Is African Swine Fever Driven by Flying Hematophagous Insects?
Abstract
:1. Introduction
2. Indirect Transmission Pathways of African Swine Fever: Implications for Biosecurity and Disease Control
3. Seasonality of ASF Outbreaks on Pig Farms
4. Insects as Vectors of Virus Diseases: The Potential Role of Insects in ASF Transmission
5. Biological Parameters Influencing Insect-Mediated ASFV Transmission: Infectious Dose, Route of Infection, Feeding Behavior, and Dispersal
6. Conclusions
- Detection of infectious virus in the insects and/or efficient transmission to pigs under experimental conditions;
- Detection of ASFV DNA in insect organisms collected from ASF-free farms;
- Myeloid cells, predilected for ASF replication abundant in blood;
- Blood-feeding insects’ abilities—volume of blood ingested, regurgitation ability, multiple biting behavior, and flight range;
- Seasonality of ASF outbreaks in pig farms, including those with high biosecurity standards.
Author Contributions
Funding
Conflicts of Interest
References
- Pikalo, J.; Zani, L.; Hühr, J.; Beer, M.; Blome, S. Pathogenesis of African Swine Fever in Domestic Pigs and European Wild Boar—Lessons Learned from Recent Animal Trials. Virus Res. 2019, 271, 197614. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U.; Rev, A.; Biosci, A.; Dixon, L.K.; Stahl, K.; Jori, F.; et al. African Swine Fever Epidemiology and Control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Viltrop, A.; Reimus, K.; Niine, T.; Mõtus, K. Biosecurity Levels and Farm Characteristics of African Swine Fever Outbreak and Unaffected Farms in Estonia—What Can Be Learned from Them? Animals 2021, 12, 68. [Google Scholar] [CrossRef]
- Podgórski, T.; Śmietanka, K. Do Wild Boar Movements Drive the Spread of African Swine Fever? Transbound. Emerg. Dis. 2018, 65, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Cortiñas Abrahantes, J.; Gogin, A.; Richardson, J.; Gervelmeyer, A. Epidemiological Analyses on African Swine Fever in the Baltic Countries and Poland. EFSA J. 2017, 15, e04732. [Google Scholar] [CrossRef]
- Juszkiewicz, M.; Walczak, M.; Woźniakowski, G.; Podgórska, K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses 2023, 15, 2275. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. The Spillover of African Swine Fever in Western Poland Revealed Its Estimated Origin on the Basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L Genomic Sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Fan, M.; Tian, X.; Wu, W.; Gao, W.; Bian, L.; Jiang, X. Evidence of Aerosol Transmission of African Swine Fever Virus between Two Piggeries under Field Conditions: A Case Study. Front. Vet. Sci. 2023, 10, 1201503. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Gallardo, C.; Pejsak, Z.; Belsham, G.J.; Bruun, T.; Bøtner, A. Transmission of African Swine Fever Virus from Infected Pigs by Direct Contact and Aerosol Routes. Vet. Microbiol. 2017, 211, 92–102. [Google Scholar] [CrossRef]
- Hu, Z.; Tian, X.; Lai, R.; Ji, C.; Li, X. Airborne Transmission of Common Swine Viruses. Porc. Health Manag. 2023, 9, 50. [Google Scholar] [CrossRef]
- Bøtner, A.; Broom, D.M.; Doherr, M.G.; Domingo, M.; Hartung, J.; Keeling, L.; Koenen, F.; More, S.; Salman, M.; Oltenacu, P.; et al. Scientific Opinion on the Role of Tick Vectors in the Epidemiology of Crimean-Congo Hemorrhagic Fever and African Swine Fever in Eurasia. EFSA J. 2010, 8, 1703. [Google Scholar] [CrossRef]
- Frant, M.; Woźniakowski, G.; Pejsak, Z. African Swine Fever (ASF) and Ticks. No Risk of Tick-Mediated ASF Spread in Poland and Baltic States. J. Vet. Res. 2017, 61, 375–380. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Ferreira, H.C.; Tudela Zúquete, S.; Wijnveld, M.; Weesendorp, E.; Jongejan, F.; Stegeman, A.; Loeffen, W.L.A. No Evidence of African Swine Fever Virus Replication in Hard Ticks. Ticks Tick. Borne Dis. 2014, 5, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Panasiuk, N.; Burczyńska, M.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. ASF and Hard Ticks—The Potential Mechanical Vector in Virus Transmission between Wild Boars? 13th EPIZONE Annual Meeting, 26–28th of August 2019, Berlin. EPIZONE abstract book, Poster 26. Available online: https://www.epizone-eu.net/upload_mm/8/0/7/1231c415-35fd-4f91-9298-5916d96ce5a4_Abstractband_EPIZONE_final_2.pdf (accessed on 30 April 2025).
- Olesen, A.S.; Lohse, L.; Accensi, F.; Goldswain, H.; Belsham, G.J.; Bøtner, A.; Netherton, C.L.; Dixon, L.K.; Portugal, R. Inefficient Transmission of African Swine Fever Virus to Sentinel Pigs from an Environment Contaminated by ASFV-Infected Pigs under Experimental Conditions. Transbound. Emerg. Dis. 2024, 2024, 8863641. [Google Scholar] [CrossRef]
- Eblé, P.L.; Hagenaars, T.J.; Weesendorp, E.; Quak, S.; Moonen-Leusen, H.W.; Loeffen, W.L.A. Transmission of African Swine Fever Virus via Carrier (Survivor) Pigs Does Occur. Vet. Microbiol. 2019, 237, 108345. [Google Scholar] [CrossRef]
- Walczak, M.; Szymankiewicz, K.; Rodriguez, F.; Argilaguet, J.; Gavrilov, B.; Żmudzki, J.; Kochanowski, M.; Juszkiewicz, M.; Szczotka-Bochniarz, A. Molecular Contamination of an Animal Facility during and after African Swine Fever Virus Infection. J. Vet. Res. 2023, 67, 503–508. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Bøtner, A. Short Time Window for Transmissibility of African Swine Fever Virus from a Contaminated Environment. Transbound. Emerg. Dis. 2018, 65, 1024–1032. [Google Scholar] [CrossRef]
- Olesen, A.S.; Belsham, G.J.; Rasmussen, T.B.; Lohse, L.; Bødker, R.; Halasa, T.; Boklund, A.; Bøtner, A.; Bruun Rasmussen, T.; Lohse, L.; et al. Potential Routes for Indirect Transmission of African Swine Fever Virus into Domestic Pig Herds. Transbound. Emerg. Dis. 2020, 67, 1472–1484. [Google Scholar] [CrossRef]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef]
- Boklund, A.; Cay, B.; Depner, K.; Földi, Z.; Guberti, V.; Masiulis, M.; Miteva, A.; More, S.; Olsevskis, E.; Šatrán, P.; et al. Epidemiological Analyses of African Swine Fever in the European Union (November 2017 until November 2018). EFSA J. 2018, 16, e05494. [Google Scholar] [CrossRef]
- Semelbauer, M.; Mangová, B.; Barta, M.; Kozánek, M. The Factors Influencing Seasonal Dynamics and Spatial Distribution of Stable Fly Stomoxys calcitrans (Diptera, Muscidae) within Stables. Insects 2018, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Turčinavičienė, J.; Petrašiūnas, A.; Bernotienė, R.; Masiulis, M.; Jonušaitis, V. The Contribution of Insects to African Swine Fever Virus Dispersal: Data from Domestic Pig Farms in Lithuania. Med. Vet. Entomol. 2021, 35, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Polish General Veterinary Inspectorate ASF in Poland—Maps, Restricted Areas, Outbreaks in Pigs and Wild Boars. Available online: https://www.wetgiw.gov.pl/nadzor-weterynaryjny/asf-w-polsce (accessed on 30 April 2025).
- Rogoll, L.; Güttner, A.-K.; Schulz, K.; Bergmann, H.; Staubach, C.; Conraths, F.J.; Sauter-Louis, C. Seasonal Occurrence of African Swine Fever in Wild Boar and Domestic Pigs in EU Member States. Viruses 2023, 15, 1955. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; de la Torre, A.; Sánchez-Vizcaíno, J.M.; Bellini, S. Biosecurity Measures against African Swine Fever in Domestic Pigs. In Understanding and Combatting African Swine Fever; Brill|Wageningen Academic: Leiden, The Netherlands, 2021; pp. 263–281. [Google Scholar]
- Kim, Y.; Nouvellet, P.; Rogoll, L.; Staubach, C.; Schulz, K.; Sauter-Louis, C.; Pfeiffer, D.U.; Fournié, G. Contrasting Seasonality of African Swine Fever Outbreaks and Its Drivers. Epidemics 2023, 44, 100703. [Google Scholar] [CrossRef]
- Wilson, A.J.; Morgan, E.R.; Booth, M.; Norman, R.; Perkins, S.E.; Hauffe, H.C.; Mideo, N.; Antonovics, J.; McCallum, H.; Fenton, A. What Is a Vector? Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160085. [Google Scholar] [CrossRef]
- Desquesnes, M.; Biteau-Coroller, F.; Bouyer, J.; Dia, M.L.; Foil, L. Development of a Mathematical Model for Mechanical Transmission of Trypanosomes and Other Pathogens of Cattle Transmitted by Tabanids. Int. J. Parasitol. 2009, 39, 333–346. [Google Scholar] [CrossRef]
- Rossi, S.L.; Ross, T.M.; Evans, J.D. West Nile Virus. Clin. Lab. Med. 2010, 30, 47–65. [Google Scholar] [CrossRef]
- Ebogo-Belobo, J.T.; Kenmoe, S.; Abanda, N.N.; Bowo-Ngandji, A.; Mbaga, D.S.; Magoudjou-Pekam, J.N.; Kame-Ngasse, G.I.; Tchatchouang, S.; Menkem, E.Z.; Okobalemba, E.A.; et al. Contemporary Epidemiological Data of Rift Valley Fever Virus in Humans, Mosquitoes and Other Animal Species in Africa: A Systematic Review and Meta-analysis. Vet. Med. Sci. 2023, 9, 2309–2328. [Google Scholar] [CrossRef]
- Armstrong, P.M.; Andreadis, T.G. Eastern Equine Encephalitis Virus in Mosquitoes and Their Role as Bridge Vectors. Emerg. Infect. Dis. 2010, 16, 1869–1874. [Google Scholar] [CrossRef]
- Mulvey, P.; Duong, V.; Boyer, S.; Burgess, G.; Williams, D.T.; Dussart, P.; Horwood, P.F. The Ecology and Evolution of Japanese Encephalitis Virus. Pathogens 2021, 10, 1534. [Google Scholar] [CrossRef]
- Saminathan, M.; Singh, K.P.; Khorajiya, J.H.; Dinesh, M.; Vineetha, S.; Maity, M.; Rahman, A.F.; Misri, J.; Malik, Y.S.; Gupta, V.K.; et al. An Updated Review on Bluetongue Virus: Epidemiology, Pathobiology, and Advances in Diagnosis and Control with Special Reference to India. Vet. Q. 2020, 40, 258–321. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Cabello, L.; Utrilla-Trigo, S.; Lorenzo, G.; Ortego, J.; Calvo-Pinilla, E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.; Mellor, P.S.; Fall, A.G.; Garros, C.; Venter, G.J. African Horse Sickness Virus: History, Transmission, and Current Status. Annu. Rev. Entomol. 2017, 62, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Endalew, A.; Faburay, B.; Wilson, W.; Richt, J. Schmallenberg Disease—A Newly Emerged Culicoides-Borne Viral Disease of Ruminants. Viruses 2019, 11, 1065. [Google Scholar] [CrossRef]
- Kuczewski, A.; Orsel, K.; Barkema, H.W.; Mason, S.; Erskine, R.; van der Meer, F. Invited Review: Bovine Leukemia Virus—Transmission, Control, and Eradication. J. Dairy Sci. 2021, 104, 6358–6375. [Google Scholar] [CrossRef]
- Rozo-Lopez, P.; Drolet, B.; Londoño-Renteria, B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects 2018, 9, 190. [Google Scholar] [CrossRef]
- Saegerman, C.; Bonnet, S.; Bouhsira, E.; De Regge, N.; Fite, J.; Etoré, F.; Garigliany, M.; Jori, F.; Lempereur, L.; Le Potier, M.; et al. An Expert Opinion Assessment of Blood-feeding Arthropods Based on Their Capacity to Transmit African Swine Fever Virus in Metropolitan France. Transbound. Emerg. Dis. 2021, 68, 1190–1204. [Google Scholar] [CrossRef]
- Boklund, A.E.; Ståhl, K.; Miranda Chueca, M.Á.; Podgórski, T.; Vergne, T.; Cortiñas Abrahantes, J.; Cattaneo, E.; Dhollander, S.; Papanikolaou, A.; Tampach, S.; et al. Risk and Protective Factors for ASF in Domestic Pigs and Wild Boar in the EU, and Mitigation Measures for Managing the Disease in Wild Boar. EFSA J. 2024, 22, e9095. [Google Scholar] [CrossRef]
- Mellor, P.S.; Kitching, R.P.; Wilkinson, P.J. Mechanical Transmission of Capripox Virus and African Swine Fever Virus by Stomoxys calcitrans. Res. Vet. Sci. 1987, 43, 109–112. [Google Scholar] [CrossRef]
- Olesen, A.S.; Hansen, M.F.; Rasmussen, T.B.; Belsham, G.J.; Bødker, R.; Bøtner, A. Survival and Localization of African Swine Fever Virus in Stable Flies (Stomoxys calcitrans) after Feeding on Viremic Blood Using a Membrane Feeder. Vet. Microbiol. 2018, 222, 25–29. [Google Scholar] [CrossRef]
- Vergne, T.; Andraud, M.; Bonnet, S.; De Regge, N.; Desquesnes, M.; Fite, J.; Etore, F.; Garigliany, M.; Jori, F.; Lempereur, L.; et al. Mechanical Transmission of African Swine Fever Virus by Stomoxys calcitrans: Insights from a Mechanistic Model. Transbound. Emerg. Dis. 2021, 68, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Herm, R.; Kirik, H.; Vilem, A.; Zani, L.; Forth, J.H.; Müller, A.; Michelitsch, A.; Wernike, K.; Werner, D.; Tummeleht, L.; et al. No Evidence for African Swine Fever Virus DNA in Haematophagous Arthropods Collected at Wild Boar Baiting Sites in Estonia. Transbound. Emerg. Dis. 2021, 68, 2696–2702. [Google Scholar] [CrossRef] [PubMed]
- Herm, R.; Tummeleht, L.; Jürison, M.; Vilem, A.; Viltrop, A. Trace Amounts of African Swine Fever Virus DNA Detected in Insects Collected from an Infected Pig Farm in Estonia. Vet. Med. Sci. 2020, 6, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Vasić, A.; Milovanović, B.; Glišić, D.; Kavran, M.; Kureljušić, J.; Živulj, A.; Kureljušić, B.; Milićević, V. The Transmission Routes of African Swine Fever during an Outbreak in Serbia July–August 2023: African Swine Fever Virus Detections in Environmental Samples and Insects. Front. Vet. Sci. 2024, 11, 1467273. [Google Scholar] [CrossRef]
- Stelder, J.J.; Olesen, A.S.; Belsham, G.J.; Rasmussen, T.B.; Bøtner, A.; Kjær, L.J.; Boklund, A.E.; Bødker, R. Potential for Introduction of African Swine Fever Virus into High-Biosecurity Pig Farms by Flying Hematophagous Insects. Transbound. Emerg. Dis. 2023, 1, 8787621. [Google Scholar] [CrossRef]
- Olesen, A.S.; Stelder, J.J.; Tjørnehøj, K.; Johnston, C.M.; Lohse, L.; Kjær, L.J.; Boklund, A.E.; Bøtner, A.; Belsham, G.J.; Bødker, R.; et al. Detection of African Swine Fever Virus and Blood Meals of Porcine Origin in Hematophagous Insects Collected Adjacent to a High-Biosecurity Pig Farm in Lithuania; A Smoking Gun? Viruses 2023, 15, 1255. [Google Scholar] [CrossRef]
- Dhollander, S.; Balmoș, O.-M.; Cattaneo, E.; Cortiñas, J.A.; Boklund, A.E.; Szczotka-Bochniarz, A.; Mihalca, A.D.; Mur, L.; Frant, M.; Gal-Cisoń, A.; et al. Investigating the Role of Stable Flies (Stomoxys calcitrans) and Biting Midges (Culicoides spp.) as Potential Mechanical Vectors of African Swine Fever Virus in Lithuania, Poland and Romania. arXiv 2025. [Google Scholar] [CrossRef]
- Forth, J.H.; Amendt, J.; Blome, S.; Depner, K.; Kampen, H. Evaluation of Blowfly Larvae (Diptera: Calliphoridae) as Possible Reservoirs and Mechanical Vectors of African Swine Fever Virus. Transbound. Emerg. Dis. 2018, 65, e210–e213. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lazov, C.M.; Lecocq, A.; Accensi, F.; Jensen, A.B.; Lohse, L.; Rasmussen, T.B.; Belsham, G.J.; Bøtner, A. Uptake and Survival of African Swine Fever Virus in Mealworm (Tenebrio molitor) and Black Soldier Fly (Hermetia illucens) Larvae. Pathogens 2022, 12, 47. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Hansen, M.F.; Boklund, A.; Halasa, T.; Belsham, G.J.; Rasmussen, T.B.; Bøtner, A.; Bødker, R. Infection of Pigs with African Swine Fever Virus via Ingestion of Stable Flies (Stomoxys calcitrans). Transbound. Emerg. Dis. 2018, 65, 1152–1157. [Google Scholar] [CrossRef]
- Balmoș, O.M.; Supeanu, A.; Tamba, P.; Horváth, C.; Panait, L.C.; Sándor, A.D.; Cazan, C.D.; Ungur, A.; Motiu, M.; Manita, F.A.; et al. African Swine Fever Virus Load in Hematophagous Dipterans Collected in Outbreaks from Romania: Risk Factors and Implications. Transbound. Emerg. Dis. 2023, 1, 3548109. [Google Scholar] [CrossRef] [PubMed]
- Walczak, M.; Szczotka-Bochniarz, A.; Żmudzki, J.; Juszkiewicz, M.; Szymankiewicz, K.; Niemczuk, K.; Pérez-Núñez, D.; Liu, L.; Revilla, Y. Non-Invasive Sampling in the Aspect of African Swine Fever Detection—A Risk to Accurate Diagnosis. Viruses 2022, 14, 1756. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Lazov, C.M.; Accensi, F.; Johnston, C.M.; Rasmussen, T.B.; Bøtner, A.; Lohse, L.; Belsham, G.J. Evaluation of the Dose of African Swine Fever Virus Required to Establish Infection in Pigs Following Oral Uptake. Pathogens 2025, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, J.; Guinat, C.; Beer, M.; Pronin, V.; Blome, S.; Tauscher, K.; Petrov, A.; Keil, G.; Blome, S.; Tauscher, K.; et al. Course and Transmission Characteristics of Oral Low-Dose Infection of Domestic Pigs and European Wild Boar with a Caucasian African Swine Fever Virus Isolate. Arch. Virol. 2015, 160, 1657–1667. [Google Scholar] [CrossRef]
- Walczak, M.; Żmudzki, J.; Mazur-Panasiuk, N.; Juszkiewicz, M.; Woźniakowski, G. Analysis of the Clinical Course of Experimental Infection with Highly Pathogenic African Swine Fever Strain, Isolated from an Outbreak in Poland. Aspects Related to the Disease Suspicion at the Farm Level. Pathogens 2020, 9, 237. [Google Scholar] [CrossRef]
- Baldacchino, F.; Muenworn, V.; Desquesnes, M.; Desoli, F.; Charoenviriyaphap, T.; Duvallet, G. Transmission of Pathogens by Stomoxys Flies (Diptera, Muscidae): A Review. Parasite 2013, 20, 26. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Bouhsira, E.; De Regge, N.; Fite, J.; Etoré, F.; Garigliany, M.-M.; Jori, F.; Lempereur, L.; Le Potier, M.-F.; Quillery, E.; et al. Putative Role of Arthropod Vectors in African Swine Fever Virus Transmission in Relation to Their Bio-Ecological Properties. Viruses 2020, 12, 778. [Google Scholar] [CrossRef]
- Baldacchino, F.; Desquesnes, M.; Mihok, S.; Foil, L.D.; Duvallet, G.; Jittapalapong, S. Tabanids: Neglected Subjects of Research, but Important Vectors of Disease Agents! Infect. Genet. Evol. 2014, 28, 596–615. [Google Scholar] [CrossRef]
- Nikbakhtzadeh, M.R.; Buss, G.K.; Leal, W.S. Toxic Effect of Blood Feeding in Male Mosquitoes. Front. Physiol. 2016, 7, 4. [Google Scholar] [CrossRef]
- Showler, A.T.; Osbrink, W.L.A. Stable Fly, Stomoxys calcitrans (L.), Dispersal and Governing Factors. Int. J. Insect Sci. 2015, 7, 19–25. [Google Scholar] [CrossRef]
- Sick, F.; Beer, M.; Kampen, H.; Wernike, K. Culicoides Biting Midges—Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019, 11, 376. [Google Scholar] [CrossRef]
- Pramual, P.; Jomkumsing, P.; Wongpakam, K.; Vaisusuk, K.; Chatan, W.; Gomontean, B. Population Genetic Structure and Population History of the Biting Midge Culicoides Mahasarakhamense (Diptera: Ceratopogonidae). Insects 2022, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, G.; Gilbert, M.; Staubach, C.; Elbers, A.; Mintiens, K.; Gerbier, G.; Ducheyne, E. A Wind Density Model to Quantify the Airborne Spread of Culicoides Species during North-Western Europe Bluetongue Epidemic, 2006. Prev. Vet. Med. 2008, 87, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.L. Evolutionary Consequences of Long-Distance Dispersal in Mosquitoes. Curr. Opin. Insect Sci. 2025, 68, 101325. [Google Scholar] [CrossRef] [PubMed]
Pathogen Name | Insect Vectors | Host | References |
---|---|---|---|
West Nile Virus (WNV) | Mosquitoes | Birds, horses, dogs, cats | [30,31,32,33] |
Rift Valley Fever (RVFV) | Ruminants | ||
Equine Encephalitis Virus (Eastern, Western, and Venezuelan) | Horses | ||
Japanese Encephalitis Virus (JEV) | Pigs, horses, birds | ||
Bluetongue Virus (BTV) | Biting midges | Ruminants | [34,35,36,37] |
Epizootic Hemorrhagic Disease Virus (EHDV) | Ruminants | ||
African Horse Sickness Virus (AHSV) | Horses, donkeys, zebras | ||
Schmallenberg Virus (SBV) | Ruminants | ||
Vesicular Stomatitis Virus (VSV) | Flies | Horses, cattle, pigs | [38,39] |
Bovine Leukemia Virus * (BLV) | Cattle |
First Author, Year | Sample Species | Infectious Virus Isolation | ASFV DNA Detection | Comment | References |
---|---|---|---|---|---|
Mellor, 1987 | Stable flies | Yes (up to 48 h) | n/p | Experimental study/ efficient ASFV transmission to pigs via biting | [42] |
Herm, 2017 | Biting midges, tabanids, mosquitoes, ticks | n/p | No | Environmental study/ high-ASF-prevalence area | [45] |
Forth, 2018 | Blowflies (larvae) | No | Yes | Experimental study/potential contact with WB carcasses | [51] |
Olesen, 2018 | Stable flies | Yes (0–72 h) | Yes | Experimental study/ efficient ASFV transmission to pigs via ingestion | [43,53] |
Herm, 2020 | Flies, mosquitoes | n/p | Yes | Environmental study/ ASF-affected pig farm | [46] |
Turčinavičienė, 2021 | Flies, mosquitoes | n/p | Yes | Environmental study/ ASF-free pig farms | [23] |
Olesen, 2022 | Mealworm, black soldier fly (larvae) | No | Yes | Experimental study/inefficient transmission via ingestion | [52] |
Olesen, 2023 | Flies | n/p | Yes | Environmental study/ ASF-free pig farms | [49] |
Stelder, 2023 | Tabanids | n/p | Yes | Environmental study/ ASF-free pig farms | [48] |
Balmoș, 2023 | Stable flies, biting midges | n/p | Yes | Environmental study/ ASF-affected pig farm | [54] |
Vasić, 2024 | Flies | n/p | No (En) Yes (Ex) | Environmental study (En)/ experimental study (Ex) insects raised on pig carcasses | [47] |
Dhollander, 2025 | Stable flies, biting midges | No | Yes | Environmental study/ ASF-free and ASF-affected pig farms | [50] |
Family (Common Name) | Active Flight Range (km) * | Blood Meal Volume (µL) | Regurgitation Ability | Multiple Bites Ability | References |
---|---|---|---|---|---|
Muscidae (Stable flies) | 1.5–5.0 | 11–15 | Yes | Yes | [59,60,63] |
Ceratopogonidae (Biting midges) | 0.7 | 0.1 | Yes | Yes | [64,65,66] |
Culicidae (Mosquitoes) | 2–3 | 10 | Yes | Yes | [67] |
Tabanidae (Horseflies, Deerflies) | 0.2 | 20–600 | Yes | Yes | [60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walczak, M.; Frant, M.; Szymankiewicz, K.; Juszkiewicz, M.; Podgórska, K.; Smreczak, M. Is African Swine Fever Driven by Flying Hematophagous Insects? Pathogens 2025, 14, 563. https://doi.org/10.3390/pathogens14060563
Walczak M, Frant M, Szymankiewicz K, Juszkiewicz M, Podgórska K, Smreczak M. Is African Swine Fever Driven by Flying Hematophagous Insects? Pathogens. 2025; 14(6):563. https://doi.org/10.3390/pathogens14060563
Chicago/Turabian StyleWalczak, Marek, Maciej Frant, Krzesimir Szymankiewicz, Małgorzata Juszkiewicz, Katarzyna Podgórska, and Marcin Smreczak. 2025. "Is African Swine Fever Driven by Flying Hematophagous Insects?" Pathogens 14, no. 6: 563. https://doi.org/10.3390/pathogens14060563
APA StyleWalczak, M., Frant, M., Szymankiewicz, K., Juszkiewicz, M., Podgórska, K., & Smreczak, M. (2025). Is African Swine Fever Driven by Flying Hematophagous Insects? Pathogens, 14(6), 563. https://doi.org/10.3390/pathogens14060563