10.3390/pathogens14070645