Humoral and T-Cell-Mediated Immunity Against Phlebotomus perniciosus Salivary Proteins in Dogs from a Leishmaniosis-Endemic Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Data of Ibizan Hounds and Dogs of Other Breeds
2.2. Cytokine Release Whole Blood Assay
- (i)
- Medium alone;
- (ii)
- Medium with L. infantum soluble antigen (LSA) at a concentration of 10 µg/mL;
- (iii)
- Medium with mitogen concanavalin A (ConA) (100 mg, Medicago, Uppsala, Sweden) at a concentration of 10 µg/mL;
- (iv)
- Medium with P. perniciosus salivary gland homogenate (SGH) at a concentration of 1 salivary gland/mL;
- (v)
- Medium with 43-kDa yellow-related recombinant protein (rSP03B) from salivary gland P. perniciosus at a concentration of 20 µg/mL.
2.3. Sandwich ELISAs to Determine IFN-γ Concentration
2.4. ELISA to Determine Anti-L. infantum Antibodies
2.5. ELISA to Determine Anti-P. perniciosus IgG
2.6. Statistical Analysis
3. Results
3.1. Agreement Between Tests
3.2. Spearman’s Rho Correlation and Linear Regression
3.3. Proportion of Positive Diagnostic Tests and Median Results for All Dogs Studied
3.4. Relationship Between Demographic Parameters and Parasite-Specific Immunological Parameters, P. perniciosus Salivary Antibodies and IFN-γ Concentrations
3.5. SGH IFN-γ and rSP03B IFN-γ
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ELISA | enzyme-linked immunosorbent assay |
IFN-γ | interferon gamma |
LSA | L. infantum soluble antigen |
rSP03B | 43-kDa yellow-related recombinant protein |
SGH | salivary gland homogenate |
References
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Neglected Trop. Dis. 2016, 10, e0004770. [Google Scholar] [CrossRef]
- Jariyapan, N.; Bates, M.D.; Bates, P.A. Molecular identification of two newly identified human pathogens causing leishmaniasis using PCR-based methods on the 3′ untranslated region of the heat shock protein 70 (type I) gene. PLoS Neglected Trop. Dis. 2021, 15, e0009982. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Canine leishmaniasis in the Americas: Etiology, distribution, and clinical and zoonotic importance. Parasit. Vectors 2024, 17, 198. [Google Scholar] [CrossRef]
- Alten, B.; Maia, C.; Afonso, M.O.; Campino, L.; Jiménez, M.; González, E.; Molina, R.; Bañuls, A.L.; Prudhomme, J.; Vergnes, B.; et al. Seasonal dynamics of Phlebotomine sand fly species proven vectors of mediterranean leishmaniasis caused by Leishmania infantum. PLoS Neglected Trop. Dis. 2016, 10, e0004458. [Google Scholar] [CrossRef]
- Gálvez, R.; Montoya, A.; Cruz, I.; Fernández, C.; Martín, O.; Checa, R.; Chicharro, C.; Migueláñez, S.; Marino, V.; Miró, G. Latest trends in Leishmania infantum infection in dogs in Spain, Part I: Mapped seroprevalence and sand fly distributions. Parasit. Vectors 2020, 13, 204. [Google Scholar] [CrossRef]
- Díaz-Sáez, V.; Corpas-López, V.; Merino-Espinosa, G.; Morillas-Mancilla, M.J.; Abattouy, N.; Martín-Sánchez, J. Seasonal dynamics of phlebotomine sand flies and autochthonous transmission of Leishmania infantum in high-altitude ecosystems in southern Spain. Acta Trop. 2021, 213, 105749. [Google Scholar] [CrossRef]
- Lestinova, T.; Rohousova, I.; Sima, M.; de Oliveira, C.I.; Volf, P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Neglected Trop. Dis. 2017, 11, e0005600. [Google Scholar] [CrossRef]
- Rohoušová, I.; Volf, P. Sand fly saliva: Effects on host immune response and Leishmania transmission. Folia Parasitol. 2006, 53, 161–171. [Google Scholar] [CrossRef]
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci. 2022, 9, 387. [Google Scholar] [CrossRef]
- Velez, R.; Ballart, C.; Domenech, E.; Abras, A.; Fernández-Arévalo, A.; Gómez, S.A.; Tebar, S.; Muñoz, C.; Cairó, J.; Gállego, M. Seroprevalence of canine Leishmania infantum infection in the Mediterranean region and identification of risk factors: The example of North-Eastern and Pyrenean areas of Spain. Prev. Vet. Med. 2019, 162, 67–75. [Google Scholar] [CrossRef]
- Cosma, C.; Maia, C.; Khan, N.; Infantino, M.; Del Riccio, M. Leishmaniasis in humans and animals: A One Health approach for surveillance, prevention and control in a changing world. Trop. Med. Infect. Dis. 2024, 9, 258. [Google Scholar] [CrossRef]
- de Vasconcelos, T.C.B.; Furtado, M.C.; Belo, V.S.; Morgado, F.N.; Figueiredo, F.B. Canine susceptibility to visceral leishmaniasis: A systematic review upon genetic aspects, considering breed factors and immunological concepts. Infect. Genet. Evol. 2019, 74, 103293. [Google Scholar] [CrossRef]
- Álvarez, L.; Marín-García, P.J.; Llobat, L. Serum levels and genetic variations of cytokines in two canine breeds (Ibizan hound and boxer) in the Mediterranean region, in terms of Leishmania infantum infection. Comp. Immunol. Microbiol. Infect. Dis. 2022, 90–91, 101908. [Google Scholar] [CrossRef]
- Álvarez, L.; Marín-García, P.J.; Llobat, L. Immunological and genomic characterization of Ibizan Hound dogs in an endemic Leishmania infantum region. Parasit. Vectors 2022, 15, 445. [Google Scholar] [CrossRef]
- Burnham, A.C.; Ordeix, L.; Alcover, M.M.; Martínez-Orellana, P.; Montserrat-Sangrà, S.; Willen, L.; Spitzova, T.; Volf, P.; Solano-Gallego, L. Exploring the relationship between susceptibility to canine leishmaniosis and anti-Phlebotomus perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in Mallorca, Spain. Parasit. Vectors 2020, 13, 129. [Google Scholar] [CrossRef]
- Toepp, A.J.; Petersen, C.A. The balancing act: Immunology of leishmaniosis. Res. Vet. Sci. 2020, 130, 19–25. [Google Scholar] [CrossRef]
- Álvarez, L.; Marín-García, P.J.; Llobat, L. Genetic haplotypes associated with immune response to Leishmania infantum infection in dogs. Vet. Res. Commun. 2023, 47, 1675–1685. [Google Scholar] [CrossRef]
- Kostalova, T.; Lestinova, T.; Maia, C.; Sumova, P.; Vlkova, M.; Willen, L.; Polanska, N.; Fiorentino, E.; Scalone, A.; Oliva, G.; et al. The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med. Vet. Entomol. 2017, 31, 88–93. [Google Scholar] [CrossRef]
- Maia, C.; Cristóvão, J.; Pereira, A.; Kostalova, T.; Lestinova, T.; Sumova, P.; Volf, P.; Campino, L. Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasit. Vectors 2020, 13, 119. [Google Scholar] [CrossRef]
- Ordeix, L. The Spectrum of Cutaneous Manifestations in Canine Leishmaniosis: Insights into Diagnosis and Immune Responses. Ph.D. Thesis, Universitat Autònoma de Barcelona, Barcelona, Spain, 2018. [Google Scholar]
- Solano-Gallego, L.; Montserrat-Sangrà, S.; Ordeix, L.; Martínez-Orellana, P. Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasit. Vectors 2016, 9, 317. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Di Filippo, L.; Ordeix, L.; Planellas, M.; Roura, X.; Altet, L.; Martínez-Orellana, P.; Montserrat, S. Early reduction of Leishmania infantum-specific antibodies and blood parasitemia during treatment in dogs with moderate or severe disease. Parasit. Vectors 2016, 9, 235. [Google Scholar] [CrossRef]
- Riera, C.; Valladares, J.E.; Gállego, M.; Aisa, M.J.; Castillejo, S.; Fisa, R.; Ribas, N.; Carrió, J.; Alberola, J.; Arboix, M. Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet. Parasitol. 1999, 84, 33–47. [Google Scholar] [CrossRef]
- Willen, L.; Lestinova, T.; Kalousková, B.; Sumova, P.; Spitzova, T.; Velez, R.; Domenech, E.; Vaněk, O.; Gállego, M.; Mertens, P.; et al. Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis. PLoS Neglected Trop. Dis. 2019, 13, e0007832. [Google Scholar] [CrossRef]
- Aoki, V.; Abdeladhim, M.; Li, N.; Cecilio, P.; Prisayanh, P.; Diaz, L.A.; Valenzuela, J.G. Some good and some bad: Sand fly salivary proteins in the control of leishmaniasis and in autoimmunity. Front. Cell Infect. Microbiol. 2022, 25, 839932. [Google Scholar] [CrossRef]
- Oliveira, F.; Giorgobiani, E.; Guimarães-Costa, A.B.; Abdeladhim, M.; Oristian, J.; Tskhvaradze, L.; Tsertsvadze, N.; Zakalashvili, M.; Valenzuela, J.G.; Kamhawi, S. Immunity to vector saliva is compromised by short sand fly seasons in endemic regions with temperate climates. Sci Rep. 2020, 10, 7990. [Google Scholar] [CrossRef]
- Collin, N.; Gomes, R.; Teixeira, C.; Cheng, L.; Laughinghouse, A.; Ward, J.M.; Elnaiem, D.E.; Fischer, L.; Valenzuela, J.G.; Kamhawi, S. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 2009, 5, e1000441. [Google Scholar] [CrossRef]
- Kammoun-Rebai, W.; Bahi-Jaber, N.; Naouar, I.; Toumi, A.; Ben Salah, A.; Louzir, H.; Meddeb-Garnaoui, A. Human cellular and humoral immune responses to Phlebotomus papatasi salivary gland antigens in endemic areas differing in prevalence of Leishmania major infection. PLoS Neglected Trop. Dis. 2017, 11, e0005905. [Google Scholar] [CrossRef]
- Velez, R.; Spitzova, T.; Domenech, E.; Willen, L.; Cairó, J.; Volf, P.; Gállego, M. Seasonal dynamics of canine antibody response to Phlebotomus perniciosus saliva in an endemic area of Leishmania infantum. Parasit. Vectors 2018, 11, 545. [Google Scholar] [CrossRef]
- Quinnell, R.J.; Soremekun, S.; Bates, P.A.; Rogers, M.E.; Garcez, L.M.; Courtenay, O. Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum. Parasit. Vectors 2018, 11, 7. [Google Scholar] [CrossRef]
- Chapman, L.A.C.; Morgan, A.L.K.; Adams, E.R.; Bern, C.; Medley, G.F.; Hollingsworth, T.D. Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indian subcontinent: A review and analysis of data from diagnostic and epidemiological studies. PLoS Neglected Trop. Dis. 2018, 12, e0006803. [Google Scholar] [CrossRef]
- Carstens-Kass, J.; Paulini, K.; Lypaczewski, P.; Matlashewski, G. A review of the leishmanin skin test: A neglected test for a neglected disease. PLoS Neglected Trop. Dis. 2021, 15, e0009531. [Google Scholar] [CrossRef] [PubMed]
- Bekele, F.; Belay, T.; Zeynudin, A.; Hailu, A. Visceral leishmaniasis in selected communities of Hamar and Banna-Tsamai districts in Lower Omo Valley, South West Ethiopia: Sero-epidemological and Leishmanin Skin Test Surveys. PLoS ONE 2018, 13, e0197430. [Google Scholar] [CrossRef] [PubMed]
- Checa, R.; Sánchez-Vizcaíno, F.; Miró, G.; Pinchbeck, G.; Jones, H.; Noble, P.J.; Radford, A.D. Updating the epidemiology of canine leishmaniosis in the United Kingdom through the use of electronic health data. Vet. Parasitol. 2025, 333, 110350. [Google Scholar] [CrossRef]
- Almeida, M.; Maia, C.; Cristóvão, J.M.; Morgado, C.; Barbosa, I.; Ibars, R.F.; Campino, L.; Gonçalves, L.; Cortes, S. Seroprevalence and risk factors associated with Leishmania infection in dogs from Portugal. Microorganisms 2022, 10, 2262. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.; Garcês, A.; Silva, A.; Brilhante-Simões, P.; Martins, Â.; Duarte, E.L.; Coelho, A.C.; Cardoso, L. Distribution of and relationships between epidemiological and clinicopathological parameters in canine leishmaniosis: A retrospective study of 15 years (2009–2023). Pathogens 2024, 13, 635. [Google Scholar] [CrossRef]
- Andrade, B.B.; Teixeira, C.R. Biomarkers for exposure to sand flies bites as tools to aid control of leishmaniasis. Front. Immunol. 2012, 3, 121. [Google Scholar] [CrossRef]
Pair Parameters | Percent Agreement | McNemar’s Exact Test p-Value | Kappa ± SE | Kappa Interpretation Ϯ |
---|---|---|---|---|
SGH IgG vs. rSP03B IgG | 78.82% | 0.8137 | 0.554 ± 0.093 | Moderate agreement |
SGH IgG vs. LSA IFN-γ | 57.65% | 0.0668 | 0.045 ± 0.104 | Slight agreement |
SGH IgG vs. SGH IFN-γ | 41.18% | 0.0162 * | −0.126 ± 0.100 | No agreement |
SGH IgG vs. rSP03B IFN-γ | 35.29% | 0.0005 *** | −0.185 ± 0.092 | No agreement |
rSP03B IgG vs. LSA IFN-γ | 55.29% | 0.0744 | −0.008 ± 0.103 | No agreement |
rSP03B IgG vs. SGH IFN-γ | 45.88% | 0.0122 * | −0.036 ± 0.099 | No agreement |
rSP03B IgG vs. rSP03B IFN-γ | 37.65% | 0.0004 *** | −0.142 ± 0.091 | No agreement |
LSA IFN-γ vs. SGH IFN-γ | 41.18% | <0.0001 *** | −0.068 ± 0.085 | No agreement |
LSA IFN-γ vs. rSP03B IFN-γ | 44.71% | <0.0001 *** | 0.085 ± 0.066 | Slight agreement |
SGH IFN-γ vs. rSP03B IFN-γ | 65.88% | 0.1374 | 0.256 ± 0.105 | Fair agreement |
L. infantum-specific antibodies vs. SGH IgG | 62.35% | 0.0002 *** | 0.294 ± 0.088 | Fair agreement |
L. infantum-specific antibodies vs. rSP03B IgG | 55.29% | 0.0007 *** | 0.061 ± 0.092 | Slight agreement |
L. infantum-specific antibodies vs. LSA IFN-γ | 50.59% | 0.0001 *** | 0.140 ± 0.073 | Slight agreement |
L. infantum-specific antibodies vs. SGH IFN-γ | 50.59% | 0.6434 | −0.050 ± 0.107 | No agreement |
L. infantum-specific antibodies vs. rSP03B IFN-γ | 61.18% | 0.4862 | 0.117 ± 0.110 | Slight agreement |
Age and Immunological Parameters | Log Salivary Antigen Units | Age and Immunological Parameters | Log IFN-γ Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SGH ELISA | rSP03B ELISA | LSA IFN-γ | SGH IFN-γ | rSP03B IFN-γ | |||||||
r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p-Value | r2 | p-Value | ||
Log L. infantum-specific antibodies ELISA units | 0.4077 | 0.0001 *** | 0.2742 | 0.0113 * | Log L. infantum-specific antibodies ELISA units | 0.2708 | 0.0121 * | −0.1446 | 0.1866 | 0.0124 | 0.9098 |
Log LSA IFN-γ units | 0.1654 | 0.1302 | 0.0938 | 0.3928 | Log SGH IFN-γ units | 0.0215 | 0.8445 | ||||
Log SGH IFN-γ units | −0.0418 | 0.7035 | 0.0679 | 0.5363 | Log rSP03B IFN-γ units | 0.0732 | 0.5051 | ||||
Log rSP03B IFN-γ units | −0.2276 | 0.0361 * | −0.1515 | 0.1661 | Log rSP03B IFN-γ units | 0.3740 | 0.0004 *** | ||||
Age (months) | −0.0326 | 0.7682 | -0.0939 | 0.3951 | Age (months) | 0.2726 | 0.0121 * | 0.0231 | 0.8346 | 0.0765 | 0.4887 |
Log rSP03B salivary antigen ELISA units | 0.7024 | <0.0001 *** |
Test | Total Proportion of Positives (n = 85) | Proportion of Positive Ibizan Hounds (n = 51) | Proportion of Positive Other Breeds (n = 34) | Fisher’s Exact Test p-Value |
---|---|---|---|---|
L. infantum-specific antibodies | 35.29% (30/85) | 31.37% (16/51) | 41.17% (14/34) | 0.3659 |
SGH IgG | 61.17% (52/85) | 62.74% (32/51) | 58.82% (20/34) | 0.8211 |
rSP03B IgG | 61.17% (52/85) | 72.54% (37/51) | 44.11% (15/34) | 0.01229 * |
LSA IFN-γ | 75.29% (64/85) | 78.40% (40/51) | 70.60% (24/34) | 0.4494 |
SGH IFN-γ | 40% (34/85) | 35.29% (18/51) | 47.05% (16/34) | 0.3666 |
rSP03B IFN-γ | 29.41% (25/85) | 27.45% (14/51) | 32.35% (11/34) | 0.6360 |
Test (Units) | Ibizan Hounds | Other Breeds | Mann–Whitney p-Value | All Dogs |
---|---|---|---|---|
L. infantum-specific antibodies (EU) | 25.96 (24.61) | 24.58 (58.10) | 0.8260 | 25.96 (35.48 EU) |
SGH IgG (EU) | 48.10 (26.61) | 45.60 (58.10) | 0.8051 | 47.41 (30.13) |
rSP03B IgG (EU) | 50.81 (50.24) | 36.56 (30.77) | 0.0331 * | 46.75 (45.26) |
LSA IFN-γ (pg/mL) | 1015.59 (2122.92) | 445.75 (2336.95) | 0.2695 | 854.40 (2298.3) |
SGH IFN-γ (pg/mL) | 24.77 (31.36) | 39.05 (106.95) | 0.2379 | 26.75 (68.56) |
rSP03B IFN-γ (pg/mL) | 18.39 (37.85) | 28.60 (39.35) | 0.5254 | 19.25 (44.99) |
IFN-γ LSA Concentration (pg/mL) | IFN-γ LSA Frequency Result | ||||
---|---|---|---|---|---|
Variable | Number of Dogs | Median ELISA Units (IQR) | Mann–Whitney p-Value | Proportion Positive (Count) | Fisher’s Exact Test p-Value |
Breed | |||||
Ibizan Hounds | 51 | 1015.59 (2122.92) | 0.2695 | 40/51, 78.4% | 0.4494 |
Other breeds | 34 | 445.75 (2336.95) | 24/34, 70.6% | ||
Sex | |||||
Female | 60 | 801.00 (2093.96) | 0.4911 | 46/60, 76.7% | 1 |
Male | 24 | 1101.15 (3512.73) | 18/24, 75.0% | ||
Age | |||||
Young | 34 | 388.40 (1276.59) | 0.0031 ** | 12/34, 35.3% | <0.001 *** |
Adult | 50 | 1381.18 (2949.48) | 41/50, 82.0% | ||
L. infantum-specific Antibodies | |||||
Positive | 30 | 1521.96 (2444.28) | 0.0985 | 26/30, 86.7% | 0.1133 |
Negative | 55 | 731.85 (1797.05) | 38/55, 69.1% | ||
SGH IFN-γ | |||||
Producer | 34 | 626.4 (2091.96) | 0.6374 | 24/34, 70.6% | 0.4494 |
Non-producer | 51 | 888.25 (2341.00) | 40/51, 78.4% | ||
rSP03B IFN-γ | |||||
Producer | 25 | 1172.50 (2389.61) | 0.3466 | 21/25, 84.0% | 0.2798 |
Non-producer | 60 | 784.95 (2190.08) | 43/60, 71.7% | ||
SGH IgG | |||||
Positive | 52 | 1255.70 (1835.57) | 0.0977 | 40/52, 76.9% | 0.7971 |
Negative | 33 | 556.3 (1193.79) | 24/33, 72.7% | ||
rSP03B IgG | |||||
Positive | 52 | 1098.29 (2972.81) | 0.2197 | 39/52, 75% | 1 |
Negative | 33 | 556.30 (1299.65) | 25/33, 75.8% |
SGH ELISA Units | SGH ELISA Result | rSP03B ELISA Units | rsp03b ELISA Result | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Number of Dogs | Median ELISA Units (IQR) | Mann–Whitney p-Value | Proportion Positive (Count) | Fisher’s Exact Test p-Value | Median-ELISA Units (IQR) | Mann–Whitney p-Value | Proportion Positive (Count) | Fisher’s Exact Test p-Value |
Breed | |||||||||
Ibizan Hounds | 51 | 48.10 (26.61) | 0.8051 | 32/51, 62.7% | 0.8211 | 50.81 (50.24) | 0.0313 * | 32/51, 62.7% | 0.8211 |
Other Breeds | 34 | 45.60 (58.10) | 20/34, 58.8% | 36.56 (30.77) | 20/34, 58.8% | ||||
Sex | |||||||||
Female | 60 | 47.06 (26.44) | 0.6595 | 37/60, 61.7% | 1 | 46.74 (45.55) | 0.7702 | 37/60, 61.6% | 0.8084 |
Male | 24 | 50.66 (56.66) | 15/24, 62.5% | 56.65 (47.87) | 14/24, 58.3% | ||||
Age | |||||||||
Young | 34 | 47.41 (23.27) | 0.7394 | 22/34, 64% | 0.6503 | 53.24 (50.26) | 0.1591 | 25/34, 73.5% | 0.1085 |
Adult | 50 | 46.71 (38.12) | 29/50, 58% | 43.51 (43.14) | 23/50, 46% | ||||
L. infantum-Specific Antibodies | |||||||||
Positive | 30 | 54.42 (38.27) | 0.0029 ** | 25/30, 83.3% | 0.0023 ** | 56.65 (48.42) | 0.1086 | 22/30, 73.3% | 0.107 |
Negative | 55 | 36.35 (31.93) | 27/55, 49.1% | 41.63 (43.47) | 30/55, 54.5% | ||||
LSA IFN-γ | |||||||||
Producer | 64 | 46.36 (28.85) | 0.6948 | 40/64, 62.5% | 0. 7971 | 46.76 (42.27) | 0.8505 | 39/64, 60.9% | 1 |
Non-Producer | 21 | 49.88 (28.48) | 12/21, 57.14% | 46.75 (57.80) | 13/21, 61.9% | ||||
SGH IFN-γ | |||||||||
Producer | 34 | 39.47 (30.8) | 0.163 | 18/34, 52.9% | 0.2567 | 41.96 (45.04) | 0.6505 | 20/34, 58.8% | 0.8211 |
Non-Producer | 51 | 49.88 (43.36) | 34/51, 66.7% | 46.78 (43.25) | 32/51, 62.7% | ||||
rSP03B IFN-γ | |||||||||
Producer | 25 | 36.6 (33.20) | 0.1387 | 11/25, 44% | 0.0506 | 39.07 (26.13) | 0.3135 | 12/25, 48% | 0.1436 |
Non-Producer | 60 | 49.74 (30.49) | 41/60, 68.3% | 53.24 (43.97) | 40/60, 66.6% | ||||
rSP03B IgG | |||||||||
Positive | 52 | 55.65 (39.09) | <0.001 *** | 43/52, 82.7% | <0.001 *** | - | - | - | - |
Negative | 33 | 24.59 (20.27) | 9/33, 27.3% | - | - | ||||
SGH IgG | |||||||||
Positive | 52 | - | - | - | - | 71.51 (53.71) | <0.001 *** | 43/52, 82.7% | <0.001 *** |
Negative | 33 | - | - | 31.96 (11.54) | 9/33, 27.3% |
IFN-γ SGH Concentration (pg/mL) | IFN-γ SGH Result | IFN-γ rSP03B Concentration (pg/mL) | IFN-γ rSP03B Result | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Number of Dogs | Median ELISA Units (IQR) Positives (n = 34) | Mann–Whitney p-Value | Proportion Positive | Fisher’s Exact Test p-Value | Median ELISA Units (IQR) Positives (n = 25) | Mann–Whitney p-Value | Proportion Positive | Fisher’s Exact Test p-Value |
Breed | |||||||||
Ibizan Hounds | 51 | 24.77 (31.36) | 0.6212 | 18/51, 35.3% | 0.3666 | 18.39 (37.85) | 0.4342 | 14/51, 27.5% | 0.636 |
Other breeds | 34 | 39.05 (106.95) | 16/34, 47.1% | 28.60 (39.35) | 11/34, 32.4% | ||||
Sex | |||||||||
Female | 60 | 26.21 (32.47) | 0.1913 | 22/60, 36.7% | 0.3271 | 33.11 (45.57) | 0.4867 | 16/60, 26.7% | 0.4287 |
Male | 24 | 77 (127.63) | 12/24, 50% | 18.5 (26.2) | 9/24, 37.5% | ||||
Age | |||||||||
Young | 34 | 16.29 (48.19) | 0.6063 | 12/34, 35.3% | 0.5001 | 27.20 (40.27) | 0.9773 | 8/34, 23.5% | 0.3404 |
Adult | 50 | 29.74 (62.00) | 22/50, 44.0% | 19.25 (36.27) | 17/50, 34% | ||||
L. infantum-Specific Antibodies | |||||||||
Positive | 30 | 23.02 (27.73) | 0.1532 | 11/30, 36.7% | 0.8171 | 18.5 (37.80) | 0.8931 | 11/30, 36.7% | 0.3238 |
Negative | 55 | 32.50 (96.60) | 23/55, 41.8% | 27.27 (37.80) | 14/55, 25.5% | ||||
LSA IFN-γ | |||||||||
Producer | 64 | 27.02 (82.10) | 0.8381 | 24/64, 37.5% | 0.4494 | 19.25 (45.80) | 0.8027 | 21/64, 32.8% | 0.2798 |
Non-Producer | 21 | 26.44 (30.95) | 10/21, 47.6% | 29.47 (25.14) | 4/21, 19% | ||||
rSP03B IFN-γ | |||||||||
Producer | 25 | 32.5 (22.6) | 0.3538 | 15/25, 60% | 0.0275 * | - | - | - | - |
Non-Producer | 60 | 21.33 (91.92) | 19/60, 31.7% | - | - | ||||
SGH IFN-γ | |||||||||
Producer | 34 | - | - | - | - | 35.3 (58.88) | 0.0192 * | 15/34, 44.1% | 0.0275 * |
Non-Producer | 51 | - | - | 2.62 (26.07) | 10/51, 19.6% | ||||
SGH IgG | |||||||||
Positive | 52 | 26.75 (70.71) | 0.6212 | 18/52, 34.6% | 0.2576 | 18.40 (21.38) | 0.172 | 11/52, 21.15% | 0.0359 * |
Negative | 33 | 26.70 (50.79) | 16/33, 48.5% | 36.08 (73.68) | 14/33, 42.42% | ||||
rSP03B IgG | |||||||||
Positive | 52 | 27.24 (53.13) | 0.4783 | 20/52, 38.5% | 0.8211 | 18.01 (30.14) | 0.2701 | 12/52, 23.07% | 0.1076 |
Negative | 33 | 23.61 (68.49) | 14/33, 42.4% | 35.30 (33.10) | 13/33, 39.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balsells-Aguilar, N.; Alcover, M.M.; Baxarias, M.; Álvarez-Fernández, A.; Alarcón, L.; Sumova, P.; Volf, P.; Solano-Gallego, L. Humoral and T-Cell-Mediated Immunity Against Phlebotomus perniciosus Salivary Proteins in Dogs from a Leishmaniosis-Endemic Area. Pathogens 2025, 14, 576. https://doi.org/10.3390/pathogens14060576
Balsells-Aguilar N, Alcover MM, Baxarias M, Álvarez-Fernández A, Alarcón L, Sumova P, Volf P, Solano-Gallego L. Humoral and T-Cell-Mediated Immunity Against Phlebotomus perniciosus Salivary Proteins in Dogs from a Leishmaniosis-Endemic Area. Pathogens. 2025; 14(6):576. https://doi.org/10.3390/pathogens14060576
Chicago/Turabian StyleBalsells-Aguilar, Núria, Maria Magdalena Alcover, Marta Baxarias, Alejandra Álvarez-Fernández, Lourdes Alarcón, Petra Sumova, Petr Volf, and Laia Solano-Gallego. 2025. "Humoral and T-Cell-Mediated Immunity Against Phlebotomus perniciosus Salivary Proteins in Dogs from a Leishmaniosis-Endemic Area" Pathogens 14, no. 6: 576. https://doi.org/10.3390/pathogens14060576
APA StyleBalsells-Aguilar, N., Alcover, M. M., Baxarias, M., Álvarez-Fernández, A., Alarcón, L., Sumova, P., Volf, P., & Solano-Gallego, L. (2025). Humoral and T-Cell-Mediated Immunity Against Phlebotomus perniciosus Salivary Proteins in Dogs from a Leishmaniosis-Endemic Area. Pathogens, 14(6), 576. https://doi.org/10.3390/pathogens14060576