Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program
Abstract
1. Introduction
2. Materials and Methods
2.1. Area of Study
- −
- Csb or warm-summer Mediterranean climate: characterized by the coldest month averaging above 0 °C, all months with average temperatures below 22 °C, and at least four months averaging above 10 °C.
- −
- Csa or hot-summer Mediterranean climate: Summers are dry and hot, with at least 22 °C averaged across the night–day cycle. The average temperature of the coldest month is <18 °C but above −3 °C. The wettest winter month has about 3 times as much precipitation compared to the driest summer month.
- −
- Low: below 300 m above sea level (asl). → → High: between 501 and 1000 m asl.
- −
- Medium: between 301 and 500 m asl. → → Elevated: Above 1000 m asl.
2.2. Collection of Diptera
2.3. Questionnaire
2.4. Data Analysis
3. Results
3.1. Specimens Identified
3.2. Results by Centers
3.3. Climatic Areas
3.4. Survey Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
An. | Anopheles |
Ae. | Aedes |
C. | Culicoides |
CDC-UV | Center for Diseases Control and Prevention-Ultraviolet Traps |
Cs. | Culiseta |
Cx. | Culex |
Oc. | Ochlerotatus |
Km | Kilometers |
NW | Northwest |
UV | Ultraviolet |
References
- WHO (World Health Organization). Vector-Borne Diseases. Factsheet. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 21 February 2024).
- Foster, W.A.; Walker, E.D. Mosquitoes (Culicidae). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 261–325. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Versteirt, V.; Cull, B.; Kampen, H.; Fontenille, D.; Hendrickx, G.; Zeller, H.; Van Bortel, W.; Schaffner, F. An entomological review of invasive mosquitoes in Europe. Bull. Ent. Res. 2015, 105, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Geier, M.; Rose, A.; Grunewald, J.; Jones, O. New mosquito traps improve the monitoring of disease vectors. Int. Pest Control 2006, 48, 124–126. [Google Scholar]
- ECDC (European Centre for Disease Prevention and Control). Epidemiological Update: West Nile Virus Transmission Season in Europe. 2023. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2023-0 (accessed on 4 March 2024).
- Copernicus ECMWF (European Centre for Medium-Range Weather Forecasts). 2020 Warmest Year on Record for Europe; Globally, 2020 Ties with 2016 for Warmest Year Recorded. Available online: https://climate.copernicus.eu/copernicus-2020-warmest-year-record-europe-globally-2020-ties-2016-warmest-year-recorded (accessed on 28 April 2021).
- Cevidanes, A.; Goiri, F.; Barandika, J.F.; Vázquez, P.; Goikolea, J.; Zuazo, A.; Etxarri, N.; Ocio, G.; García-Pérez, A.L. Invasive Aedes mosquitoes in an urban–peri-urban gradient in northern Spain: Evidence of the wide distribution of Aedes japonicus. Parasites Vectors 2023, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- ECDC (European Centre for Disease Prevention and Control). Mosquito Maps. Surveillance for Invasive Mosquitoes. 2023. Available online: https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (accessed on 26 February 2024).
- Lühken, R.; Brattig, N.; Becker, N. Introduction of invasive mosquito species into Europe and prospects for arbovirus transmission and vector control in an era of globalization. Infect. Dis. Poverty 2023, 12, 109. [Google Scholar] [CrossRef]
- Portillo, A.; Ruiz-Arrondo, I.; Oteo, J.A. Arthropods as vectors of transmissible diseases in Spain. Med. Clin. 2018, 151, 450–459. [Google Scholar] [CrossRef]
- Caballero-Gómez, J.; Cano-Terriza, D.; Lecollinet, S.; Carbonell, M.D.; Martínez-Valverde, R.; Martínez-Nevado, E.; García-Párraga, D.; Lowensky, S.; García-Bocanegra, I. Evidence of exposure to zoonotic flaviviruses in zoo mammals in Spain and their potential role as sentinel species. Vet. Microbiol. 2020, 247, 108763. [Google Scholar] [CrossRef]
- Laycock, T.; Ureña-Paniego, C.; Javier, J. The threat of mosquito-borne arboviral disease in Spain: A bibliographic review. Med. Clin. 2022, 158, 378–386. [Google Scholar] [CrossRef]
- Silva, M.I.T. Epidemiología de Dípteros Que Actúan Como Vectores de Zoonosis en Galicia. Diseño de Una Red de Vigilancia de Vectores. Ph.D. Thesis, Universidade de Santiago de Compostela, Lugo, Spain, 2021. Available online: https://investigacion.usc.gal/documentos/61933e346a8ab2204173b873?lang=es (accessed on 3 November 2024). (In Spanish).
- Polina, A.; Pereira, J.M.; Martínez-Barciela, Y.; Pousa, A.; Íñiguez, E.; Otero, J.C.; Garrido, J. Vixilancia de Mosquitos Vectores de Enfermidades Humanas e Animais: ReGaViVec 2022 Anual Report of Galician Health Services (SERGAS), Xunta de Galicia. 2023. Available online: https://www.sergas.es/Saude-publica/Documents/7149/2022%20-%20Informe%20Final%20REGAVIVEC%20Mosquitos.pdf (accessed on 12 March 2024).
- Carminati, M. Surveillance plan proposal for early detection of zoonotic pathogens in Equidae (horses, donkeys). EFSA Support. Publ. 2023, 20, 7854E. [Google Scholar] [CrossRef]
- Belay, E.D.; Kile, J.C.; Hall, A.J.; Barton-Behravesh, C.; Parsons, M.B.; Salyer, S.; Walke, H. Zoonotic disease programs for enhancing global health security. Emerg. Infect. Dis. 2017, 23, S65. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Cazapal, C.; Abreu, I.; Arias, M.S.; Paz-Silva, A.; Sánchez-Andrade, R. Leishmania-spread in Galicia (NW Spain). A canine serological survey. In Proceedings of the ALIVE 2 Congress (Animal Leishmaniosis International Veterinary Event), Nice, France, 18–20 June 2024. [Google Scholar]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.B.; Dahl, C.; Kaiser, A. Mosquitoes: Identification, Ecology and Control, 3rd ed.; Springer: Cham, Switzerland, 2010; p. 570. [Google Scholar]
- Gunay, F.; Picard, M.; Robert, V. Interactive identification key for female mosquitoes (Diptera: Culicidae) of Euro-Mediterranean and Black Sea regions. Int. J. Infect. Dis. 2016, 53, 110–111. [Google Scholar] [CrossRef]
- Rawlings, P. A key, based on wing patterns of biting midges (genus Culicoides latreille-diptera: Ceratopogonidae) in the iberian peninsula, for use in epidemiological studies. Graellsia 1996, 52, 57–71. [Google Scholar] [CrossRef]
- Polina, A.; Pereira, J.M.; Martínez-Barciela, Y.; Pousa, A.; Otero, J.C.; Garrido, J. Vixilancia de Mosquitos Vectores de Enfermidades Humanas e Animais: ReGaViVec 2021 Anual Report of Galician Health Services (SERGAS), Xunta de Galicia. 2022. Available online: https://www.sergas.es/Saude-publica/Documents/6826/INFORME_REGAVIVEC_2021.pdf (accessed on 4 November 2024).
- Polina, A.; Pereira, J.M.; Martínez-Barciela, Y.; Cobo, F.; Garrido, J. Vixilancia de Mosquitos Vectores de Enfermidades Humanas e Animais: ReGaViVec 2023 Anual Report of Galician Health Services (SERGAS), Xunta de Galicia. 2024. Available online: https://www.sergas.es/Saude-publica/Documents/7691/2023%20-%20Informe%20Final%20REGAVIVEC_def.pdf (accessed on 4 November 2024).
- Boukraa, S.; de La Grandiere, M.A.; Bawin, T.; Raharimalala, F.N.; Zimmer, J.Y.; Haubruge, E.; Thiry, E.; Francis, F. Diversity and ecology survey of mosquitoes potential vectors in Belgian equestrian farms: A threat prevention of mosquito-borne equine arboviruses. Prev. Vet. Med. 2016, 124, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Vogels, C.B.F.; Möhlmann, T.W.R.; Melsen, D.; Favia, G.; Wennergren, U.; Koenraadt, C.J.M. Latitudinal diversity of Culex pipiens biotypes and hybrids in farm, peri-urban, and wetland habitats in Europe. PLoS ONE 2016, 11, e0166959. [Google Scholar] [CrossRef]
- Bravo-Barriga, D.; Gomes, B.; Almeida, A.P.G.; Serrano- Aguilera, F.J.; Pérez-Martín, J.E.; Calero-Bernal, R.; Pinto, J. The mosquito fauna of the Western region of Spain with emphasis on ecological factors and the characterization of Culex pipiens forms. J. Vector Ecol. 2017, 42, 136–147. [Google Scholar] [CrossRef]
- Bueno-Marí, R.; Bernués Bañeres, A.; Jiménez Peydró, R. Updated checklist and distribution maps of mosquitoes (Diptera: Culicidae) of Spain. J. EMCA 2012, 30, 91–126. [Google Scholar]
- González, M.A.; Delacour-Estrella, S.; Bengoa, M.; Barceló, C.; Bueno-Marí, R.; Eritja, R.; Ruiz-Arrondo, I. A survey on native and invasive mosquitoes and other biting dipterans in northern Spain. Acta Parasitol. 2022, 67, 867–877. [Google Scholar] [CrossRef]
- Schaffner, F.; Angel, G.; Geoffroy, B.; Hervy, J.P.; Rhaiem, A.; Brunhes, J. The Mosquitoes of Europe; IRD Editions: Marseille, France, 2001; ISBN 13:9782709914857. [Google Scholar]
- Jiménez-Cabello, L.; Utrilla-Trigo, S.; Lorenzo, G.; Ortego, J.; Calvo-Pinilla, E. Epizootic hemorrhagic disease virus: Current knowledge and emerging perspectives. Microorganisms 2023, 11, 1339. [Google Scholar] [CrossRef]
- WOAH (World Organization for Animal Health). Terrestrial Animal Health Code. 2023. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=chapitre_surveillance_vector.htm (accessed on 25 January 2024).
- Kampen, H.; Werner, D. Biting midges (Diptera: Ceratopogonidae) as vectors of viruses. Microorganisms 2023, 11, 2706. [Google Scholar] [CrossRef]
- Lühken, R. Mosquitoes and Biting Midges: Data Collection, Identification, Species Distribution, and Breeding Ecology. Ph.D. Thesis, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany, 2014. Available online: https://www.gnatwork.ac.uk/sites/gnatwork/files/content/attachments/2021-04-13/Dissertation%20L%C3%BChken.pdf (accessed on 3 October 2024).
- Bai, L.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Global Health 2013, 9, 1–22. [Google Scholar] [CrossRef]
- de Angeli Dutra, D.; Poulin, R.; Ferreira, F.C. Evolutionary consequences of vector-borne transmission: How using vectors shapes host, vector and pathogen evolution. Parasitology 2022, 149, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Onyango, M.G.; Ciota, A.T.; Kramer, L.D. The vector-host-pathogen interface: The next frontier in the battle against mosquito-borne viral diseases. Front. Cell. Infect. Microbiol. 2020, 10, 564518. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Barciela, Y.; Polina, A.; Garrido, J. Ecology and diversity of mosquito larvae in ponds and lagoons of Northwestern Spain. Med. Vet. Entomol. 2023, 38, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, R. Equine Zoonoses: Consequences of Horse-Human Interactions. In Zoonoses—Infections Affecting Humans and Animals, 1st ed.; Sing, A., Ed.; Springer: Dordrecht, The Netherlands, 2015; Volume 1, pp. 643–657. [Google Scholar] [CrossRef]
Genera | Species | No. of Specimens | Total % | Sum of Percentages |
---|---|---|---|---|
Anopheles | Anopheles spp. | 5 | 1.5 | 8.4 |
An. maculipennis | 14 | 4.2 | ||
An. claviger/petragnani | 7 | 2.1 | ||
An. plumbeus | 2 | 0.6 | ||
Culex | Culex spp. | 53 | 15.9 | 51.8 |
Cx. pipiens | 102 | 30.5 | ||
Cx. theileri | 17 | 5.1 | ||
Cx. perexiguus/univitattus | 1 | 0.3 | ||
Culiseta | Cs. annulata | 87 | 26 | 38.6 |
Cs. longiareolata | 42 | 12.6 | ||
Aedes/Ochlerotatus | Ae. vexans | 3 | 0.9 | 1.2 |
Oc. leucomelas | 1 | 0.3 | ||
Total | 334 | 100 | 100 |
Center | Clime Type | Species/Genera |
---|---|---|
1 | Csb | Cx. pipiens s.l. Cx. theileri |
2 | Csb | Cx. pipiens s.l. Cx. theileri Culicoides |
3 | Csb | Cx. pipiens s.l. Cx. theileri An. maculipennis Cs. longiareolata Cs. annulata |
4 | Csa | Cx. pipiens s.l. Cx. theileri Cx. perexigus An. maculipennis Cs. longiareolata Culicoides |
5 | Csa | Cx. pipiens s.l. Cx. theileri An. maculipennis An. claviger/petragnani Cs. longiareolata Cs. annulata |
6 | Csb | Cx. pipiens s.l. |
7 | Csb | Cx. pipiens s.l. Cx. theileri An. claviger/petragnani Cs. longiareolata |
8 | Csb | Cx. pipiens s.l. Ae. vexans |
9 | Csb | Cx. pipiens s.l. |
10 | Csb | Cx. pipiens s.l. Cx. theileri An. maculipennis An. claviger/petragnani Ae. vexans Oc. leucomelas Cs. longiareolata Cs. annulata |
11 | Csa | Cx. pipiens s.l. An. claviger/petragnani Cs. annulata Culicoides |
12 | Csa | Cx. pipiens s.l. Cx. theileri An. maculipennis An. claviger/petragnani An. plumbeus Cs. longiareolata Cs. annulata Culicoides |
13 | Csa | Cx. pipiens s.l. Cx. theileri An. maculipennis Cs. annulata |
14 | Csa | Cx. pipiens s.l. |
15 | Csb | Cx. pipiens s.l. Cs. annulata Culicoides |
16 | Csb | - |
Family | Genera | Species | % Centers |
---|---|---|---|
Culicidae | Culex | Cx. pipiens s.l. | 93.75 |
Cx. theileri | 56.25 | ||
Cx. perexiguus/univitattus | 6.25 | ||
Anopheles | An. maculipennis s.l. | 37.50 | |
An. claviger/petragnani | 31.25 | ||
An. plumbeus | 6.25 | ||
Aedes/Ochlerotatus | Ae. vexans | 12.50 | |
Oc. leucomelas | 6.25 | ||
Culiseta | Cs. longiareolata | 43.75 | |
Cs. annulata | 37.50 | ||
Ceratopogonidae | Culicoides | data | 31.25 |
Factor | Diptera Genera | ||||
---|---|---|---|---|---|
Climatic area | Anopheles | Culex | Aedes/Ochlerotatus | Culiseta | Culicoides |
Csb (n = 10) | 3 | 9 | 2 | 4 | 2 |
Csa (n = 6) | 5 | 6 | 0 | 5 | 3 |
χ2 = 4.021 p = 0.045 * | χ2 = 1.030 p = 0.310 | χ2 = 1.280 p = 0.258 | χ2 = 1.939 p = 0.164 | χ2 = 1.473 p = 0.225 | |
Altitude (m) | |||||
<300 (n = 2) | 2 | 2 | 0 | 2 | 1 |
301–500 (n = 8) | 4 | 7 | 1 | 4 | 1 |
501–1000 (n = 5) | 2 | 5 | 1 | 3 | 3 |
>1000 (n = 1) | 0 | 1 | 0 | 0 | 0 |
χ2 = 3.272 p = 0.352 | χ2 = 1.2008 p = 0.751 | χ2 = 0.571 p = 0.887 | χ2 = 2.662 p = 0.447 | χ2 = 3.764 p = 0.288 |
Factor | Number of Equine Centers Positive to Dipterans (% Within Genus) | ||||
---|---|---|---|---|---|
1. Number of horses/center (n = number of centers) | Anopheles | Culex | Aedes/Ochlerotatus | Culiseta | Culicoides |
≤5 (n = 4) | 1 (12.5) | 4 (26.7) | 1 (50) | 1 (11.1) | 0 |
6–15 (n = 5) | 2 (25) | 4 (26.7) | 1 (50) | 2 (22.2) | 1 (20) |
>15 (n = 7) | 5 (62.5) | 7 (46.6) | 0 | 6 (66.7) | 4 (80) |
Statistics | χ2 = 1.270 p = 0.530 | χ2 = 1.500 p = 0.472 | χ2 = 1.668 p = 0.434 | χ2 = 2.389 p = 0.303 | χ2 = 4.029 p = 0.133 |
2. Frequent presence of people (riding school, horseback riding) | |||||
Yes (n = 9) | 7 (87.5) | 9 (60) | 1 (50) | 8 (88.9) | 4 (80) |
No (n = 7) | 1 (12.5) | 6 (40) | 1 (50) | 1 (11.1) | 1 (20) |
Statistics | χ2 = 6.125 p = 0.013 * | χ2 = 1.497 p = 0.221 | χ2 = 0.008 p = 0.927 | χ2 = 5.657 p = 0.017 * | χ2 = 1.563 p = 0.211 |
3. Other animal species in the center | |||||
No (n = 8) | 3 (37.5) | 8 (53.3) | 2 (100) | 4 (44.4) | 1 (20) |
Ruminants | |||||
Pets (n = 8) | 5 (62.5) | 7 (46.7) | 0 | 5 (55.6) | 4 (80) |
Others | |||||
Statistics | χ2 = 1.507 p = 0.304 | χ2 = 1.618 p = 0.203 | χ2 = 2.133 p = 0.144 | χ2 = 0.710 p = 0.399 | χ2 = 2.455 p = 0.117 |
4. Distance to farms (km) | |||||
<1 (n = 1) | 0 | 1 (6.7) | 0 | 0 | 1 (20) |
1–2.5 (n = 3) | 1 (12.5) | 3 (20) | 1 (50) | 1 (11.1) | 1 (20) |
2.6–10 (n = 6) | 5 (62.5) | 6 (40) | 0 | 6 (66.7) | 3 (60) |
>10 (n = 6) | 2 (25) | 5 (33.3) | 1 (50) | 2 (22.2) | 0 |
Statistics | χ2 = 4.363 p = 0.225 | χ2 = 3.001 p = 0.391 | χ2 = 1.972 p = 0.578 | χ2 = 7.159 p = 0.067 | χ2 = 5.545 p = 0.136 |
5. Distance to houses (km) | |||||
<1 (n = 9) | 4 (50) | 9 (60) | 1 (50) | 4 (44.4) | 2 (40) |
1–2.5 (n= 5) | 3 (37.5) | 4 (26.7) | 0 | 3 (33.3) | 2 (40) |
2.6–10 (n= 2) | 1 (12.5) | 2 (13.3) | 1 (50) | 2 (22.2) | 1 (20) |
>10 | |||||
Statistics | χ2 = 0.343 p = 0.842 | χ2 = 0.508 p = 0.776 | χ2 = 3.517 p = 0.172 | χ2 = 1.736 p = 0.420 | χ2 = 0.794 p = 0.672 |
6. Distance to forest (km) | |||||
<1 (n= 9) | 5 (62.5) | 9 (60) | 1 (50) | 5 (55.6) | 4 (80) |
1–2.5 (n = 4) | 2 (25) | 3 (20) | 0 | 3 (33.3) | 1 (20) |
2.6–10 (n = 1) | 0 | 1 (6.7) | 0 | 0 | 0 |
>10 (n = 2) | 1 (12.5) | 2 (13.3) | 1 (50) | 1 (11.1) | 0 |
Statistics | χ2 = 0.955 p = 0.812 | χ2 = 1.942 p = 0.585 | χ2 = 3.517 p = 0.319 | χ2 = 1.348 p = 0.718 | χ2 = 2.030 p = 0.566 |
7. Horses are always maintained outside | |||||
Yes (n = 8) | 4 (50) | 8 (53.3) | 2 (100) | 4 (44.4) | 1 (20) |
Depending on the weather (n = 4) | 2 (25) | 4 (26.7) | 0 | 3 (33.3) | 3 (60) |
No (n = 4) | 2 (25) | 3 (20) | 0 | 2 (22.2) | 1 (20) |
Statistics | χ2 = 0.470 p = 0.791 | χ2 = 3.356 p = 0.187 | χ2 = 2.133 p = 0.344 | χ2 = 0.682 p = 0.711 | χ2 = 4.636 p = 0.098 |
8. Horses can graze daily | |||||
Yes (n = 10) | 5 (62.5) | 10 (66.7) | 2 (100) | 5 (55.6) | 2 (40) |
No (n = 6) | 3 (37.5) | 5 (33.3) | 0 | 4 (44.4) | 3 (60) |
Statistics | χ2 = 0.282 p = 0.596 | χ2 = 1.155 p = 0.282 | χ2 = 1.280 p = 0.258 | χ2 = 0.121 p = 0.728 | χ2 = 1.473 p = 0.225 |
9. Horses traveling outside the center | |||||
Yes (n = 9) | 4 (50) | 8 (53.3) | 2 (100) | 5 (55.6) | 2 (40) |
No (n = 7) | 4 (50) | 7 (46.7) | 0 | 4 (44.4) | 3 (60) |
Statistics | χ2 = 0.119 p = 0.730 | χ2 = 4.468 p = 0.031 * | χ2 = 1.659 p = 0.198 | χ2 = 0.029 p = 0.865 | χ2 = 0.732 p = 0.392 |
10. Automated horse waterers | |||||
Yes (n = 10) | 3 (37.5) | 9 (60) | 2 (100) | 4 (44.4) | 3 (60) |
No (n = 6) | 5 (62.5) | 6 (40) | 0 | 5 (55.6) | 2 (40) |
Statistics | χ2 = 4.001 p = 0.046 * | χ2 = 0.601 p = 0.439 | χ2 = 1.286 p = 0.257 | χ2 = 2.683 p = 0.101 | χ2 = 0.018 p = 0.893 |
11. Presence of manure near horse boxes | |||||
Yes (n = 9) | 4 (50) | 9 (60) | 1 (50) | 5 (55.6) | 4 (80) |
No (n = 7) | 4 (50) | 6 (40) | 1 (50) | 4 (44.4) | 1 (20) |
Statistics | χ2 = 0.560 p = 0.454 | χ2 = 0.166 p = 0.683 | χ2 = 0.076 p = 0.783 | χ2 = 0.462 p = 0.497 | χ2 = 1.563 p = 0.211 |
12. Observation of Diptera during winter | |||||
Yes (n = 6) | 3 (37.5) | 5 (33.3) | 0 | 4 (44.4) | 3 (60) |
No (n = 10) | 5 (62.5) | 10 (66.7) | 2 (100) | 5 (55.6) | 2 (40) |
Statistics | χ2 = 0.003 p = 0.953 | χ2 = 0.057 p = 0.811 | χ2 = 1.280 p = 0.258 | χ2 = 0.030 p = 0.862 | χ2 = 1.473 p = 0.225 |
13. Confirmed cases of allergy to mosquitoes | |||||
Yes (n = 5) | 4 (50) | 5 (33.3) | 0 | 5 (55.6) | 3 (60) |
No (n = 11) | 4 (50) | 10 (66.7) | 2 (100) | 4 (44.4) | 2 (40) |
Statistics | χ2 = 1.837 p = 0.175 | χ2 = 0.016 p = 0.901 | χ2 = 0.970 p = 0.325 | χ2 = 2.116 p = 0.146 | χ2 = 2.623 p = 0.105 |
14. Application of some measures for the control of insects | |||||
Yes (n = 2) | 1 (12.5) | 2 (13.3) | 0 | 2 (22.2) | 1 (20) |
No (n = 14) | 7 (87.5) | 13 (86.7) | 2 (100) | 7 (77.8) | 4 (80) |
Statistics | χ2 = 0.067 p = 0.796 | χ2 = 0.031 p = 0.861 | χ2 = 0.305 p = 0.581 | χ2 = 0.260 p = 0.610 | χ2 = 0.351 p = 0.554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazapal-Monteiro, C.; Boso, D.; Abreu, I.; Camiña, M.; Sanchís, J.; Paz-Silva, A.; Cardoso, L.; Sánchez-Andrade, R.; Arias, M.S.; Hernández, J.Á. Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program. Pathogens 2025, 14, 661. https://doi.org/10.3390/pathogens14070661
Cazapal-Monteiro C, Boso D, Abreu I, Camiña M, Sanchís J, Paz-Silva A, Cardoso L, Sánchez-Andrade R, Arias MS, Hernández JÁ. Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program. Pathogens. 2025; 14(7):661. https://doi.org/10.3390/pathogens14070661
Chicago/Turabian StyleCazapal-Monteiro, Cristiana, David Boso, Inês Abreu, Mercedes Camiña, Jaime Sanchís, Adolfo Paz-Silva, Luis Cardoso, Rita Sánchez-Andrade, María Sol Arias, and José Ángel Hernández. 2025. "Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program" Pathogens 14, no. 7: 661. https://doi.org/10.3390/pathogens14070661
APA StyleCazapal-Monteiro, C., Boso, D., Abreu, I., Camiña, M., Sanchís, J., Paz-Silva, A., Cardoso, L., Sánchez-Andrade, R., Arias, M. S., & Hernández, J. Á. (2025). Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program. Pathogens, 14(7), 661. https://doi.org/10.3390/pathogens14070661