Preclinical Models of Oropouche Virus Infection and Disease
Abstract
1. Introduction
| Publication | Compound | Class | Mechanism of Action | Evidence Level |
|---|---|---|---|---|
| Westover et al., 2025 [29] | 4′-Fluorouridine | Nucleoside analogue (uridine) | RdRp inhibitor | in vitro, in vivo |
| Westover et al., 2025 [29] | Ribavirin | Nucleoside analogue (guanosine) | RdRp inhibitor | in vitro |
| Westover et al., 2025 [29] | Favipiravir | Nucleoside analogue (guanosine) | RdRp inhibitor | in vitro |
| Saivish et al., 2024 [31] | Acridones | Small molecule | Possible intercalation of dsRNA intermediate during viral replication | in vitro |
| de Lima Menezes et al., 2023 [32] | Quercetin hydrate (Flavinoid) | Small molecule | Proposed interactions with OROV Gc protein | in vitro |
2. Methods
3. Models
3.1. Hamster Models
| Publication | Virus | Animals | Study Design | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Strain | Passage History | Species | Age | Sex | Challenge Dose | Route of Infection | Inoculation Site | Group n | Primary Endpoints | |
| Pinheiro et al., 1982 [3] | BeAn19991 | Mouse i.c passage | Syrian hamster | 4-week-old | Mixed | 5.2–7.3 log10 SMLD50 *1 | Midge vector | Abdomen | 12–15 | Survival, weight loss, transmission confirmed by cell culture, seroconversion to confirm infection |
| Hoch et al., 1987 [5] | BeAn19991 | Mouse i.c passage | Syrian hamster | 3-week-old | Mixed | 9.7–9.9 log10 SMLD50 *1 | Mosquito vector | Abdomen | 27–33 | Survival, weight loss, transmission confirmed by cell culture, seroconversion to confirm infection |
| Rodrigues et al., 2011 [42] | BeAn19991 | Mouse i.c passage | Syrian hamster | 3-week-old | Mixed | 105.6 TCID50 *1 | Subcutaneous | Hind leg | 13 | Survival, weight loss, temperature, clinical scoring, histopathology, viral load |
3.2. Immune-Competent Mouse Models
| Publication | Virus | Animals | Study Design | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Strain | Passage History | Species | Strains | Age | Sex | Challenge Dose | Route of Infection | Inoculation Site | Group n | Primary Endpoints | |
| Livonesi et al., 2006 [30] | BeAn19991 | Mouse i.c passage | Mouse | SWR/J | Newborn | Mixed | 10 LD50 *1 | Intraperitoneal | Abdomen | 16 | Survival, weight loss, viral load |
| Santos et al., 2012 [43] | BeAn19991 | Mouse i.c passage, HeLa cells | Mouse | BALB/c | Newborn | Mixed | 106.25 TCID50 *1 | Subcutaneous | dorsal lumbar | 5–6 | Survival, weight loss, clinical signs, histopathology, viral load |
| Santos et al., 2014 [44] | BeAn19991 | Mouse i.c passage, HeLa cells | Mouse | BALB/c | 3- week-old | Mixed | 106.25 TCID50 *1 | Subcutaneous | dorsal lumbar | 10 | Extensive brain histopathology |
| Stubbs et al., 2021 [37] | BeAn19991 | Vero cells | Mouse | C57BL/6 | 6- week-old | Male | 106 FFU *1 | Subcutaneous | dorsal lumbar | 5 | Survival, weight loss, temperature, viral load |
| Da Silva Menegatto et al., 2023 [45] | BeAn19991 | Vero cells | Mouse | BALB/c | 3- week-old | Mixed | 106 PFU *1 | Subcutaneous | dewlap | 11 | Survival, weight loss, histopathology, neutralising antibody titres, ROS markers, viral load |
3.3. Immune-Deficient Mouse Models
| Publication | Virus | Animals | Study Design | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Strain | Passage History | Species | Strains | Knockouts | Age | Sex | Challenge Dose | Route of Infection | Inoculation Site | Group n | Primary Endpoints | |
| Pinto et al., 2015 [46] | BeAn19991 | Vero cells | Mouse | C57BL/6 | IFIT1 | 6–8-week- old | Female | 105 PFU *1 | Subcutaneous | Footpad | 8–12 | Survival, viral load, immune- phenotyping |
| Proenca- Modena et al., 2015 [47] | BeAn19991 | Vero cells | Mouse | C57BL/6 | IFNAR, IFNβ, MDA5, MAVS, IRF3 and IRF7 | 5–6-week- old | Mixed | 106 FFU *1 | Subcutaneous | Footpad | 23–40 | Survival, weight loss, histopathology, liver damage, immune- phenotyping, viral load |
| Proenca- Modena et al., 2015 [48] | BeAn19991 | Vero cells | Mouse | C57BL/6 | IFNAR, IRF5, IRF3 and IRF7, IRF3 and IRF5 and IRF7 | 5–6-week- old | Mixed | 106 FFU *1 | Subcutaneous | Footpad | 25–39 | Survival, weight loss, histopathology, liver damage, immune- phenotyping, viral load |
| de Mendonça et al., 2021 [52] | BeAn19991 | Vero cells | Mouse | AG129 | IFNAR, IFNɣ | 3- week- old | Mixed | 106 PFU *1 | Intraperitoneal | Abdomen | 15–25 | Survival, viral load, transmission confirmed by RT-qPCR |
| Gunter et al., 2024 [51] | BeAn19991-derived recombinant OROV | Vero, BSR-T7/5, A549 | Mouse | C57BL/6 B6(Cg) | IFNAR | 6- week- old | Mixed | 101 TCID50, 104 TCID50 *1 | Subcutaneous | Site not stated | 5 | Survival, weight loss, histopathology, viral load |
| Toledo-Teixeira et al., 2025 [49] | BeAn19991 | Vero cells | Mouse | C57BL/6 | IFNAR, Rag1, CD19-Cre, MyD88 | 4–6-week-old, 9–12-week-old | Mixed | 105 PFU *1 | Subcutaneous | Footpad | 3–5 | Survival, weight loss, histopathology, neutralising antibody titres, immune- phenotyping, viral load |
| Westover et al., 2025 [29] | 240023 | Vero cells | Mouse | BALB/c | IFNAR | 6–8-week- old | Mixed | 30 CCID50 *1 | Intraperitoneal | Abdomen | 4–5 | Survival, weight loss, temperature, viral load |
3.4. Non-Human Primate Models
| Publication | Virus | Animals | Study Design | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Strain | Passage History | Species | Age | Sex | Challenge Dose | Route of Infection | Inoculation Site | Group n | Primary Endpoints | |
| Yee et al., 2025 [53] | TRVL 9760 | Vero cells | Pigtail macaques | 16–19 | Male | 103 PFU 104 PFU 105 PFU | Subcutaneous | Site not stated | 4–6 | Survival, immune phenotyping, neutralising antibody titres, viral load |
| Rhesus macaques | 9–16 | Mixed | ||||||||
| Sabius African green monkeys | 5–14 | Male | ||||||||
| Vervet African green monkeys | unknown | Mixed | ||||||||
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CD | Cluster of Differentiation |
| CNS | Central Nervous System |
| Da | Dalton |
| dpi | Days Post-Infection |
| ds | Double-Stranded |
| FFU | Foci Forming Unit |
| IFNAR | Interferon Alpha Receptor |
| IFN | Interferon |
| Ig | Immunoglobulin |
| IHC | Immunohistochemistry |
| IRF | Interferon Regulatory Factor |
| IQTV | Iquitos Virus |
| LD50 | 50% Lethal Dose |
| MDDV | Madre de Dios Virus |
| MyD | Myeloid Differentiation |
| NHP | Non-Human Primate |
| OROV | Oropouche Virus |
| PCR | Polymerase Chain Reaction |
| PERDV | Perdões Virus |
| PFU | Plaque Forming Unit |
| PRNT | Plaque-Reduction Neutralisation Test |
| q | Quantitative |
| Rag | Recombination Activating Gene |
| RdRp | RNA-Dependent RNA-Polymerase |
| RNA | Ribonucleic Acid |
| RT | Reverse Transcription |
| SARS-CoV-2 | Severe Acute Respiratory Syndrome |
| SMLD50 | 50% Suckling Mouse Lethal Dose |
| TCID50 | 50% Tissue Culture Infectious Dose |
| UTR | Untranslated Region |
| Wt | Wildtype |
References
- Anderson, C.R.; Spence, L.; Downs, W.G.; Aitken, T.H. Oropouche virus: A new human disease agent from Trinidad, West Indies. Am. J. Trop. Med. Hyg. 1961, 10, 574–578. [Google Scholar] [CrossRef]
- Vasconcelos, H.B.; Nunes, M.R.; Casseb, L.M.; Carvalho, V.L.; da Silva, E.V.; Silva, M. Molecular Epidemiology of Oropouche Virus, Brazil. Emerg. Infect. Dis. 2011, 17, 800–806. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; da Rosa, A.P.A.; Gomes, M.L.C.; LeDuc, J.W.; Hoch, A.L. Transmission of Oropouche Virus from Man to Hamster by the Midge Culicoides paraensis. Science 1982, 215, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Connelly, C.R.; Kenney, J.L. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 2021, 13, 226. [Google Scholar] [CrossRef]
- Hoch, A.L.; Pinheiro, F.P.; Roberts, D.R.; Gomes, M.L. Laboratory transmission of Oropouche virus by Culex quinquefasciatus. Pan Am. Health Organ. 1987, 21, 51–61. [Google Scholar]
- Aybar, C.A.; Juri, M.J.; De Grosso, M.S.; Spinelli, G.R. Species diversity and seasonal abundance of Culicoides biting midges in northwestern Argentina. Med. Vet. Entomol 2010, 24, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.P.; Travassos da Rosa, A.P.; Travassos da Rosa, J.F.; Ishak, R.; Freitas, R.B.; Gomes, M.L.; LeDuc, J.W.; Oliva, O.F. Oropouche virus. I. A review of clinical, epidemiological, and ecological findings. Am. J. Trop. Med. Hyg. 1981, 30, 149–160. [Google Scholar] [CrossRef]
- Owen, J.; Moore, F.; Panella, N.; Edwards, N.; Bru, R.; Hughes, M.; Komar, N. Migrating Birds as Dispersal Vehicles for West Nile Virus. EcoHealth 2006, 3, 79–86. [Google Scholar] [CrossRef]
- Bingham, A.M.; Burkett-Cadena, N.D.; Hassan, H.K.; McClure, C.J.; Unnasch, T.R. Field investigations of winter transmission of eastern equine encephalitis virus in Florida. Am. J. Trop. Med. Hyg. 2014, 91, 685–693. [Google Scholar] [CrossRef]
- Calisher, C.H.; Maness, K.S.; Lord, R.D.; Coleman, P.H. Identification of two South American strains of eastern equine encephalomyelitis virus from migrant birds captured on the Mississippi delta. Am. J. Epidemiol. 1971, 94, 172–178. [Google Scholar] [CrossRef]
- Sah, R.; Srivastava, S.; Mehta, R.; Khan, S.R.; Kumar, S.; Satpathy, P.; Mohanty, A.; Ferraz, C.; Feehan, J.; Apostolopoulos, V.; et al. Oropouche fever fatalities and vertical transmission in South America: Implications of a potential new mode of transmission. Lancet Reg. Health Am. 2024, 25, 100896. [Google Scholar] [CrossRef]
- Castilletti, C.; Huits, R.; Mantovani, R.; Accordini, S.; Alladio, F.; Gobbi, F. Replication-Competent Oropouche Virus in Semen of Traveler Returning to Italy from Cuba. Emerg. Infect. Dis. 2024, 30, 2684–2686. [Google Scholar] [CrossRef]
- Romero-Alvarez, D.; Escobar, L. Oropouche fever, an emergent disease from the Americas. Microbes Infect. 2018, 20, 135–146. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Oropouche Virus Disease Cases Imported into the European Union—9 August 2024; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Elliott, R. Orthobunyaviruses: Recent genetic and structural insights. Nat. Rev. Microbiol. 2014, 12, 673–685. [Google Scholar] [CrossRef]
- Terhzaz, S.; Kerrigan, D.; Almire, F.; Szemiel, A.M.; Hughes, J.; Parvy, J.P.; Palmarini, M.; Kohl, A.; Shi, X.; Pondeville, E. NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts. Nat. Commun. 2025, 16, 1214. [Google Scholar] [CrossRef] [PubMed]
- Tilston-Lunel, N.L.; Hughes, J.; Acrani, G.O.; da Silva, D.E.; Azevedo, R.S.; Rodrigues, S.G.; Vasconcelos, P.F.; Nunes, M.R.; Elliott, R.M. Genetic analysis of members of the species Oropouche virus and identification of a novel M segment sequence. J. Gen. Virol. 2015, 96, 1636–1650. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Barrett, A.D.; Saeed, M.F.; Watts, D.M.; Russell, K.; Guevara, C.; Ampuero, J.S.; Suarez, L.; Cespedes, M.; Montgomery, J.M.; et al. Iquitos virus: A novel reassortant Orthobunyavirus associated with human illness in Peru. PLoS Negl. Trop. Dis. 2011, 5, e1315. [Google Scholar] [CrossRef]
- Travassos da Rosa, J.F.; de Souza, W.M.; Pinheiro, F.P.; Figueiredo, M.L.; Cardoso, J.F.; Acrani, G.O.; Nunes, M.R.T. Oropouche Virus: Clinical, Epidemiological, and Molecular Aspects of a Neglected Orthobunyavirus. Am. J. Trop. Med. Hyg. 2017, 96, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Briese, T.; Calisher, C.H.; Higgs, S. Viruses of the family Bunyaviridae: Are all available isolates reassortants? Virology 2013, 446, 207–216. [Google Scholar] [CrossRef]
- Gregorio Co, A.; de Mendonca, G.C.; Gatti, F.D.; de Jesus Sousa, T.; Tavares, E.A.; Nodari, J.Z. Unravelling the pathogenesis. Lancet Infect. Dis. 2025, 25, E381–E382. [Google Scholar] [CrossRef]
- Gomes Mourão, M.P.; de Melo, G.C.; Nascimento, J.; Mwangi, V.I.; Sacchetto, L.; Gardinassi, L.G.; Netto, R.L.A.; Mota, J.; Pinto, S.D.; Tavares, M.; et al. Clinical and laboratory profiles of Oropouche virus disease from the 2024 outbreak in Manaus, Brazilian Amazon. PLoS Negl. Trop. Dis. 2025, 19, e0013604. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Franks, A.; Papadopoulou, C. Oropouche Fever: A Review. Viruses 2018, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.; Satapathy, P.; Gaidhane, A.M.; Vadia, N.; Menon, S.V.; Chennakesavulu, K.; Panigrahi, R.; Bushi, G.; Singh, M.; Sah, S.; et al. Neurological Manifestations in Oropouche Virus Infection: A Systematic Review and Meta-Analysis. J. Med. Virol. 2025, 97, e70532. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization; World Health Organization. Epidemiological Update Oropouche in the Region of the Americas—13 August 2025; PAHO/WHO: Washington, DC, USA, 2025. [Google Scholar]
- Matucci, A.; Pomari, E.; Mori, A.; Accordini, S.; Gianesini, N.; Passarelli Mantovani, R.; Gobbi, F.G.; Castilletti, C.; Capobianchi, M.R. Persistence and Active Replication Status of Oropouche Virus in Different Body Sites: Longitudinal Analysis of a Traveler Infected with a Strain Spreading in Latin America. Viruses 2025, 17, 852. [Google Scholar] [CrossRef]
- Ribeiro Amorim, M.; Cornejo Pontelli, M.; Fabiano de Souza, G.; Primon Muraro, S.; de Toledo-Teixeira, D.A.; Forato, J.; Bispo-Dos-Santos, K.; Barbosa, N.S.; Cavalheiro Martini, M.; Lorencini Parise, P.; et al. Oropouche Virus Infects, Persists and Induces IFN Response in Human Peripheral Blood Mononuclear Cells as Identified by RNA PrimeFlow™ and qRT-PCR Assays. Viruses 2020, 12, 785. [Google Scholar] [CrossRef]
- Almeida, G.M.; Souza, J.P.; Mendes, N.D.; Pontelli, M.C.; Pinheiro, N.R.; Nogueira, G.O.; Cardoso, R.S.; Paiva, I.M.; Ferrari, G.D.; Veras, F.P.; et al. Neural Infection by Oropouche Virus in Adult Human Brain Slices Induces an Inflammatory and Toxic Response. Front. Neurosci. 2021, 15, 674576. [Google Scholar] [CrossRef]
- Westover, J.B.; Jung, K.H.; Rojas, I.; Bailey, K.W.; Landinez-Aponte, J.; Blumeling, G.R.; Mao, S.; Kolykhalov, A.A.; Natchus, M.G.; Painter, G.R.; et al. Effective treatment of advanced Oropouche virus, Rift Valley fever virus, and Dabie bandavirus infections with 4′-fluorouridine. mBio 2025, 16, e01467-25. [Google Scholar] [CrossRef]
- Livonesi, M.C.; de Sousa, R.L.M.; Badra, S.J.; Figueiredo, L.T.M. In vitro and in vivo studies of ribavirin action on Brazilian Orthobunyavirus. Am. J. Trop. Med. Hyg. 2006, 75, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Saivish, M.V.; Menezes, G.L.; da Silva, R.A.; de Assis, L.R.; Teixeira, I.D.S.; Fulco, U.L.; Avilla, C.M.S.; Eberle, R.J.; Santos, I.A.; Korostov, K.; et al. Acridones as promising drug candidates against Oropouche virus. Curr. Res. Microb. Sci. 2023, 23, 100217. [Google Scholar] [CrossRef]
- Menezes, G.d.L.; Saivish, M.V.; Sacchetto, L.; da Silva, G.C.D.; Teixeira, I.d.S.; Mistrão, N.F.B.; Nogueira, M.L.; Oliveira, J.I.N.; Bezerra, K.S.; da Silva, R.A.; et al. Exploring Quercetin Hydrate’s Potential as an Antiviral Treatment for Oropouche Virus. Biophysica 2023, 3, 485–500. [Google Scholar] [CrossRef]
- Lin, H.Y.; Zeng, Y.T.; Lin, C.J.; Harroun, S.G.; Anand, A.; Chang, L.; Wu, C.J.; Lin, H.J.; Huang, C.C. Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. J. Colloid Interface Sci. 2022, 15, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Yash, S.; Sarika, K.; Laxmikant, B. Favipiravir: An Effective Rna Polymerase Modulating Anti-Influenza Drug. Biosci. Biotechnol. Res. Asia 2023, 20, 465–475. [Google Scholar] [CrossRef]
- Vijukumar, A.; Kumar, A.; Kumar, H. Potential therapeutics and vaccines: Current progress and challenges in developing antiviral treatments or vaccines for Oropouche virus. Diagn. Microbiol. Infect. Dis. 2025, 111, 116699. [Google Scholar] [CrossRef]
- Tilston-Lunel, N.L.; Acarni, G.O.; Randall, R.E.; Elliott, R.M. Generation of Recombinant Oropouche Viruses Lacking the Nonstructural Protein NSm or NSs. J. Virol. 2016, 90, 2616–2627. [Google Scholar] [CrossRef]
- Stubbs, S.H.; Cornejo Pontelli, M.; Mishra, N.; Zhou, C.; dePaula Souza, J.; Mendes Viana, R.M.; Lipkin, W.I.; Knipe, D.M.; Arruda, E.; Whelan, S.P.J. Vesicular Stomatitis Virus Chimeras Expressing the Oropouche Virus Glycoproteins Elicit Protective Immune Responses in Mice. mBio 2021, 12, e0046321. [Google Scholar] [CrossRef]
- Wesselmann, K.M.; Postigo-Hidalgo, I.; Pezzi, L.; de Oliveira-Filho, E.; Fischer, C.; de Lamballerie, X.; Drexler, J.F. Emergence of Oropouche fever in Latin America: A narrative review. Lancet Infect. Dis. 2024, 24, 439–452. [Google Scholar] [CrossRef]
- Cain, M.; Ly, H. Oropouche virus: Understanding “sloth fever” disease dynamics and novel intervention strategies against this emerging neglected tropical disease. Virulence 2024, 15, 2439521. [Google Scholar] [CrossRef]
- Jurado-Cobena, E. Oropouche Virus: More Questions than Answers. Zoonoses 2024, 4, 24. [Google Scholar] [CrossRef]
- Araújo, R.; Dias, L.B.; Araújo, M.T.; Pinheiro, F.; Oliva, O.F. Ultrastructural changes in the hamster liver after experimental inoculation with Oropouche arbovirus (type BeAn 19991). Rev. Inst. Med. Trop. Sao Paulo 1978, 20, 45–54. [Google Scholar] [PubMed]
- Rodrigues, A.H.; Santos, R.I.; Arisi, G.M.; Bernardes, E.S.; Silva, M.L.; Rossi, M.A.; Lopes, M.B.; Arruda, E. Oropouche virus experimental infection in the golden hamster (Mesocrisetus auratus). Virus Res. 2011, 155, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.I.; Almeida, M.F.; Paula, F.E.; Rodrigues, A.H.; Saranzo, A.M.; Paula, A.E.; Silva, M.L.; Correa, V.M.; Acrani, G.O.; Neder, L.; et al. Experimental infection of suckling mice by subcutaneous inoculation with Oropouche virus. Virus Res. 2012, 170, 25–33. [Google Scholar] [CrossRef]
- Santos, R.I.; Bueno-Júnior, L.S.; Ruggiero, R.N.; Almeida, M.F.; Silva, M.L.; Paula, F.E.; Correa, V.M.; Arruda, E. Spread of Oropouche virus into the central nervous system in mouse. Viruses 2014, 6, 3827–3836. [Google Scholar] [CrossRef] [PubMed]
- da Silva Menegatto, M.B.; Ferraz, A.C.; Lima, R.L.S.; Almeida, L.T.; de Brito, R.C.F.; Reis, A.B.; Carneiro, C.M.; de Lima, W.G.; de Mello Silva, B.; de Magalhães, J.C.; et al. Oropouche virus infection induces ROS production and oxidative stress in liver and spleen of mice. J. Gen. Virol. 2023, 104, 001857. [Google Scholar]
- Pinto, A.K.; William, G.D.; Szretter, K.J.; White, J.P.; Proenca-Modena, J.L.; Liu, G.; Olenjnik, J.; Brien, J.D.; Ebihara, H.I.; Muhlberger, E.; et al. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. J. Virol. 2015, 89, 9465–9476. [Google Scholar] [CrossRef] [PubMed]
- Proenca-Modena, J.L.; Sesti-Costa, R.; Pinto, A.K.; Richner, J.M.; Lazear, H.M.; Lucas, T.; Hyde, J.L.; Diamond, M.S. Oropouche virus infection and pathogenesis are restricted by MAVS, IRF-3, IRF-7, and type I interferon signalling pathways in nonmyeloid cells. J. Virol. 2015, 89, 4720–4737. [Google Scholar] [CrossRef]
- Proenca-Modena, J.L.; Hyde, J.L.; Sesti-Costa, R.; Lucas, T.; Pinto, A.K.; Richner, J.M.; Gorman, M.J.; Lazear, H.M.; Diamond, M.S. Interferon-Regulatory Factor 5-Dependent Signalling Restricts Orthobunyavirus Dissemination to the Central Nervous System. J. Virol. 2015, 90, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Teixeira, D.A.; Parise, P.L.; Pereira da Silva, B.B.; Simeoni, C.L.; Vieira, A.; Forato, J.; Martini, M.C.; Amorim, M.R.; Bispo-Dos-Santos, K.; Brunetti, N.S.; et al. MyD88 signalling in B cells and antibody responses during Oropouche virus-induced neurological disease in mice. EBioMedicine 2025, 117, 105815. [Google Scholar] [CrossRef]
- Lien, C.; Fang, C.M.; Huso, D.; Livak, F.; Lu, R.; Pitha, P.M. Critical role of IRF-5 in regulation of B-cell differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 4664–4668. [Google Scholar] [CrossRef]
- Gunter, K.; Omoga, D.; Bowen, J.M.; Gonzalez, L.R.; Severt, S.; Davis, M.; Szymanski, M.; Sandusky, G.; Duprex, W.P.; Tilston-Lunel, N.L. A reporter Oropouche virus expressing ZsGreen from the M segment enables pathogenesis studies in mice. J. Virol. 2024, 98, e0089324. [Google Scholar] [CrossRef]
- de Mendonca, S.F.; Rocha, M.N.; Ferreira, F.V.; Leite, T.H.; Amadou, S.C.G.; Sucupira, P.H.F.; Marques, J.T.; Ferreira, A.G.A.; Moreira, L.A. Evaluation of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquitoes Competence to Oropouche virus Infection. Viruses 2021, 13, 755. [Google Scholar] [CrossRef]
- Yee, D.S.; Davies, J.P.; VanBlargan, L.A.; Rahmberg, A.R.; Burgomaster, K.E.; Brooks, K.; Flynn, J.K.; Shue, B.; Ortiz, A.M.; Schaughency, P.; et al. Oropouche virus efficiently replicates and is immunostimulatory in vivo in nonhuman primate species. Sci. Adv. 2025, 11, eadx9405. [Google Scholar] [CrossRef] [PubMed]
- Haddow, A.D.; Odoi, A. The Incidence Risk, Clustering, and Clinical Presentation of La Crosse Virus Infections in the Eastern United States, 2003–2007. PLoS ONE 2009, 4, e6145. [Google Scholar] [CrossRef]
- Scachetti, G.C.; Forato, J.; Claro, I.M.; Hua, X.; Salgado, B.B.; Vieira, A.; Simeoni, C.L.; Barbosa, A.R.C.; Rosa, I.L.; de Souza, G.F.; et al. Reemergence of Oropouche virus between 2023 and 2024 in Brazil. Lancet Infect. Dis. 2024, 25, 166–175. [Google Scholar] [CrossRef]
- Dowall, S.D.; Graham, V.A.; Rayner, E.; Atkinson, B.; Hall, G.; Watson, R.J.; Bosworth, A.; Bonney, L.C.; Kitchen, S.; Hewson, R. A Susceptible Mouse Model for Zika Virus Infection. PLoS Negl. Trop. Dis. 2016, 10, e0004658. [Google Scholar] [CrossRef]
- Graham, V.A.; Easterbrook, L.; Rayner, E.; Findlay-Wilson, S.; Flett, L.; Kennedy, E.; Fotheringham, S.; Kempster, S.; Almond, N.; Dowall, S. Comparison of Chikungunya Virus-Induced Disease Progression and Pathogenesis in Type-I Interferon Receptor-Deficient Mice (A129) and Two Wild-Type (129Sv/Ev and C57BL/6) Mouse Strains. Viruses 2024, 16, 1534. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731. [Google Scholar] [CrossRef]
- Gaska, J.M.; Ploss, A. Study of viral pathogenesis in humanized mice. Curr. Opin. Virol. 2015, 22, 14–20. [Google Scholar] [CrossRef]
- Horvath, A.; Abdelmalek, C.; Park, E.; Alexander, A.; Maheswaran, S.; Patel, A.; Ruan, J.; Adeyemo, A.; Li, E.; Helmicki, K.; et al. A humanized mouse model system mimics prenatal Zika infection and reveals premature differentiation of neural stem cells. Res. Sq. 2025, Preprint. [Google Scholar] [CrossRef]
- Darmuzey, M.; Verdijk, R.M.; Cremers, N.; Ferrie, M.; Hendrickx, S.; Hego, A.; Kaptein, S.J.F.; Neyts, J. Oropouche virus results in severe congenital disease in embryonic mice. BioRxiv 2025, Preprint. [Google Scholar] [CrossRef]
- Belay, B.M.; Gessese, A.T.; Kinde, M.Z.; Dagnaw, G.G. Review on the current status of Syrian hamsters as an animal model for COVID-19 transmission, pathogenesis, treatment and vaccine research. All Life 2025, 18, 2468334. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, M.Y. Application of Human Brain Organoids—Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. Int. J. Mol. Sci. 2023, 24, 12528. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Hou, K.; Liu, G.; Shi, R.; Wang, W.; Liang, G. Strategies to overcome the limitations of current organoid technology—Engineered organoids. J. Tissue Eng. 2025, 16, 20417314251319475. [Google Scholar] [CrossRef] [PubMed]
- Porwal, S.; Malviya, R.; Sridhar, S.B.; Shareef, J.; Wadhwa, T. Mysterious Oropouche virus: Transmission, symptoms, and control. Infect. Med. 2025, 4, 100177. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morley, D.; Kennedy, E.; Dowall, S. Preclinical Models of Oropouche Virus Infection and Disease. Pathogens 2025, 14, 1272. https://doi.org/10.3390/pathogens14121272
Morley D, Kennedy E, Dowall S. Preclinical Models of Oropouche Virus Infection and Disease. Pathogens. 2025; 14(12):1272. https://doi.org/10.3390/pathogens14121272
Chicago/Turabian StyleMorley, Daniel, Emma Kennedy, and Stuart Dowall. 2025. "Preclinical Models of Oropouche Virus Infection and Disease" Pathogens 14, no. 12: 1272. https://doi.org/10.3390/pathogens14121272
APA StyleMorley, D., Kennedy, E., & Dowall, S. (2025). Preclinical Models of Oropouche Virus Infection and Disease. Pathogens, 14(12), 1272. https://doi.org/10.3390/pathogens14121272

