Gram-Negative Microbiota Derived from Trout Fished in Slovakian Water Sources and Their Relationship to Postbiotics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Species Strain Identification
2.2. Antibiotic Phenotype of the Identified Species Strains
2.3. Testing Gram-Negative Species Strains for Their Susceptibility to Postbiotics
3. Results
3.1. Identified Species Strains
3.2. Susceptibility to Antibiotics and Postbiotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugetti, D.; Pastorino, P.; Beltramo, C.; Audino, T.; Arillo, A.; Esposito, G.; Prearo, M.; Bertoli, M.; Pizzul, E.; Bozzetta, E.; et al. The gut microbiota of farmed and wild brook trout (Salvelinus fontalis): Evaluation of feed-related differences using 16S rRNA gene metabarcoding. Microorganism 2023, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Kremer, J.M. Fish Oil and Inflammation-A Fresh Look. J. Rheumatol. 2017, 44, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, K.; Badalyan, G.; Harutyunyan, A.; Sargsyan, M. Prevalence of Gram negative and oxidase positive bacteria in trout processing factory. J. Hyg. Eng. Des. 2013, 4, 10–15. [Google Scholar]
- Hines, I.S.; Marshall, M.A.; Smith, S.A.; Kuhn, D.D.; Stevens, A.M. Systematic literature review identifying bacterial constituents in the core intestinal microbiome of rainbow trout (Oncorhynchus mykiss). Aquac. Fish Fish. 2022, 3, 393–406. [Google Scholar] [CrossRef]
- Migaw, S.; Ghraira, T.; Belguesmia, Y.; Choiset, Y.; Berjaud, J.M.; Chobert, J.M.; Hani, K.; Haertlé, T. Diversity of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera. World J. Microbiol. Biotechnol. 2013, 30, 1207–1217. [Google Scholar] [CrossRef]
- European Commission 2015. European Maritime and Fisheries Fund (EMFF). 2015. Slovakia. Available online: https://ec.europa.eu/fisheries/sites/fisheries/files/docs/body/op-slovakia-fact-sheet-en.odf.accessed18.06.29 (accessed on 14 May 2025).
- Fečkaninová, A.; Koščová, J.; Mudroňová, D.; Schusterová, P.; Cingeľová Maruščáková, I.; Popelka, P. Characterization of two novel lactic acid bacteria isolated from the intestine of rainbow trout (Oncorhynchus mykiss, Walbaum) in Slovakia. Aquaculture 2019, 506, 294–301. [Google Scholar] [CrossRef]
- Novotný, L.; Dvorská, A.; Lorencová, A.; Beran, V.; Pavlík, I. Fish: A potential source of bacterial pathogens for human beings. Vet. Med. 2004, 49, 343–358. [Google Scholar] [CrossRef]
- Semwal, A.; Kumar, A.; Kumar, N. A review on pathogenicity of Aeromonas hydrophila and their mitigation through medicinal herbs in aquaculture. Heliyon 2023, 9, e14088. [Google Scholar] [CrossRef]
- Kim, P.S.; Shin, N.R.; Lee, J.B.; Kim, M.S.; Whon, T.W.; Hyun, D.W.; Yun, J.H.; Jung, M.J.; Kim, J.Y.; Bae, J.W. Host habitat is the major determinant of the gut microbiome of fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef]
- Yang, H.; Wu, J.; Du, H.; Zhang, H.; Li, J.; Wei, Q. Quantifying the colonization of environmental microbes in the fish gut: A case study of wild fish populations in the Yangtze river. Front. Microbiol. 2022, 12, 828409. [Google Scholar] [CrossRef]
- Lauková, A.; Kubašová, I.; Kandričáková, A.; Strompfová, V.; Žitňan, R.; Pogány Simonová, M. Relation to enterocins of variable Aeromonas species isolated from trouts of Slovakian aquatic sources detected by MALDI-TOF mass spectrometry. Folia Microbiol. 2018, 63, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Kaktcham, P.M.; Foko, K.E.M.; Tientcheu, M.L.T.; Bocambe-Temgoa, J.; Wacher, C.; Ngoufack Zambou, F.; Peréz-Chabela, M.D.L. Nisin-produced Lactococcus lactis subsp. lactis 2MT isolated from fresh water Nile tilapia in Cameroon:Bacteriocin screening, characterization and optimization in a low cost medium. LWT 2019, 107, 272–279. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizale, A.M.; Ohadi, E.; Talibe, M.; Halaj Zadeh, M.; Darb, E.A.; Ghannavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2021, 36, e24093. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Imrichová, J.; Strompfová, V.; Miltko, R.; Kowalik, B.; Belzecki, G. Properties of Enterococcus thailandicus isolates from beavers. Afr. J. Microbiol. Res. 2013, 7, 3569–3574. [Google Scholar]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (isapp) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Styková, E.; Kubašová, I.; Gancarčíková, S.; Plachá, I.; Mudroňová, D.; Kandričáková, A.; Miltko, R.; Belzecki, G.; Valocký, I.; et al. Enterocin M and its beneficial effects in horses-a pilot experiment. Probiotics Antimicrob. Proteins 2018, 10, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I. Isolation and characterization of a new bacteriocin termed enterocin M, produced by the environmental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef]
- Evangelista, A.-G.; Feijó Correa, J.A.; Marques Schoch Pinto, A.C.; Dalvana Ribeiro Goncalves, F.; Bittencourt Luciano, F. Recent advances in the use of bacterial probiotics in animal production. Anim. Health Res. Rev. 2023, 24, 41–53. [Google Scholar] [CrossRef]
- Schofs, L.; Sparo, M.D.; Sanchéz Bruni, S.F. Gram-positive bacteriocins: As antimicrobial agents in veterinary medicine. Vet. Res. Commun. 2020, 44, 89–100. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Autochtonous strain Enterococcus faecium EF2019 (CCM7420), its bacteriocin and their beneficial effects in broiler rabbits—A review. Animals 2020, 10, 1188. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Ščerbová, J.; Szabóová, R.; Plachá, I.; Čobanová, K.; Pogány Simonová, M.; Strompfová, V. In Vivo model experiment using laying hens treated with Enterococcus faecium EM41 from ostrich faeces and its enterocin EM41. Maced. Vet. Rev. 2017, 40, 157–166. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Strompfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL41: Its Enterocin M and their beneficial use in rabbit husbandry. Probiotics Antimicrob. Proteins 2013, 4, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Umer, A.A. Review on MALDI TOF MS:Modern disease diagnosis approaches in microbiology and its mechanisms. J. Microbiol. Mod. Tech. 2023, 7, 102. [Google Scholar]
- Bruker Daltonics. Maldi Biotyper CA system; Software for Microorganism Identification and Classification User Manual; Bruker Daltonics Inc.: Billerica, MA, USA, 2008. [Google Scholar]
- Lewis, J.S.; Weinstein, M.P.; Bobenchik, A.M.; Campeu, S.K.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Limbago, B.; et al. Clinical and Laboratory Standards Institute (CLSI); Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Pittsburgh, PA, USA, 2022; ISBN 978-1-68440-135-2. [Google Scholar]
- Mareková, M.; Lauková, A.; De Vuyst, L.; Skaugen, M.; Nes, I.F. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 2003, 94, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Simonová, M.; Strompfová, V.; Štyriak, I.; Ouwehand, A.C.; Várady, M. Potential of enterococci isolated from horses. Anaerobe 2008, 14, 234–236. [Google Scholar] [CrossRef]
- Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM 4231. Lett. Appl. Microbiol. 1993, 16, 257–260. [Google Scholar] [CrossRef]
- Strompfová, V.; Lauková, A. In Vitro study on bacteriocin production of enterococci associated with chickens. Anaerobe 2007, 13, 228–237. [Google Scholar] [CrossRef]
- Marciňáková, M.; Lauková, A.; Simonová, M.; Strompfová, V.; Koréneková, B.; Naď, P. A new probiotic and bacteriocin-producing strain of Enterococcus faecium EF9296 and its use in grass ensiling. Czech J. Anim. Sci. 2008, 53, 336–345. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Szabóová, R.; Kmeť, V.; Tomáška, M. Bioactive strains of Enterococcus durans isolated from ewes lump cheese. Slovak Vet. J. 2012, 37, 277–278. (In Slovak) [Google Scholar]
- Lauková, A.; Focková, V.; Pogány Simonová, M. Enterococcal species associated with Slovak raw goat milk, their safety and susceptibility to lantibiotics and Durancin ED26E/7. Processes 2021, 9, 681. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 1, 9–20. [Google Scholar] [CrossRef]
- Visca, P.; Seifert, H.; Towner, K.J. Acinetobacter infection—An emerging threat to human health. IUBMB Life 2011, 63, 1048–1054. [Google Scholar] [CrossRef]
- Carter, J.; Elliot, A.; Evans, T.N. Clinicallly significant Kluyvera infections A report of seven cases. Am. J. Clin. Pathol. 2005, 123, 334–338. [Google Scholar] [CrossRef]
- Votava, M.; Černohorská, L.; Dvořáková Heroldová, M.; Holá, V.; Ondrovčík, P.; Růžička, F.; Woznicová, V.; Zahradníček, O.; Mejzlíková, L.; Dvořačková, M. Lekářská Mikrobiologie Speciální (In Czech) Medical Microbiology Special, 1st ed.; Neptun: Brno, Czech Republic, 2003; 495p, ISBN 80-902896--5. [Google Scholar]
- Johns, I.; Verheyen, K.; Good, L.; Rycroft, A. Antimicrobial resistance in faecal Escherichia coli isolates from horses treated with antimicrobials:A longitudinal study in hospitalized and non-hospitalized horses. Vet. Microbiol. 2012, 159, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Sekowska, A.; Bogiel, T.; Wozniak, M.; Gospodarek-Komkowska, E. Raoultella spp., reliable identification, susceptibility to antimicrobials and antibiotic resistance mechanisms. J. Med. Microbiol. 2020, 69, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Abbott, S.L. The genus Hafnia: From soup to nuts. Clin. Microbiol. Rev. 2006, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, M. Leclercia adecarboxylata isolation:case reports and review. J. Clin. Diagn. Res. 2014, 8, DD03–DD04. [Google Scholar] [PubMed]
- Zayet, S.; Lang, S.; Garnier, P.; Perron, A.; Plantin, J.; Toko, L.; Royer, P.Y.; Villeman, M.; Klopfenstein, T.; Gendrin, V. Leclercia adecarboxylata as emerging pathogen in human infections:clinical features and antimicrobial susceptibility testing. Pathogens 2021, 10, 1399. [Google Scholar] [CrossRef]
- Rafei, R.; Paihories, H.; Hamze, M.; Eveillard, M.; Mallat, H.; Dabboussi, F.; Joly-Guillou, M.L.; Kempf, M. Molecular epidemiology of Acinetobacter in different hositals in Tripoli Lebanon using bla oxa-51-like sequence based typing. BMC Microbiol. 2015. [Google Scholar] [CrossRef]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 2009, 9, 1132–1147. [Google Scholar] [CrossRef]
- Farmer, J. Kluyvera-Bergeys Manual of Systematic Archaea and Bacteria; John Wiley and Sons, Ltf.: Hoboken, NJ, USA, 2015; pp. 1–18. ISBN 978-1-118-96060-8. [Google Scholar] [CrossRef]
- Tennoune, N.; Chan, P.; Breton, J.; Legrand, R.; Chabane, Y.N.; Akkerman, K.; Järv, A.; Ouelaa, W.; Takagi, K. Bacterial CIpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α -MSH, at the origin of eating disorders. Transl. Psychiatry 2014, 4, e458. [Google Scholar] [CrossRef]
- Fedorko, D.P.; Stock, F.; Murray, P.R.; Drake, S.K. Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2257–2262. [Google Scholar] [CrossRef]
- Angulo, F. Antimicrobial agents in aquaculture:potential impact on public health. APUA Newsl. 2000, 18, 217–219. [Google Scholar]
- Veiga, P.; Seiz, J.; Derien, M.; Elinov, E. Moving from probiotic to precious probiotics. Nat. Microbiol. 2020, 7, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Várady, M. Gram-negative microbiota from horses and their sensitivity to antimicrobials, phyto-additives and enterocins. Folia Vet. 2011, 55, 137–143. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Haviarová, M. Pseudomonas from rabbits and their sensitivity to antibiotics and natural substances. Res. Vet. Sci. 2010, 88, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Qin, P.; Lu, J.; Wang, S.; Zhang, J.; Wang, Y.; Cheng, A.; Cao, Y.; Ding, W.; Zhang, W. Bioprospecting of culturable marine biofilm bacteria for novel antimicrobial peptides. iMeta 2024, 3, e244. [Google Scholar] [CrossRef]
- Su, Z.; Yu, H.; Lv, T.; Chen, Q.; Luo, H.; Zhang, H. Progress in the classification, optimization, activity, and application of antimicrobial peptides. Front. Microbiol. 2025, 16, 1582863. [Google Scholar] [CrossRef]
Species | Sample | Score | Indication |
---|---|---|---|
A. calcoaceticus | R36/2 | 2.225 | AC362 |
C. gillenii | R37/2 | 2.319 | CG372 |
C. gillenii | R38/2 | 2.330 | CG382 |
C. freundii | R40/2 | 2.082 | CF402 |
E. coli | R36/1 | 2.435 | EC361 |
H. alvei | R33/1 | 2.108 | Hal331 |
H. alvei | R37/3 | 2.126 | Hal373 |
H. alvei | R38/2 | 2.273 | Hal382 |
H. alvei | R40/1 | 2.487 | Hal401 |
H. alvei | R28/1 | 2.051 | Hal281 |
K. intermedia | R38/2 | 2.425 | Ki382 |
K. intermedia | R37/1 | 2.326 | Ki371 |
L. adecarboxylata | R38/1 | 1.788 | LA381 |
R. ornithinolytica | R38/1 | 2.468 | Ro381 |
Ps. teatrolens | R28/5 | 1.856 | Pt285 |
Ps. putida | R39/1 | 2.300 | Pp391 |
Ps.fragi | R28/4 | 1.887 | Pf284 |
Ps. fragi | R30/2 | 1.947 | Pf302 |
Ps. lundensis | R36/1 | 2.225 | PL361 |
S. fonticola | R36/1 | 2.256 | SF361 |
Strain | Carbenicillin (100 µg) | Erythromycin (15 µg) | Ampicillin (10 µg) | Trimetroprim (85 µg) | Ticarcillin (75 µg) | Clindamycin (2 µg) |
---|---|---|---|---|---|---|
AC362 | R | R | R | R | +12 | R |
CG372 | R | R | +10 | R | +11 | R |
CG382 | R | R | +12 | R | +10 | R |
CF402 | R | R | +10 | R | +12 | R |
EC361 | +15 | R | +12 | R | +15 | R |
Hal281 | +14 | +15 | +21 | R | +20 | +19 |
Hal331 | R | R | +11 | R | R | R |
Hal373 | R | R | R | R | +12 | R |
Hal382 | R | R | +10 | R | +12 | R |
Hal401 | R | R | R | R | +11 | R |
Kc383 | R | R | +10 | R | +10 | R |
Ki382 | R | R | +10 | R | +13 | R |
Ki371 | +20 | R | +20 | +16 | +26 | R |
LA381 | R | R | R | R | R | R |
Ro381 | R | R | +11 | R | +13 | R |
Pt285 | +14 | R | +15 | +12 | +19 | R |
Pp391 | R | R | R | R | +11 | R |
Pf284 | R | R | +11 | R | +12 | R |
Pf302 | R | R | +16 | R | +11 | R |
PL361 | +15 | R | +17 | +11 | +20 | R |
SF361 | R | R | R | R | +10 | R |
Strains | EntA/P | EntM | Ent4231 | Ent55 | Ent9296 | Ent412 | Ent2019 | EntEM41 | DurED26E/7 |
---|---|---|---|---|---|---|---|---|---|
Hal281 | 6400 | 3200 | 200 | 3200 | 6400 | 6400 | 6400 | 3200 | 6400 |
Pp391 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Pf284 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Kandričáková, A.; Ščerbová, J.; Pogány Simonová, M.; Žitňan, R. Gram-Negative Microbiota Derived from Trout Fished in Slovakian Water Sources and Their Relationship to Postbiotics. Pathogens 2025, 14, 644. https://doi.org/10.3390/pathogens14070644
Lauková A, Kandričáková A, Ščerbová J, Pogány Simonová M, Žitňan R. Gram-Negative Microbiota Derived from Trout Fished in Slovakian Water Sources and Their Relationship to Postbiotics. Pathogens. 2025; 14(7):644. https://doi.org/10.3390/pathogens14070644
Chicago/Turabian StyleLauková, Andrea, Anna Kandričáková, Jana Ščerbová, Monika Pogány Simonová, and Rudolf Žitňan. 2025. "Gram-Negative Microbiota Derived from Trout Fished in Slovakian Water Sources and Their Relationship to Postbiotics" Pathogens 14, no. 7: 644. https://doi.org/10.3390/pathogens14070644
APA StyleLauková, A., Kandričáková, A., Ščerbová, J., Pogány Simonová, M., & Žitňan, R. (2025). Gram-Negative Microbiota Derived from Trout Fished in Slovakian Water Sources and Their Relationship to Postbiotics. Pathogens, 14(7), 644. https://doi.org/10.3390/pathogens14070644