Validation of a High-Throughput Microfluidic Real-Time PCR for the Detection of Vector-Borne Agents in Wild Birds from the Brazilian Pantanal
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling
2.2. Molecular Assays
2.2.1. DNA Extraction and PCR Assay for Endogenous Gene
2.2.2. Test of Primer and Probe Sets with DNA from Brazilian Strains of Vector-Borne Agents and Avian-Associated Onchocercid Filariids
- Onchocercid filariids (LSU rRNA);
- Plasmodium spp (cytB);
- Haemoproteus spp. (cytB).
2.2.3. DNA Pre-Amplification for Microfluidic Real-Time PCR
2.2.4. High-Throughput Microfluidic Real-Time PCR
2.2.5. Validation by PCR and Sanger Sequencing
2.2.6. Phylogenetic Analyses
3. Results
3.1. DNA Extraction and PCR Assay for Avian β Actin Endogenous Gene
3.2. Testing of Primer and Probe Sets Designed for Microfluidic Real-Time PCR by qPCR Assay
- Anaplasma spp./‘Candidatus Allocryptoplasma spp.’ were detected in five (100%) out of five samples in the qPCR assay targeting the 16S rRNA for Anaplasma spp./‘Candidatus Allocryptoplasma spp.’
- Bartonella spp., was detected in three (60%) out of five samples in the qPCR assay targeting the ssrA gene.
3.3. Primer and Probe Sets Tested in High-Throughput Microfluidic Real-Time PCR Assay
- (i.)
- designed in previous studies for Anaplasma spp. (16S rRNA), Bartonella spp. (ssrA), Apicomplexa (18S rRNA), Aegyptianella pullorum (groEL), Rickettsia spp. (gltA), Rickettsia africae (sca1), B. vinsonii berkhoffii (16S-23S rRNA ITS) and Hepatozoon spp. (18S rRNA) [60] Borrelia spp. (23S rRNA), Rickettsia rickettsii (23S-5S rRNA ITS), Borrelia burgdorferi s.s. (rpoB), Borrelia garinii (rpoB), Borrelia valaisiana (ospA), B. henselae (pap-31), A. phagocytophilum (msp2), E. chaffeensis (dsb), Rickettsia massiliae (23S-5S rRNA ITS), Spotted Fever Group Rickettsia spp. (gltA), Babesia vogeli (hsp70) [49], and Trypanosoma spp. (18S rRNA) [52].
- (ii.)
- designed in the present study for Ehrlichia spp. (groEL), Borrelia spp. (flaB), Trypanosoma spp. (18S rRNA), Plasmodium spp. (cytB), Haemoproteus spp. (cytB), Leucocytozoon spp (ssRNA), Aproctella spp. (LSU rRNA), Chandlerella spp. (cox1), Eufilaria spp. (LSU rRNA).
- Eleven (30.5%) out of these thirty-six bird blood DNA samples were positive to different VBA in high-throughput microfluidic real-time PCR assay (Supplementary Material Table S2).
- Four (44.4%) out of nine positive bird blood DNA samples previously positive to Bartonella spp. (obtained by our research group in a previous study [38].
3.4. High-Throughput Microfluidic Real-Time PCR Assay
- Anaplasma spp. 18.2% (50/275);
- Bartonella spp. 0.36% (1/275);
- Plasmodium spp. 6.2% (17/275);
- Haemoproteus spp. 5.09% (14/275);
- Onchocercid filariids 6.5% (18/275)
- Anaplasma spp. 12.72% (35/275);
- Bartonella spp. 0.36% (1/275);
- Plasmodium spp. 3.63% (10/275);
- Haemoproteus spp. 2.90% (8/275);
- Onchocercidae filariids 2.90% (8/275).
- Anaplasma spp. + filariids 3.30% (9/275);
- Anaplasma spp. + Plasmodium spp. 1.09% (3/275);
- Anaplasma spp. + Haemoproteus spp. 1.09% (3/275);
- Plasmodium spp. + Haemoproteus spp. 1.09% (3/275);
- Plasmodium spp. + Onchocercidae filariids 0.36% (1/275).
3.5. Validation of Microfluidic Real-Time PCR Results by Conventional PCR Assays and Sanger Sequencing
3.6. Phylogenetic Positioning of the Obtained Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C.R.F.; de Oliveira Guimarães, L.; Monteiro, E.F.; Valkiūnas, G.; Katayama, M.V.; Santos, S.V.; Guida, F.J.V.; Simões, R.F.; Kirchgatter, K. Hemosporidian Parasites of Free-Living Birds in the São Paulo Zoo, Brazil. Parasitol. Res. 2016, 115, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar, L.M.; Júnior, O.M. Haemoparasitees in Captive Birds at Uberlândia Zoo, State of Minas Gerais, Brazil. Biosci. J. 2021, 37, 1–6. [Google Scholar] [CrossRef]
- Ribeiro, P.V.A.; Baesse, C.Q.; Tolentino, V.C.d.M.; de Oliveira, M.M.; da Cunha, M.J.R.; Melo, C.; Cury, M.C. Haemosporidian Parasites Prevalence Associated with Physical Conditioning of Avian Species from the Brazilian Cerrado. Ciência Nat. 2020, 42, e50. [Google Scholar] [CrossRef]
- Belo, N.O.; Pinheiro, R.T.; Reis, E.S.; Ricklefs, R.E.; Braga, É.M. Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil. PLoS ONE 2011, 6, e17654. [Google Scholar] [CrossRef]
- Fecchio, A.; Dias, R.I.; Ferreira, T.V.; Reyes, A.O.; Dispoto, J.H.; Weckstein, J.D.; Bell, J.A.; Tkach, V.V.; Pinho, J.B. Host Foraging Behavior and Nest Type Influence Prevalence of Avian Haemosporidian Parasites in the Pantanal. Parasitol. Res. 2022, 121, 1407–1417. [Google Scholar] [CrossRef]
- Lacorte, G.A.; Félix, G.M.F.; Pinheiro, R.R.B.; Chaves, A.V.; Almeida-Neto, G.; Neves, F.S.; Leite, L.O.; Santos, F.R.; Braga, É.M. Exploring the Diversity and Distribution of Neotropical Avian Malaria Parasites—A Molecular Survey from Southeast Brazil. PLoS ONE 2013, 8, e57770. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Ferreira, F.C.; Araújo, A.C.; Hirano, L.Q.L.; Paludo, G.R.; Braga, É.M. Molecular Detection of Leucocytozoon in Red-Legged Seriemas (Cariama cristata), a Non-Migratory Bird Species in the Brazilian Cerrado. Vet. Parasitol. Reg. Stud. Rep. 2022, 31, 100652. [Google Scholar] [CrossRef] [PubMed]
- Fecchio, A.; Silveira, P.; Weckstein, J.D.; Dispoto, J.H.; Anciães, M.; Bosholn, M.; Tkach, V.V.; Bell, J.A. First Record of Leucocytozoon (Haemosporida: Leucocytozoidae) in Amazonia: Evidence for Rarity in Neotropical Lowlands or Lack of Sampling for This Parasite Genus? J. Parasitol. 2018, 104, 168–172. [Google Scholar] [CrossRef]
- Cutler, S.J.; Fooks, A.R.; van der Poel, W.H.M. Public Health Threat of New, Reemerging, and Neglected Zoonoses in the Industrialized World. Emerg. Infect. Dis. 2010, 16, 1–7. [Google Scholar] [CrossRef]
- Nicholson, W.L. Family Anaplasmataceae (Anaplasmosis, Ehrlichiosis, Neorickettsiosis, and Neoehrlichiosis), 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780323401814. [Google Scholar]
- Rikihisa, Y.; Zhang, C.; Christensen, B.M. Molecular Characterization of Aegyptianella pullorum (Rickettsiales, Anaplasmataceae). J. Clin. Microbiol. 2003, 41, 5294–5297. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R.; Hanincová, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of Migratory Birds in Introduction and Range Expansion of Ixodes Scapularis Ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.R.; Moon, K.H.; Kim, S.Y.; Kim, Y.G.; Choi, C.Y.; Kang, C.W.; Kim, H.J.; Lee, K.K.; Yun, Y.M. Prevalence of Anaplasma sp. in Thrushes (Family Turdidae) in Jeju Island, Republic of Korea. J. Vet. Clin. 2014, 31, 206–211. [Google Scholar] [CrossRef]
- Sándor, A.D.; Kalmár, Z.; Mihalca, A.D. Anaplasma phagocytophilum in Ticks and Tissues Collected from Wild Birds in Romania. Sci. Parasitol. 2015, 16, 103–111. [Google Scholar]
- Muñoz-Leal, S.; Clemes, Y.S.; Lopes, M.G.; Acosta, I.C.L.; Serpa, M.C.A.; Mayorga, L.F.S.P.; Gennari, S.M.; González-Acuña, D.; Labruna, M.B. Novel Ehrlichia sp. Detected in Magellanic Penguins (Sphenicus magellanicus) and in the Seabird Tick Ixodes Uriae from Magdalena Island, Southern Chile. Ticks Tick-Borne Dis. 2019, 10, 101256. [Google Scholar] [CrossRef]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Juhász, A.; Kontschán, J.; Földi, D.; Koleszár, B.; Morandini, P.; Gyuranecz, M.; Szekeres, S. Anaplasmataceae Closely Related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from Birds in Central Europe, Hungary. Antonie Van. Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2020, 113, 1067–1073. [Google Scholar] [CrossRef]
- Machado, R.Z.; André, M.R.; Werther, K.; De Sousa, E.; Gavioli, F.A.; Alves, J.R.F. Migratory and Carnivorous Birds in Brazil: Reservoirs for Anaplasma and Ehrlichia Species? Vector-Borne Zoonotic Dis. 2012, 12, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Werther, K.; Luzzi, M.d.C.; Gonçalves, L.R.; de Oliveira, J.P.; Alves Junior, J.R.F.; Machado, R.Z.; André, M.R. Arthropod-Borne Agents in Wild Orinoco Geese (Neochen jubata) in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 55, 30–41. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Benevenute, J.L.; Ikeda, P.; André, M.R.; Machado, R.Z.; Carrasco, A.d.O.T.; Seki, M.C. Detection of Anaplasma sp. Phylogenetically Related to A. phagocytophilum in a Free-Living Bird in Brazil. Rev. Bras. Parasitol. Vet. 2017, 26, 505–510. [Google Scholar] [CrossRef]
- Sacchi, A.B.V.; André, M.R.; Calchi, A.C.; de Santi, M.; Guimarães, A.; Pires, J.R.; Baldani, C.D.; Werther, K.; Machado, R.Z. Molecular and Serological Detection of Arthropod-Borne Pathogens in Carnivorous Birds from Brazil. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100539. [Google Scholar] [CrossRef]
- Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Mongruel, A.C.B.; das Neves, L.F.; Lee, D.A.B.; Machado, R.Z.; André, M.R. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024, 12, 962. [Google Scholar] [CrossRef]
- Birtles, R.J.; Raoult, D. Comparison of Partial Citrate Synthase Gene (gltA) Sequences for Phylogenetic Analysis of Bartonella Species. Int. J. Syst. Bacteriol. 1996, 46, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Breitschwerdt, E.B.; Maggi, R.G.; Chomel, B.B.; Lappin, M.R. Bartonellosis: An Emerging Infectious Disease of Zoonotic Importance to Animals and Human Beings. J. Vet. Emerg. Crit. Care 2010, 20, 8–30. [Google Scholar] [CrossRef] [PubMed]
- Billeter, S.A.; Gundi, V.A.K.B.; Rood, M.P.; Kosoy, M.Y. Molecular Detection and Identification of Bartonella Species in Xenopsylla cheopis Fleas (Siphonaptera: Pulicidae) Collected from Rattus Norvegicus Rats in Los Angeles, California. Appl. Environ. Microbiol. 2011, 77, 7850–7852. [Google Scholar] [CrossRef] [PubMed]
- Klangthong, K.; Promsthaporn, S.; Leepitakrat, S.; Schuster, A.L.; McCardle, P.W.; Kosoy, M.; Takhampunya, R. The Distribution and Diversity of Bartonella Species in Rodents and Their Ectoparasites across Thailand. PLoS ONE 2015, 10, e0140856. [Google Scholar] [CrossRef]
- Müller, A.; Rodríguez, E.; Walker, R.; Bittencourt, P.; Pérez-Macchi, S.; Gonçalves, L.R.; Machado, R.Z.; André, M.R. Occurrence and Genetic Diversity of Bartonella spp. (Rhizobiales: Bartonellaceae) and Rickettsia spp. (Rickettsiales: Rickettsiaceae) in Cat Fleas (Siphonaptera: Pulicidae) From Chile. J. Med. Entomol. 2018, 55, 1627–1632. [Google Scholar] [CrossRef]
- Nasereddin, A.; Risheq, A.; Harrus, S.; Azmi, K.; Ereqat, S.; Baneth, G.; Salant, H.; Mumcuoglu, K.Y.; Abdeen, Z. Bartonella species in Fleas from Palestinian Territories: Prevalence and Genetic Diversity. J. Vector Ecol. 2014, 39, 261–270. [Google Scholar] [CrossRef]
- Salas, L.M.; Espinoza-Carniglia, M.; Schmeisser, N.L.; Torres, L.G.; Silva-De La Fuente, M.C.; Lareschi, M.; González-Acuña, D. Fleas of Black Rats (Rattus rattus) as Reservoir Host of Bartonella spp. in Chile. PeerJ 2019, 2019, e7371. [Google Scholar] [CrossRef]
- Anstead, G.M. The Centenary of the Discovery of Trench Fever, an Emerging Infectious Disease of World War 1. Lancet Infect. Dis. 2016, 16, e164–e172. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Márquez, A.C.; Bravo-Estupiñan, D.M.; Calixto, O.-J.; López-Castillo, C.A.; Botero-García, C.A.; Hidalgo, M.; Cuervo, C. Bartonella quintana and Typhus Group Rickettsiae Exposure among Homeless Persons, Bogotá, Colombia. Emerg. Infect. Dis. 2017, 23, 1876–1879. [Google Scholar] [CrossRef]
- Louni, M.; Mana, N.; Bitam, I.; Dahmani, M.; Parola, P.; Fenollar, F.; Raoult, D.; Mediannikov, O. Body Lice of Homeless People Reveal the Presence of Several Emerging Bacterial Pathogens in Northern Algeria. PLoS Negl. Trop. Dis. 2018, 12, e0006397. [Google Scholar] [CrossRef]
- Billeter, S.A.; Diniz, P.P.V.P.; Battisti, J.M.; Munderloh, U.G.; Breitschwerdt, E.B.; Levy, M.G. Infection and Replication of Bartonella species within a Tick Cell Line. Exp. Appl. Acarol. 2009, 49, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-G.; Kim, H.-C.; Choi, C.-Y.; Nam, H.-Y.; Chae, H.-Y.; Chong, S.-T.; Klein, T.A.; Ko, S.; Chae, J.-S. Molecular Detection of Anaplasma, Bartonella, and Borrelia species in Ticks Collected from Migratory Birds from Hong-Do Island, Republic of Korea. Vector-Borne Zoonotic Dis. 2013, 13, 215–225. [Google Scholar] [CrossRef]
- Breitschwerdt, E.B.; Kordick, D.L.; Carolina, N. Bartonella Infection in Animals: Carriership, Reservoir Potential, Pathogenicity, and Zoonotic Potential for Human Infection. Clin. Microbiol. Rev. 2000, 13, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Kosoy, M.; Goodrich, I. Comparative Ecology of Bartonella and Brucella Infections in Wild Carnivores. Front. Vet. Sci. 2019, 5, 322. [Google Scholar] [CrossRef]
- Okaro, U.; Addisu, A.; Casanas, B.; Anderson, B. Bartonella species, an Emerging Cause of Blood-Culture-Negative Endocarditis. Clin. Microbiol. Rev. 2017, 30, 709–746. [Google Scholar] [CrossRef] [PubMed]
- Mascarelli, P.E.; McQuillan, M.; Harms, C.A.; Harms, R.V.; Breitschwerdt, E.B. Bartonella henselae and B. koehlerae DNA in Birds. Emerg. Infect. Dis. 2014, 20, 490–492. [Google Scholar] [CrossRef]
- Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Machado, R.Z.; André, M.R. Molecular Evidence of Bartonella spp. in Tropical Wild Birds from the Brazilian Pantanal, the Largest Wetland in South America. Vet. Res. Commun. 2024, 48, 1631–1640. [Google Scholar] [CrossRef]
- Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429212420. [Google Scholar]
- Atkinson, C.T.; Nancy, J.T.; Hunter, D.B. Parasitic Diseases of Wild Birds; Atkinson, C.T., Thomas, N.J., Hunter, D.B., Eds.; Wiley-Blackwell: Oxford, UK, 2009; ISBN 9780813820811. [Google Scholar]
- Friend, M.; Franson, J.C. Field Manual of General Field Procedures and Diseases of Birds; National Wildlife Health Center: Madison, WI, USA, 1999; ISBN 0607880961. [Google Scholar]
- Adamson, M.L.; Anderson, R.C. Nematode Parasites of Vertebrates. Their Development and Transmission. J. Parasitol. 1993, 79, 634. [Google Scholar] [CrossRef]
- Bartlett, C.M. New, Known and Unidentified Species of Eulimdana (Nematoda): Additional Information on Biologically Unusual Filarioids of Charadriiform Birds. Syst. Parasitol. 1992, 23, 209–230. [Google Scholar] [CrossRef]
- Haas, M.; Baruš, V.; Benedikt, V.; Literák, I. Microfilariae in Birds in the Czech Republic, Including a Note on Adult Nematodes Eufilaria delicata in a Song Thrush Turdus philomelos. Parasitol. Res. 2011, 109, 645–655. [Google Scholar] [CrossRef]
- Vaughan, J.A.; Hinson, J.; Andrews, E.S.; Turell, M.J. Pre-Existing Microfilarial Infections of American Robins (Passeriformes: Turdidae) and Common Grackles (Passeriformes: Icteridae) Have Limited Impact on Enhancing Dissemination of West Nile Virus in Culex pipiens Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2021, 58, 1389–1397. [Google Scholar] [CrossRef]
- Rodríguez, O.A.; Matta, N.E. Blood Parasites in Some Birds from Eastern Plains of Colombia. Mem. Inst. Oswaldo Cruz 2001, 96, 1173–1176. [Google Scholar] [CrossRef] [PubMed]
- Benedikt, V.; Barus, V.; Capek, M.; Havlicek, M.; Literak, I. Blood Parasites (Haemoproteus and Microfilariae) in Birds from the Caribbean Slope of Costa Rica. Acta Parasitol. 2009, 54, 197–204. [Google Scholar] [CrossRef]
- Bain, O.; Otranto, D.; Diniz, D.G.; dos Santos, J.N.; de Oliveira, N.P.; de Almeida, I.N.F.; de Almeida, R.N.F.; de Almeida, L.N.F.; Dantas-Torres, F.; de Almeida Sobrinho, E.F. Human Intraocular Filariasis Caused by Pelecitus sp. Nematode, Brazil. Emerg. Infect. Dis. 2011, 17, 867–869. [Google Scholar] [CrossRef]
- Mitchell, P. Microfluidics—downsizing large-scale biology. Nat. Biotechnol. 2001, 19, 717–721. [Google Scholar] [CrossRef]
- Michelet, L.; Delannoy, S.; Devillers, E.; Umhang, G.; Aspan, A.; Juremalm, M.; Chirico, J.; van der Wal, F.J.; Sprong, H.; Boye Pihl, T.P.; et al. High-Throughput Screening of Tick-Borne Pathogens in Europe. Front. Cell Infect. Microbiol. 2014, 4, 103. [Google Scholar] [CrossRef] [PubMed]
- Boularias, G.; Azzag, N.; Galon, C.; Šimo, L.; Boulouis, H.J.; Moutailler, S. High-Throughput Microfluidic Real-Time Pcr for the Detection of Multiple Microorganisms in Ixodid Cattle Ticks in Northeast Algeria. Pathogens 2021, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Defaye, B.; Moutailler, S.; Vollot, B.; Galon, C.; Gonzalez, G.; Moraes, R.A.; Leoncini, A.S.; Rataud, A.; Le Guillou, G.; Pasqualini, V.; et al. Detection of Pathogens and Ticks on Sedentary and Migratory Birds in Two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023, 11, 869. [Google Scholar] [CrossRef]
- Rataud, A.; Galon, C.; Bournez, L.; Henry, P.; Marsot, M.; Moutailler, S. Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France. Pathogens 2022, 11, 946. [Google Scholar] [CrossRef]
- Hill, E.R.; Chun, C.L.; Hamilton, K.; Ishii, S. High-Throughput Microfluidic Quantitative PCR Platform for the Simultaneous Quantification of Pathogens, Fecal Indicator Bacteria, and Microbial Source Tracking Markers. ACS EST Water 2023, 3, 2647–2658. [Google Scholar] [CrossRef]
- Dreier, M.; Berthoud, H.; Shani, N.; Wechsler, D.; Junier, P. Development of a High-Throughput Microfluidic QPCR System for the Quantitative Determination of Quality-Relevant Bacteria in Cheese. Front. Microbiol. 2021, 11, 619166. [Google Scholar] [CrossRef] [PubMed]
- Crane, S.L.; van Dorst, J.; Hose, G.C.; King, C.K.; Ferrari, B.C. Microfluidic QPCR Enables High Throughput Quantification of Microbial Functional Genes but Requires Strict Curation of Primers. Front. Environ. Sci. 2018, 6, 414831. [Google Scholar] [CrossRef]
- Liu, J.; Hansen, C.; Quake, S.R. Solving the “World-to-Chip” Interface Problem with a Microfluidic Matrix. Anal. Chem. 2003, 75, 4718–4723. [Google Scholar] [CrossRef]
- de Sena Oliveira, M.C.; Silva, P.C.; Hiromi OkinO, C.; Basetto, C.C.; Giglioti, R. Avaliação de Métodos de Extração de DNA de Amostras de Sangue de Bovinos Colhidas em Papel Filtro (Cartões FTA); EMBRAPA: São Carlos, SP, Brazil, 2018. [Google Scholar]
- Hatai, H.; Ochiai, K.; Murakami, M.; Imanishi, S.; Tomioka, Y.; Toyoda, T.; Ohashi, K.; Umemura, T. Prevalence of Fowl Glioma-Inducing Virus in Chickens of Zoological Gardens in Japan and Nucleotide Variation in the Env Gene. J. Vet. Med. Sci. 2008, 70, 469–474. [Google Scholar] [CrossRef]
- Gondard, M.; Delannoy, S.; Pinarello, V.; Aprelon, R.; Devillers, E.; Galon, C.; Pradel, J.; Vayssier-Taussat, M.; Albina, E.; Moutailler, S. Upscaling the Surveillance of Tick-Borne Pathogens in the French Caribbean Islands. Pathogens 2020, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. Available online: https://search.library.nyu.edu/discovery/openurl?institution=01NYU_INST&vid=01NYU_INST:NYU&date=1999&volume=41&%3Fsid=oup:orr&aulast=Hall&epage=98&genre=article&spage=95&title=Nucleic%20Acids%20Symp%20Ser.&atitle=BioEdit:%20a%20user%20friendly%20biological%20sequence%20alignment%20editor%20and%20analysis%20program%20for%20Windows%2095%2F98%2FNT (accessed on 5 February 2025).
- Altschul, S. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Rar, V.A.; Fomenko, N.V.; Dobrotvorsky, A.K.; Livanova, N.H.; Rudakova, S.A.; Fedorov, E.G.; Astanin, V.B.; Morozova, O.V. Tickborne Pathogen Detection, Western Siberia, Russia. Emerg. Infect. Dis. 2005, 11, 1708. [Google Scholar] [CrossRef]
- Eberhardt, A.T.; Manzoli, D.E.; Fernandez, C.; Zurvera, D.; Monje, L.D. Anaplasma Species Infecting Questing Ticks in the Iberá Wetlands Ecoregion, Argentina. Exp. Appl. Acarol. 2023, 89, 485–496. [Google Scholar] [CrossRef]
- Monje, L.D.; Fernandez, C.; Percara, A. Ticks and Tick-Borne Diseases Detection of Ehrlichia sp. Strain San Luis and Candidatus rickettsia andeanae in Amblyomma parvum Ticks. Ticks Tick-Borne Dis. 2018, 110, 111–114. [Google Scholar] [CrossRef]
- Parola, P.; Roux, V.; Camicas, J.-L.; Baradji, I.; Brouqui, P.; Raoult, D. Detection of Ehrlichiae in African Ticks by Polymerase Chain Reaction. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Rejmanek, D.; Bradburd, G.; Foley, J. Molecular Characterization Reveals Distinct Genospecies of Anaplasma phagocytophilum from Diverse North American Hosts. J. Med. Microbiol. 2012, 61, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, J.N.; Watkins, J.D.; Samlal, M.S.; Deonanan, R.; Ramsubeik, S.; Ammons, D.R. A Nested-PCR with an Internal Amplification Control for the Detection and Differentiation of Bartonella henselae and B. clarridgeiae: An Examination of Cats in Trinidad. BMC Infect. Dis. 2005, 5, 63. [Google Scholar] [CrossRef]
- Norman, A.F.; Regnery, R.; Jameson, P.; Greene, C.; Krause, D.C. Differentiation of Bartonella-like Isolates at the Species Level by PCR- Restriction Fragment Length Polymorphism in the Citrate Synthase Gene. J. Clin. Microbiol. 1995, 33, 1797–1803. [Google Scholar] [CrossRef]
- Paziewska, A.; Harris, P.D.; Zwolińska, L.; Bajer, A.; Siński, E. Recombination Within and Between Species of the Alpha Proteobacterium Bartonella Infecting Rodents. Microb. Ecol. 2011, 61, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Colborn, J.M.; Kosoy, M.Y.; Motin, V.L.; Telepnev, M.V.; Valbuena, G.; Myint, K.S.; Fofanov, Y.; Putonti, C.; Feng, C.; Peruski, L. Improved Detection of Bartonella DNA in Mammalian Hosts and Arthropod Vectors by Real-Time PCR Using the NADH Dehydrogenase Gamma Subunit (nuoG). J. Clin. Microbiol. 2010, 48, 4630–4633. [Google Scholar] [CrossRef]
- Maggi, R.G.; Breitschwerdt, E.B. Isolation of Bacteriophages from Bartonella vinsonii subsp. berkhoffii and the Characterization of Pap31 Gene Sequences from Bacterial and Phage DNA. J. Mol. Microbiol. Biotechnol. 2005, 9, 44–51. [Google Scholar] [CrossRef]
- Renesto, P.; Gouvernet, J.; Drancourt, M.; Roux, V.; Raoult, D. Use of RpoB Gene Analysis for Detection and Identification of Bartonella species. J. Clin. Microbiol. 2001, 39, 430–437. [Google Scholar] [CrossRef]
- Johnson, G.; Ayers, M.; Mcclure, S.C.C.; Richardson, S.E.; Tellier, R. Detection and Identification of Bartonella Species Pathogenic for Humans by PCR Amplification Targeting the Riboflavin Synthase Gene (ribC). J. Clin. Microbiol. 2003, 41, 1069–1072. [Google Scholar] [CrossRef]
- Maggi, R.G.; Breitschwerdt, E.B. Potential Limitations of the 16S-23S RRNA Intergenic Region for Molecular Detection of Bartonella species. J. Clin. Microbiol. 2005, 43, 1171–1176. [Google Scholar] [CrossRef]
- Hellgren, O.; Waldenström, J.; Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, M.; Anderson, T.J.C.; Bandi, C.; Bazzocchi, C.; Genchi, C. A Phylogenetic Analysis of Filarial Nematodes: Comparison with the Phylogeny of Wolbachia Endosymbionts. Parasitology 2001, 122, 93–103. [Google Scholar] [CrossRef]
- Hayashi, N.; Hosokawa, K.; Yamamoto, Y.; Kodama, S.; Kurokawa, A.; Nakao, R.; Nonaka, N. A Filarial Parasite Potentially Associated with the Health Burden on Domestic Chickens in Japan. Sci. Rep. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Phylogenies and the Comparative Method. Am. Nat. 1985, 125, 818–829. [Google Scholar] [CrossRef]
- Rambaut, A. Molecular evolution, Phylogenetics and Epidemiology. Available online: http://tree.bio.ed.ac.uk/ (accessed on 1 May 2025).
- Palinauskas, V.; Žiegytė, R.; Iezhova, T.A.; Ilgūnas, M.; Bernotienė, R.; Valkiūnas, G. Description, Molecular Characterisation, Diagnostics and Life Cycle of Plasmodium elongatum (Lineage PERIRUB01), the Virulent Avian Malaria Parasite. Int. J. Parasitol. 2016, 46, 697–707. [Google Scholar] [CrossRef]
- Sgarioni, A.Z.; Serafini, P.; Pereira, A.; Emmerich, T.; de Pontes, T.P.; Machado, D.C.; Ribeiro, P.R.; de Amorim, D.B.; Klafke, G.; Reck, J. Molecular Survey of Haemosporidian Parasites in Procellariiformes Sampled in Southern Brazil, 2013–2022. J. Wildl. Dis. 2024, 60, 413–420. [Google Scholar] [CrossRef]
- Vanstreels, R.; Kolesnikovas, C.K.M.; Sandri, S.; Silveira, P.; Belo, N.O. Outbreak of Avian Malaria Associated to Multiple species of Plasmodium in Magellanic Penguins Undergoing Rehabilitation in Southern Brazil. PLoS ONE 2014, 9, 94994. [Google Scholar] [CrossRef]
- Binkienė, R.; Chagas, C.R.F.; Bernotienė, R.; Valkiūnas, G. Molecular and Morphological Characterization of Three New Species of Avian Onchocercidae (Nematoda) with Emphasis on Circulating Microfilariae. Parasit. Vectors 2021, 14, 137. [Google Scholar] [CrossRef]
- Buffet, J.P.; Kosoy, M.; Vayssier-Taussat, M. Natural History of Bartonella-Infecting Rodents in Light of New Knowledge on Genomics, Diversity and Evolution. Future Microbiol. 2013, 8, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.R.; Favacho, A.R.d.M.; Roque, A.L.R.; Mendes, N.S.; Fidelis, O.L.; Benevenute, J.L.; Herrera, H.M.; D’Andrea, P.S.; de Lemos, E.R.S.; Machado, R.Z.; et al. Association of Bartonella species with Wild and Synanthropic Rodents in Different Brazilian Biomes. Appl. Environ. Microbiol. 2016, 82, 7154–7164. [Google Scholar] [CrossRef]
- Stuckey, M.J.; Chomel, B.B.; Galvez-Romero, G.; Olave-Leyva, J.I.; Obregón-Morales, C.; Moreno-Sandoval, H.; Aréchiga-Ceballos, N.; Salas-Rojas, M.; Aguilar-Setién, A. Bartonella Infection in Hematophagous, Insectivorous, and Phytophagous Bat Populations of Central Mexico and the Yucatan Peninsula. Am. J. Trop. Med. Hyg. 2017, 97, 413. [Google Scholar] [CrossRef] [PubMed]
- André, M.R.; Gutiérrez, R.; Ikeda, P.; do Amaral, R.B.; de Sousa, K.C.M.; Nachum-Biala, Y.; Lima, L.; Teixeira, M.M.G.; Machado, R.Z.; Harrus, S. Genetic Diversity of Bartonella spp. in Vampire Bats from Brazil. Transbound. Emerg. Dis. 2019, 66, 2329–2341. [Google Scholar] [CrossRef]
- Álvarez-Fernández, A.; Breitschwerdt, E.B.; Solano-Gallego, L. Bartonella Infections in Cats and Dogs Including Zoonotic Aspects. Parasit. Vectors 2018, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Soto, F.; Sepúlveda, M.; Bittencourt, P.; Benevenute, J.L.; Ikeda, P.; Machado, R.Z.; André, M.R. Bartonella vinsonii subsp. berkhoffii and B. henselae in Dogs. Epidemiol. Infect. 2018, 146, 1202–1204. [Google Scholar] [CrossRef]
- Dias, C.M.; do Amaral, R.B.; Perles, L.; Muniz, A.L.d.S.; Rocha, T.F.G.; Machado, R.Z.; André, M.R. Multi-Locus Sequencing Typing of Bartonella henselae Isolates Reveals Coinfection with Different Variants in Domestic Cats from Midwestern Brazil. Acta Trop. 2023, 237, 106742. [Google Scholar] [CrossRef]
- Ishii, S.; Segawa, T.; Okabe, S. Simultaneous Quantification of Multiple Food- and Waterborne Pathogens by Use of Microfluidic Quantitative PCR. Appl. Environ. Microbiol. 2013, 79, 2891. [Google Scholar] [CrossRef]
Agents | Sequences (5′-3′) | Size (bp) | Molecular Marker | Reference |
---|---|---|---|---|
Anaplasma spp./Ehrlichia spp. | EHR1 GAACGAACGCTGGCGGCAAGC EHR2 AGTA(T/C) CG(A/G) ACCAGATAGCCGC EHR3 TGCATAGGAATCTACCTAGTAG EHR2 AGTA(T/C) CG(A/G) ACCAGATAGCCGC | 693 592 | 16S rRNA | [63] |
Anaplasma spp. | GE2F2 GTTAGTGGCAGACGGGTGAGT AE4-Fw GTACCYAYAGAAGAAGTCCCGGCA AE-Rv RCACCAGCTTCGAGTTAAGCCAAT | 800 | 16S rRNA | [64,65,66] |
Anaplasma spp. | ITSiF ATACCTCTGGTGTACCAGTTG ITSiR TTAACTTCCGGGTTCGGAATG | 300 | ITS 23S-5S | [67] |
Bartonella spp. | P-bhenfa TCTTCGTTTCTCTTTCTTCA P-benr1 CAAGCGCGCGCTCTAACC N-bhenf1a GATGATCCCAAGCCTTCTGGC N-bhenr AACCAACTGAGCTACAAGCC | Depends on the species | 16S-23S rRNA (ITS) | [68] |
BhCS.781p F GGGGACCAGCTCATGGTGG BhCS.1137n R AATGCAAAAAGAACAGTAAACA | 380–400 | gltA | [69] | |
CS443f GCTATGTCTGCATTCTATCA CS1210r GATCYTCAATCATTTCTTTCCA | 767 | gltA | [24] | |
ftsZ F CATATGGTTTTCATTACTGCYGGTATGG ftsZ R TTCTTCGCGAATACGATTAGCAGCTTC | 515 | ftsZ | [70] | |
groEL F GGAAAAAGTGGGCAATGAAG groEL R TCCTTTAACGGTCAACGCATT | 752 | groEL | [70] | |
nuoG F GGCGTGATTGTTCTCGTTA nuoG R CACGACCACGGCTATCAAT | 346 | nuoG | [71] | |
165s GACTTCTGTTATCGCTTTGATTT 688as CACCACCAGCAAMATAAGGCAT | 564 | pap31 | [72] | |
1400F CGCATTGGCTTACTTCGTATG 2300R GTAGACTGATTAGAACGCTG | 825 | rpoB | [73] | |
Barton-1 TAACCGATATTGGTTGTGTTGAAG Barton-2 TAAAGCTAGAAAGTCTGGCAACATAACG | 585–588 | ribC | [74] | |
321s AGATGATGATCCCAAGCCTTCTGGCG 938as TGTTCTYACAACAATGATGATG | 453–717 | 16S-23S rRNA (ITS) | [75] | |
Haemosporidians (Haemoproteus spp., Plasmodium spp. and Leucocytozoon spp.) | HaemNFI-cytB-F CATATATTAAGAGAAITATGGAG HaemNR3-cytB-R ATAGAAAGATAAGAAATACCATTC HaemF-cytB ATGGTGCTTTCGATATATGCATG HaemR2-CYTb GCATTATCTGGATGTGATAATGGT HaemFL-cytB ATGGTGTTTTAGATACTTACATT HaemR2L-cytB CATTATCTGGATGAGATAATGGIGC | 660 480 478 | cytB | [76] |
Onchocercid filariids | NTF-coxF TGATTGGTGGTTTTGGTAA NTR-coxR ATAAGTACGAGTATCAATATC | 650 | cox-1 | [77] |
Onchocercidae | 988F CTCAAAGATTAAGCCATGC 1912R TTTACGGTCAGAACTAGGG | 998 | 12S rRNA | [78] |
Onchocercidae | Nematode 1 GCGGAGGAAAAGAAACTAA Nematode 2 ATCCGTGTTTCAAGACGGG | 855 | 28S rRNA | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabí Córdova, A.S.; Pinho, J.B.; Pereira, A.G.; Galon, C.; Ferreira, T.V.; das Neves, L.F.; de Oliveira Lopes, G.; Machado, R.Z.; Moutailler, S.; André, M.R. Validation of a High-Throughput Microfluidic Real-Time PCR for the Detection of Vector-Borne Agents in Wild Birds from the Brazilian Pantanal. Pathogens 2025, 14, 491. https://doi.org/10.3390/pathogens14050491
Alabí Córdova AS, Pinho JB, Pereira AG, Galon C, Ferreira TV, das Neves LF, de Oliveira Lopes G, Machado RZ, Moutailler S, André MR. Validation of a High-Throughput Microfluidic Real-Time PCR for the Detection of Vector-Borne Agents in Wild Birds from the Brazilian Pantanal. Pathogens. 2025; 14(5):491. https://doi.org/10.3390/pathogens14050491
Chicago/Turabian StyleAlabí Córdova, Amir Salvador, João Batista Pinho, Amanda Garcia Pereira, Clémence Galon, Tiago Valadares Ferreira, Lorena Freitas das Neves, Gabrielly de Oliveira Lopes, Rosangela Zacarias Machado, Sara Moutailler, and Marcos Rogério André. 2025. "Validation of a High-Throughput Microfluidic Real-Time PCR for the Detection of Vector-Borne Agents in Wild Birds from the Brazilian Pantanal" Pathogens 14, no. 5: 491. https://doi.org/10.3390/pathogens14050491
APA StyleAlabí Córdova, A. S., Pinho, J. B., Pereira, A. G., Galon, C., Ferreira, T. V., das Neves, L. F., de Oliveira Lopes, G., Machado, R. Z., Moutailler, S., & André, M. R. (2025). Validation of a High-Throughput Microfluidic Real-Time PCR for the Detection of Vector-Borne Agents in Wild Birds from the Brazilian Pantanal. Pathogens, 14(5), 491. https://doi.org/10.3390/pathogens14050491