Immunohistochemical Profiling of Immune Checkpoints in Chronic Hepatitis B Liver Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Specimens
2.2. Immunohistochemical Staining
2.3. Statistical Analysis
3. Results and Discussion
3.1. Sample Demographic and Clinical Parameters
3.2. Immune Checkpoint Immunohistochemical Evaluation
3.3. Association Between Demographic and Clinical Data and Histopathological Variables
3.4. Association Between Histopathological Variables
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, S.; Revill, P. Overview of hepatitis B viral replication and genetic variability. J. Hepatol. 2016, 64 (Suppl. S1), S4–S16. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.K.; Lo, Y.R.; Pawlotsky, J.M.; Yuen, M.F. Chronic hepatitis B virus infection. Lancet 2018, 392, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- EASL. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Boonstra, A. Checkpoint Inhibitors and Therapeutic Vaccines for the Treatment of Chronic HBV Infection. Front. Immunol. 2020, 11, 401. [Google Scholar] [CrossRef]
- Wherry, E.J. T cell exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Bengsch, B.; Martin, B.; Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 2014, 61, 1212–1219. [Google Scholar] [CrossRef]
- Cooksley, H.; Riva, A.; Katzarov, K.; Hadzhiolova-Lebeau, T.; Pavlova, S.; Simonova, M.; Williams, R.; Chokshi, S. Differential Expression of Immune Inhibitory Checkpoint Signatures on Antiviral and Inflammatory T Cell Populations in Chronic Hepatitis B. J. Interferon Cytokine Res. 2018, 38, 273–282. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, Y.; Lu, M. Advances in Targeting the Innate and Adaptive Immune Systems to Cure Chronic Hepatitis B Virus Infection. Front. Immunol. 2019, 10, 3127. [Google Scholar] [CrossRef]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Sheng, J.-M.; Zhao, W.-H.; Wu, F.-S.; Ma, Z.-M.; Feng, Y.-Z.; Zhou, X.-R.; Teng, L.-S. The Chinese classification system compared with TNM staging in prognosis of patients with primary hepatic carcinoma after resection. Hepatobiliary Pancreat. Dis. Int. HBPD INT 2005, 4, 561–564. [Google Scholar]
- Sampedro-Nunez, M.; Serrano-Somavilla, A.; Adrados, M.; Cameselle-Teijeiro, J.M.; Blanco-Carrera, C.; Cabezas-Agricola, J.M.; Martínez-Hernández, R.; Martín-Pérez, E.; de Nova, J.L.M.; Díaz, J.Á.; et al. Analysis of expression of the PD-1/PD-L1 immune checkpoint system and its prognostic impact in gastroenteropancreatic neuroendocrine tumors. Sci. Rep. 2018, 8, 17812. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, E.-E.; Kilvaer, T.K.; Rakaee, M.; Richardsen, E.; Hald, S.M.; Andersen, S.; Busund, L.-T.; Bremnes, R.M.; Donnem, T. CTLA-4 expression in the non-small cell lung cancer patient tumor microenvironment: Diverging prognostic impact in primary tumors and lymph node metastases. Cancer Immunol. Immunother. 2017, 66, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, N.; Li, F.; Zhou, Z.; Sang, J.; Chen, Y.; Han, Q.; Lv, Y.; Liu, Z. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine 2016, 95, e5749. [Google Scholar] [CrossRef] [PubMed]
- Beghini, M.; de Araújo, M.F.; Severino, V.O.; Etchebehere, R.M.; Rodrigues, D.B.R.; de Lima Pereira, S.A. Evaluation of the immunohistochemical expression of Gal-1, Gal-3 and Gal-9 in the colon of chronic chagasic patients. Pathol.-Res. Pract. 2017, 213, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Nishihara, R.; Yang, J.; Mima, K.; Da Silva, A.; Shi, Y.; Inamura, K.; Cao, Y.; Song, M.; Nowak, J.A.; et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 2017, 66, 1463–1473. [Google Scholar] [CrossRef]
- Annibali, O.; Bianchi, A.; Grifoni, A.; Tomarchio, V.; Tafuri, M.; Verri, M.; Avvisati, G.; Crescenzi, A. A novel scoring system for TIGIT expression in classic Hodgkin lymphoma. Sci. Rep. 2021, 11, 7059. [Google Scholar] [CrossRef]
- Chen, C.-w.; Mittal, R.; Klingensmith, N.J.; Burd, E.M.; Terhorst, C.; Martin, G.S.; Coopersmith, C.M.; Ford, M.L. Cutting edge: 2B4-mediated coinhibition of CD4+ T cells underlies mortality in experimental sepsis. J. Immunol. 2017, 199, 1961–1966. [Google Scholar] [CrossRef]
- Sun, H.; Xu, J.; Huang, Q.; Huang, M.; Li, K.; Qu, K.; Wen, H.; Lin, R.; Zheng, M.; Wei, H.; et al. Reduced CD160 expression contributes to impaired NK-cell function and poor clinical outcomes in patients with HCC. Cancer Res. 2018, 78, 6581–6593. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, D.; Yang, W.; Li, Y.; Zhang, L.; Cheng, X.; Chen, R.; Yuan, B.; Zhang, G.; Wang, H. Increased expression of TIGIT and KLRG1 correlates with impaired CD56bright NK cell immunity in HPV16-related cervical intraepithelial neoplasia. Virol. J. 2022, 19, 68. [Google Scholar] [CrossRef]
- Johnson, L.; McCune, B.; Locke, D.; Hedvat, C.; Wojcik, J.B.; Schroyer, C.; Yan, J.; Johnson, K.; Sanders-Cliette, A.; Samala, S.; et al. Development of a LAG-3 immunohistochemistry assay for melanoma. J. Clin. Pathol. 2022, 76, 591–598. [Google Scholar] [CrossRef]
- Tseng, B.S.; Otsuji, M.; Gorski, K.; Huang, X.; Slansky, J.E.; Pai, S.I.; Shalabi, A.; Shin, T.; Pardoll, D.M.; Tsuchiya, H. B7-DC, a New Dendritic Cell Molecule with Potent Costimulatory Properties for T Cells. J. Exp. Med. 2001, 193, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Cubero, E.; Larrubia, J.R. Specific CD8(+) T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J. Gastroenterol. 2016, 22, 6469–6483. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Kassel, R.; Cruise, M.W.; Iezzoni, J.C.; Taylor, N.A.; Pruett, T.L.; Hahn, Y.S. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology 2009, 50, 1625–1637. [Google Scholar] [CrossRef]
- Cao, D.; Xu, H.; Guo, G.; Ruan, Z.; Fei, L.; Xie, Z.; Wu, Y.; Chen, Y. Intrahepatic expression of programmed death-1 and its ligands in patients with HBV-related acute-on-chronic liver failure. Inflammation 2013, 36, 110–120. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.-M.; Wu, X.-J.; Wang, Y.; Zhao, H.; Shen, B.; Wang, G.Q. Intrahepatic levels of PD-1/PD-L correlate with liver inflammation in chronic hepatitis B. Inflamm. Res. 2011, 60, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.J.; Bao, J.J.; Wang, J.Z.; Wang, Y.; Jiang, M.; Xing, M.Y.; Zhang, W.-G.; Qi, J.-Y.; Roggendorf, M.; Lu, M.-J.; et al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J. Gastroenterol. 2011, 17, 3322–3329. [Google Scholar] [CrossRef]
- Wenjin, Z.; Chuanhui, P.; Yunle, W.; Lateef, S.A.; Shusen, Z. Longitudinal fluctuations in PD1 and PD-L1 expression in association with changes in anti-viral immune response in chronic hepatitis B. BMC Gastroenterol. 2012, 12, 109. [Google Scholar] [CrossRef]
- Said, E.A.; Al-Reesi, I.; Al-Riyami, M.; Al-Naamani, K.; Al-Sinawi, S.; Al-Balushi, M.S.; Koh, C.Y.; Al-Busaidi, J.Z.; Idris, M.A.; Al-Jabri, A.A.; et al. Increased CD86 but Not CD80 and PD-L1 Expression on Liver CD68+ Cells during Chronic HBV Infection. PLoS ONE 2016, 11, e0158265. [Google Scholar] [CrossRef]
- Azuma, M.; Ito, D.; Yagita, H.; Okumura, K.; Phillips, J.H.; Lanier, L.L.; Somoza, C. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993, 366, 76–79. [Google Scholar] [CrossRef]
- Krummel, B.M.F. JA CD28 and CTLA-4 Have Opposing Effects on the Response of T ceils to Stimulation. J. Exp. Med. 1995, 182, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.; Huang, M.P.; Yin, G.Q.; Gao, X. Effects of costimulation on intrahepatic immunopathogenesis in patients with chronic HBV infection. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 2014, 63, 217–229. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.F.; Liang, X.H.; Ma, C.H. Role of Tim-3 in hepatitis B virus infection: An overview. World J. Gastroenterol. 2016, 22, 2294–2303. [Google Scholar] [CrossRef]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, G.; Peppa, D.; Schurich, A.; Khanna, P.; Singh, H.D.; Cheng, Y.; Rosenberg, W.; Dusheiko, G.; Gilson, R.; ChinAleong, J.; et al. Upregulation of the Tim-3/Galectin-9 Pathway of T Cell Exhaustion in Chronic Hepatitis B Virus Infection. PLoS ONE 2012, 7, e47648. [Google Scholar] [CrossRef]
- Ju, Y.; Hou, N.; Meng, J.; Wang, X.; Zhang, X.; Zhao, D.; Liu, Y.; Zhu, F.; Zhang, L.; Sun, W.; et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J. Hepatol. 2010, 52, 322–329. [Google Scholar] [CrossRef]
- Wada, J.; Ota, K.; Kumar, A.; Wallner, E.I.; Kanwar, Y.S. Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin. J. Clin. Investig. 1997, 99, 2452–2461. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Freeman, G.J. The CD160, BTLA, LIGHT/HVEM pathway: A bidirectional switch regulating T-cell activation. Immunol. Rev. 2009, 229, 244–258. [Google Scholar] [CrossRef]
- Xu, H.; Cao, D.; Guo, G.; Ruan, Z.; Wu, Y.; Chen, Y. The intrahepatic expression and distribution of BTLA and its ligand HVEM in patients with HBV-related acute-on-chronic liver failure. Diagn. Pathol. 2012, 7, 142. [Google Scholar] [CrossRef]
- Zong, L.; Peng, H.; Sun, C.; Li, F.; Zheng, M.; Chen, Y.; Wei, H.; Sun, R.; Tian, Z. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat. Commun. 2019, 10, 221. [Google Scholar] [CrossRef]
- Yu, X.; Harden, K.; CGonzalez, L.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Assarsson, E.; Kambayashi, T.; Persson, C.M.; Chambers, B.J.; Ljunggren, H.-G. 2B4/CD48-Mediated Regulation of Lymphocyte Activation and Function 1. J. Immunol. 2005, 175, 2045–2049. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chen, Y.; Zhao, S.; Yang, Z.; Yao, X.; Guo, S.; Yang, C.; Fei, L.; Zeng, X.; Ni, B.; et al. Intrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection. Immunol. Investig. 2009, 38, 624–638. [Google Scholar] [CrossRef]
- Wu, W.; Shi, Y.; Li, J.; Chen, F.; Chen, Z.; Zheng, M. Tim-3 expression on peripheral T-cell subsets correlates with disease progression in hepatitis B infection. Virol. J. 2011, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Bivi, N.; Calderon, B.; Shimizu, T.; Delafontaine, B.; Liu, Z.T.; Szpurka, A.M.; Copeland, V.; Hodi, F.S.; Rottey, S.; et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin. Cancer Res. 2021, 27, 2773–2781. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, C.; Li, W. Phase 1 study of LB1410, a bivalent TIM-3/PD-1 bispecific antibody, in patients with advanced solid tumors. J. Clin. Oncol. 2024, 42 (Suppl. 16), 2639. [Google Scholar] [CrossRef]
- Costa, J.P.; de Carvalho, A.; Paiva, A.; Borges, O. Insights into immune exhaustion in chronic hepatitis B: A review of checkpoint receptor expression. Pharmaceuticals 2024, 17, 964. [Google Scholar] [CrossRef]
No. | Gender | Age | HBeAg | HBV DNA | Medication | HCC | ALT | Stage | HAI |
---|---|---|---|---|---|---|---|---|---|
N1 | M | 29 | Pos. | >1,000,000 | No | No | 988 | F2 | 5 |
N2 | F | 29 | Neg. | <10 | No | No | 28 | F1 | 1 |
N3 | M | 51 | N.A. | >2,000,000 | No | No | N.A. | F4 | 5 |
N4 | M | 78 | Pos. | >25,000,000 | No | No | 77 | F4 | N.A. |
N5 | F | 55 | Neg. | 3943 | No | No | 25 | F1 | 3 |
N6 | F | 47 | Neg. | 198 | ETV | No | 28 | F2 | 1 |
N7 | M | 51 | Neg. | 78 | No | Yes | 72 | F4 | 5 |
N8 | F | 66 | Pos. | 2595 | No | No | 53 | F4 | 1 |
N9 | F | 59 | Neg. | 742,173 | TDF | Yes | 85 | F2 | 1 |
N10 | M | 12 | Pos. | >1,700,000 | No | No | 92 | N.A. | N.A. |
N11 | M | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
N12 | M | 51 | Neg. | 100,273 | No | No | 430 | F1 | 6 |
N13 | M | 54 | Neg. | Neg. | TDF | No | 35 | F2 | 2 |
N14 | M | 44 | Neg. | 4204 | No | No | 25 | F0 | 0 |
N15 | M | 38 | Pos. | <20 | TDF | No | 60 | F2 | 1 |
N16 | M | 63 | Neg. | 1,250,750 | No | Yes | 49 | F4 | 2 |
N17 | M | 70 | Neg. | Neg. | ETV | Yes | 27 | F1 | 1 |
N18 | M | 43 | Neg. | 121 | No | No | 64 | F0 | 0 |
N19 | F | 25 | Neg. | Neg. | No | No | 13 | F0 | 0 |
N20 | M | 59 | Neg. | Neg. | No | No | 287 | N.A. | N.A. |
N21 | M | 34 | Neg. | Neg. | TDF | No | 44 | F3 | 0 |
N22 | M | 78 | Neg. | 4218 | No | Yes | 16 | F4 | N.A. |
N23 | M | 65 | Pos. | >170,000,000 | TDF/ETV | Yes | 59 | F0 | 1 |
N24 | F | 46 | Neg. | Neg. | ETV | No | 16 | F1 | 1 |
N25 | M | 56 | Neg. | Neg. | ETV | Yes | 25 | F4 | N.A. |
N26 | F | 40 | Pos. | 165,000 | TDF/ETV | No | 160 | F4 | N.A. |
N27 | F | 36 | N.A. | Neg. | No | Yes | 36 | F4 | 0 |
N28 | M | 59 | Neg. | Neg. | TDF | No | 19 | F3 | 0 |
N29 | M | 65 | Neg. | 121,450 | TDF | Yes | 25 | F4 | N.A. |
N30 | F | 76 | Neg. | Neg. | TDF | Yes | 32 | F1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panão-Costa, J.; Oliveira, R.C.; Teixeira, P.; Caramelo, F.; Cipriano, M.A.; Borges, O.; Carvalho, A. Immunohistochemical Profiling of Immune Checkpoints in Chronic Hepatitis B Liver Tissue. Pathogens 2025, 14, 596. https://doi.org/10.3390/pathogens14060596
Panão-Costa J, Oliveira RC, Teixeira P, Caramelo F, Cipriano MA, Borges O, Carvalho A. Immunohistochemical Profiling of Immune Checkpoints in Chronic Hepatitis B Liver Tissue. Pathogens. 2025; 14(6):596. https://doi.org/10.3390/pathogens14060596
Chicago/Turabian StylePanão-Costa, João, Rui Caetano Oliveira, Paulo Teixeira, Francisco Caramelo, Maria Augusta Cipriano, Olga Borges, and Armando Carvalho. 2025. "Immunohistochemical Profiling of Immune Checkpoints in Chronic Hepatitis B Liver Tissue" Pathogens 14, no. 6: 596. https://doi.org/10.3390/pathogens14060596
APA StylePanão-Costa, J., Oliveira, R. C., Teixeira, P., Caramelo, F., Cipriano, M. A., Borges, O., & Carvalho, A. (2025). Immunohistochemical Profiling of Immune Checkpoints in Chronic Hepatitis B Liver Tissue. Pathogens, 14(6), 596. https://doi.org/10.3390/pathogens14060596