Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Phenotypic Susceptibility
2.3. DNA Extraction
2.4. Whole-Genome Sequencing (WGS)
2.5. Bioinformatics Analysis
3. Results
3.1. Whole-Genome Sequencing (WGS)
3.2. Phenotypic Susceptibility
3.3. Genotypic Drug Resistance
3.4. In Silico Typing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TB | Tuberculosis |
MTB | Mycobacterium tuberculosis |
L1 | Lineage 1 |
L2 | Lineage 2 |
L3 | Lineage 3 |
L4 | Lineage 4 |
INH | Isoniazid |
RIF | Rifampin |
STR | Streptomycin |
PZA | Prirazinamide |
EMB | Ethambutol |
OFX | Ofloxacin |
MFX | Moxifloxacin |
DLM | Delamanid |
KAN | Kanamycin |
AMK | Amikacin |
ETA | Ethambutol |
CIP | Ciprofloxacin |
LVX | Levofloxacin |
LNZ | Linezolid |
CPM | Capreomycin |
ST | Spoligotype International Type |
DR | Drug resistance |
MDR TB | Multidrug-resistant tuberculosis |
XDR TB | Extensively Drug-Resistant Tuberculosis |
References
- Dinkele, R.; Khan, P.Y.; Warner, D.F. Mycobacterium tuberculosis transmission: The importance of precision. Lancet Infect. Dis. 2024, 24, 679–681. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024 (accessed on 15 January 2024).
- PAHO. Hoja Informativa Sobre la Tuberculosis. Available online: https://www.paho.org/es/noticias/1-11-2024-tuberculosis-resurge-como-principal-causa-muerte-por-enfermedad-infecciosa (accessed on 15 January 2024).
- Sistema Nacional de Vigilancia Epidemiológica. Boletín Informativo. Available online: https://www.gob.mx/cms/uploads/attachment/file/892397/sem05.pdf (accessed on 18 January 2024).
- Tollefson, D.; Bloss, E.; Fanning, A.; Redd, J.T.; Barker, K.; McCray, E. Burden of tuberculosis in indigenous peoples globally: A systematic review. Int. J. Tuberc. Lung Dis. 2013, 17, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Cormier, M.; Schwartzman, K.; N’Diaye, D.S.; Boone, C.E.; Dos Santos, A.M.; Gaspar JOxlade, O. Proximate determinants of tuberculosis in Indigenous peoples worldwide: A systematic review. Lancet Glob. Health 2019, 7, e68–e80. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Kabir, Z.; Comiskey, C. Effects of migration on tuberculosis epidemiological indicators in low and medium tuberculosis incidence countries: A systematic review. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 23, 100225. [Google Scholar] [CrossRef]
- Rendón-Bautista, L.A.; Álvarez-Maya, I.; Sandoval-Díaz, M.; Villanueva-Arias, J.C.; Ayala-Chavira, N.; Zenteno-Cuevas, R. Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis 2021, 129, 102106. [Google Scholar] [CrossRef] [PubMed]
- Flores-Aréchiga, A.; Zacarías-Hernández, J.L.; Vázquez-Cortés, C.G.; Tamez-Guerra, R.S.; De la O-Cavazos, M.; Rivera-Morales, L.G.; Llaca-Díaz, J.M.; Castro-Garza, J.; Casillas-Vega, N.; Vázquez-Guillén, J.M.; et al. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis in a tertiary care hospital in northeastern Mexico. J. Infect. Dev. Ctries. 2023, 17, 1753–1760. [Google Scholar] [CrossRef]
- Valencia-Trujillo, D.; Avila-Trejo, A.M.; García-Reyes, R.L.; Narváez-Díaz, L.; Segura Del Pilar, M.; Mújica-Sánchez, M.A.; Becerril-Vargas, E.; León-Juárez, M.; Mata-Miranda, M.M.; Rivera-Gutiérrez, S.; et al. Genetic Diversity of Mycobacterium tuberculosis strains Isolated from HIV-Infected Patients in Mexico. Pathogens 2024, 13, 428. [Google Scholar] [CrossRef]
- Molina-Torres, C.A.; Quinn, F.D.; Castro-Garza, J.; Gómez-Velasco, A.; Ocampo-Candiani, J.; Bencomo-Alerm, A.; Sánchez-Pérez, H.J.; Muñoz-Jiménez, S.; Rendón, A.; Ansari, A.; et al. Genetic Diversity of Mycobacterium tuberculosis Isolates From an Amerindian Population in Chiapas, México. Front. Cell. Infect. Microbiol. 2022, 12, 875909. [Google Scholar] [CrossRef]
- Castillos de Ibrahim das Neves, Y.; Reis, A.J.; Xavier Maio, N.; Vianna, J.; Perdigão, J.; Bastos Ramis, I.; Almeida da Silva, P.E.; Von Groll, A. Genotyping methods and their contributions to the study of tuberculosis dynamic in Latin America. J. Infect. Dev. Ctries. 2023, 17, 1373–1386. [Google Scholar] [CrossRef]
- Bakuła, Z.; Dziurzyński, M.; Decewicz, P.; Bakonytė, D.; Vasiliauskaitė, L.; Nakčerienė, B.; Krenke, R.; Stakėnas, P.; Jagielski, T. Spoligotyping of Mycobacterium tuberculosis—Comparing in vitro and in silico approaches. Infect. Genet. Evol. 2023, 115, 105508. [Google Scholar] [CrossRef]
- Wyllie, D.H.; Davidson, J.A.; Smith, E.G.; Rathod, P.; Crook, D.W.; Peto, T.E.; Campbell, C. A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: A prospective observational cohort study. EBioMedicine 2018, 34, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.; O’Sullivan, D.M.; Machado, D.; Ramos, J.; Oppong, Y.E.A.; Campino, S.; O’grady, J.; McNerney, R.; Hibberd, M.L.; Viveiros, M.; et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Bradley, P.; Lapierre, S.G.; Heys, S.; Thomsit, M.; Hall, M.B.; Malone, K.M.; Wintringer, P.; Walker, T.M.; Cirillo, D.M.; et al. Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Res. 2019, 4, 191. [Google Scholar] [CrossRef]
- Negrete-Paz, A.M.; Vázquez-Marrufo, G.; Gutiérrez-Moraga, A.; Vázquez-Garcidueñas, M.S. Pangenome Reconstruction of Mycobacterium tuberculosis as a Guide to Reveal Genomic Features Associated with Strain Clinical Phenotype. Microorganisms 2023, 11, 1495. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2021. [Google Scholar]
- bcl2fastq and bcl2fastq2 Conversion Software. Available online: https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html (accessed on 15 December 2024).
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 10 May 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Seemann, T. Snippy: Fast Bacterial Variant Calling from NGS Reads. 2015. Available online: https://github.com/tseemann/snippy (accessed on 15 August 2024).
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Xia, E.; Teo, Y.Y.; Ong, R.T. SpoTyping: Fast and accurate in silico Mycobacterium spoligotyping from sequence reads. Genome Med. 2016, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- SITVIT Web. Available online: http://www.pasteur-guadeloupe.fr:8081/SITVIT2/index.jsp (accessed on 5 January 2025).
- Walker, T.M.; Ip, C.L.; Harrell, R.H. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect. Dis. 2013, 13, 137–146. [Google Scholar] [CrossRef]
- Meehan, C.J.; Moris, P.; Kohl, T.A. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 2018, 37, 410–416. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.C.; Madrazo-Moya, C.F.; Cancino-Muñoz, I.; Mejía-Ponce, P.M.; Licona-Cassani, C.; Comas, I.; Muñiz-Salazar, R.; Zenteno-Cuevas, R. Whole genomic sequencing-based genotyping reveals a specific X3 sublineage restricted to Mexico and related with multidrug resistance. Sci. Rep. 2021, 11, 1870. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Ponce, P.; Ramos-González, E.J.; Ramos-García, A.A.; Lara-Ramírez, E.E.; Soriano-Herrera, A.R.; Medellín-Luna, M.F.; Valdez-Salazar, F.; Castro-Garay, C.Y.; Núñez-Contreras, J.J.; De Donato-Capote, M.; et al. Characterization and epidemiological analysis of Mycobacterium tuberculosis in Mexico: Insights into regional sublineage dissemination and multidrug resistance. Emerg. Infect. Dis. 2019, 25, 796–805. [Google Scholar]
- Zenteno-Cuevas, R.; Munro-Rojas, D.; Pérez-Martínez, D.; Fernandez Morales, E.; Jimenez-Ruano, A.C.; Montero, H.; Escobar, L.; de Igartua, E.; Trigos, Á.; Fuentes-Dominguez, J. Genetic diversity and drug susceptibility of Mycobacterium tuberculosis in a city with a high prevalence of drug-resistant tuberculosis from Southeast of Mexico. BMC Infect. Dis. 2021, 21, 1202. [Google Scholar] [CrossRef] [PubMed]
- Flores-López, C.A.; Zenteno-Cuevas, R.; Laniado-Laborín, R.; Reynaud, Y.; García-Ortiz, R.A.; González-Y-Merchand, J.A.; Muñiz-Salazar, R. Molecular epidemiology of Mycobacterium tuberculosis in Baja California, Mexico: A result of human migration? Infect. Genet. Evol. 2017, 55, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Zenteno-Cuevas, R.; Mendoza-Damián, F.; Muñoz, I.C.; Enciso-Moreno, L.; Pérez-Navarro, L.M.; Ramírez-Hernández, M.D.; Enciso-Moreno, J.A. Description of the population structure and genetic diversity of tuberculosis in Estado de México, a low prevalence setting from Mexico. APMIS 2015, 123, 116–122. [Google Scholar] [CrossRef]
- Lopez-Avalos, G.; Gonzalez-Palomar, G.; Lopez-Rodriguez, M.; Vazquez-Chacon, C.A.; Mora-Aguilera, G.; Gonzalez-Barrios, J.A.; Villanueva-Arias, J.C.; Sandoval-Diaz, M.; Miranda-Hernández, U.; Alvarez-Maya, I. Genetic diversity of Mycobacterium tuberculosis and transmission associated with first-line drug resistance: A first analysis in Jalisco, Mexico. J. Glob. Antimicrob. Resist. 2017, 11, 90–97. [Google Scholar] [CrossRef]
- Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. genet. 2013, 45, 1176–1182. [Google Scholar] [CrossRef]
- Guerra-Assunção, J.A.; Crampin, A.C.; Houben, R.M.; Mzembe, T.; Mallard, K.; Coll, F.; Khan, P.; Banda, L.; Chiwaya, A.; Pereira, R.P.; et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. eLife 2015, 4, e05166. [Google Scholar] [CrossRef] [PubMed]
- Stucki, D.; Brites, D.; Jeljeli, L.; Coscolla, M.; Liu, Q.; Trauner, A.; Fenner, L.; Rutaihwa, L.; Borrell, S.; Luo, T.; et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 2016, 48, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Ponce, P.M.; Ramos-González, E.J.; Ramos-García, A.A.; Lara-Ramírez, E.E.; Soriano-Herrera, A.R.; Medellín-Luna, M.F.; Valdez-Salazar, F.; Castro-Garay, C.Y.; Núñez-Contreras, J.J.; De Donato-Capote, M.; et al. Genomic epidemiology analysis of drug-resistant Mycobacterium tuberculosis distributed in Mexico. PLoS ONE 2023, 18, e0292965. [Google Scholar] [CrossRef] [PubMed]
- Couvin, D.; David, A.; Zozio, T.; Rastogi, N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect. Genet. Evol. 2019, 72, 31–43. [Google Scholar] [CrossRef]
- Lefort, B.; Pérez-Martínez, D.; Viveros, D.; Zenteno-Cuevas, R. Genetic diversity of Mycobacterium tuberculosis circulating in the jurisdiction V from Jalapa, Veracruz, Mexico. Rev. Chil. Infectol. 2021, 38, 639–646. [Google Scholar] [CrossRef]
- Molina-Torres, C.A.; Moreno-Torres, E.; Ocampo-Candiani, J.; Rendon, A.; Blackwood, K.; Kremer, K.; Rastogi, N.; Welsh, O.; Vera-Cabrera, L. Mycobacterium tuberculosis spoligotypes in Monterrey, Mexico. J. Clin. Microbiol. 2010, 48, 448–455. [Google Scholar] [CrossRef]
- Valencia-Trujillo, D.; Avila-Trejo, A.M.; García-Reyes, R.L.; Narváez-Díaz, L.; Mújica-Sánchez, M.A.; Helguera-Repetto, A.C.; Becerril-Vargas, E.; Mata-Miranda, M.M.; Rivera-Gutiérrez, S.; Cerna-Cortés, J.F. Phenotypic and Genotypic Drug Resistance of Mycobacterium tuberculosis Strains Isolated from HIV-Infected Patients from a Third-Level Public Hospital in Mexico. Pathogens 2024, 13, 98. [Google Scholar] [CrossRef]
- Zenteno-Cuevas, R.; Cuevas-Córdoba, B.; Parissi-Crivelli, A. rpoB, katG and inhA mutations in multi-drug-resistant strains of Mycobacterium tuberculosis clinical isolates from southeast Mexico. Enfermedades Infecc. Y Microbiol. Clin. (Engl. Ed.) 2019, 37, 307–313. [Google Scholar] [CrossRef]
- Salvatore, P.P.; Becerra, M.C.; Abel zur Wiesch, P.; Hinkley, T.; Kaur, D.; Sloutsky, A.; Cohen, T. Fitness Costs of Drug Resistance Mutations in Multidrug-Resistant Mycobacterium tuberculosis: A Household-Based Case-Control Study. J. Infect. Dis. 2016, 213, 149–155. [Google Scholar] [CrossRef]
- Metcalfe, J.Z.; Streicher, E.; Theron, G.; Colman, R.E.; Allender, C.; Lemmer, D. Cryptic micro-heteroresistance explains Mycobacterium tuberculosis phenotypic resistance. Am. J. Respir. Crit. Care Med. 2017, 196, 1191–1201. [Google Scholar] [CrossRef]
- Cohen, K.A.; Manson, A.L.; Abeel, T.; Desjardins, C.A.; Chapman, S.B.; Hoffner, S.; Birren, B.W.; Earl, A.M. Extensive global movement of multidrug-resistantM. tuberculosis strains revealed by whole-genome analysis. Thorax 2019, 74, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; Murray, M.; Furin, J.; Nardell, E.A.; Warren, R.M.; Lancet Respiratory Medicine Drug-Resistant Tuberculosis Commission Group. The Lancet Respiratory Medicine Commission: 2019 update: Epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respir. Med. 2019, 7, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Goig, G.A.; Blanco, S.; Garcia-Basteiro, A.L.; Comas, I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol. 2020, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.; Freschi, L.; Marin, M.; Epperson, L.E.; Smith, M.; Oussenko, I.; Durbin, D.; Strong, M.; Salfinger, M.; Farhat, M.R. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 2021, 10, e61805. [Google Scholar] [CrossRef]
- Operario, D.J.; Koeppel, A.F.; Turner, S.D.; Bao, Y.; Pholwat, S.; Banu, S.; Foongladda, S.; Mpagama, S.; Gratz, J.; Ogarkov, O.; et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS ONE 2017, 12, e0176522. [Google Scholar]
- Canetti, G.; Froman, S.; Grosset, J.; Hauduroy, P.; Langerova, M.; Mahler, H.T.; Langerova, M.; Meissner, G.; Mitchison, D.; Sula, L. Mycobacteria: Laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 1963, 29, 565–578. [Google Scholar]
Tested Antibiotic | Frequency (%) |
---|---|
Monoresistant | |
INH | 9 (18.4) |
RIF | 3 (6.1) |
PZA | 6 (12.2) |
STR | 12 (24.5) |
EMB | 1 (2) |
Drug-resistant type | |
TB-RR | 3 (6.1) |
TB-Hr | 16 (32.6) |
MDR | 8 (16.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrete-Paz, A.M.; Vázquez-Marrufo, G.; Rodríguez-Carlos, A.; Rivas-Santiago, B.; Vázquez-Garcidueñas, M.S. Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico. Pathogens 2025, 14, 548. https://doi.org/10.3390/pathogens14060548
Negrete-Paz AM, Vázquez-Marrufo G, Rodríguez-Carlos A, Rivas-Santiago B, Vázquez-Garcidueñas MS. Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico. Pathogens. 2025; 14(6):548. https://doi.org/10.3390/pathogens14060548
Chicago/Turabian StyleNegrete-Paz, Andrea Monserrat, Gerardo Vázquez-Marrufo, Adrián Rodríguez-Carlos, Bruno Rivas-Santiago, and Ma. Soledad Vázquez-Garcidueñas. 2025. "Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico" Pathogens 14, no. 6: 548. https://doi.org/10.3390/pathogens14060548
APA StyleNegrete-Paz, A. M., Vázquez-Marrufo, G., Rodríguez-Carlos, A., Rivas-Santiago, B., & Vázquez-Garcidueñas, M. S. (2025). Whole-Genome Sequence-Based Diversity of Mycobacterium tuberculosis Strains Isolated from a Central Western Region of Mexico. Pathogens, 14(6), 548. https://doi.org/10.3390/pathogens14060548