A Novel, Broad-Spectrum, Virulent Bacteriophage Targeting Yersinia pestis Isolated from the Soil of Wild Rodent Nests in Yunnan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Bacteriophage Culture Conditions
2.2. Specimen Collection and Processing
2.3. Phage Isolation and Purification
2.4. Electron Microscopy of Plague Bacteriophages
2.5. Determination of Phage Biological Characteristics
2.5.1. Temperature and pH Stability Assays
2.5.2. Phage Ethanol Tolerance and UV Sensitivity Assays
2.5.3. Determination of the Optimal Multiplicity of Infection and Construction of the One-Step Growth Curve for the Bacteriophage
2.6. Determination of the Phage Host Range
2.7. Phage Genome Isolation and Analysis
3. Results
3.1. Isolation and Morphology of the vB_YpP_JC53 Bacteriophage
3.2. Biological Characteristics of vB_YpP_JC53
3.2.1. Stability Analysis of vB_YpP_JC53
3.2.2. Optimal Multiplicity of Infection and One-Step Growth Curve of the Bacteriophage
3.3. Host Range of vB_YpP_JC53
3.4. Whole-Genome Characterization of the Bacteriophage vB_YpP_JC53
3.5. Genomic Synteny Analysis of the Bacteriophage vB_YpP_JC53
3.6. Homology and ANI
3.7. Phylogenetic Analysis of the Bacteriophage vB_YpP_JC53
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbieri, R.; Signoli, M.; Chevé, D.; Costedoat, C.; Tzortzis, S.; Aboudharam, G.; Raoult, D.; Drancourt, M. Yersinia pestis: The Natural History of Plague. Clin. Microbiol. Rev. 2020, 34, e00044-19. [Google Scholar] [CrossRef] [PubMed]
- Butler, T. Plague into the 21st century. Clin. Infect. Dis. 2009, 49, 736–742. [Google Scholar] [CrossRef]
- Jullien, S.; de Silva, N.L.; Garner, P. Plague Transmission from Corpses and Carcasses. Emerg. Infect. Dis. 2021, 27, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Richgels, K.L.; Russell, R.E.; Bron, G.M.; Rocke, T.E. Evaluation of Yersinia pestis Transmission Pathways for Sylvatic Plague in Prairie Dog Populations in the Western U.S. EcoHealth 2016, 13, 415–427. [Google Scholar] [CrossRef]
- Andrianaivoarimanana, V.; Wagner, D.M.; Birdsell, D.N.; Nikolay, B.; Rakotoarimanana, F.; Randriantseheno, L.N.; Vogler, A.J.; Sahl, J.W.; Hall, C.M.; Somprasong, N.; et al. Transmission of antimicrobial resistant Yersinia pestis during a pneumonic plague outbreak. Clin. Infect. Dis. 2021, 74, 695–702. [Google Scholar] [CrossRef]
- Dai, R.; He, J.; Zha, X.; Wang, Y.; Zhang, X.; Gao, H.; Yang, X.; Li, J.; Xin, Y.; Wang, Y.; et al. A novel mechanism of streptomycin resistance in Yersinia pestis: Mutation in the rpsL gene. PLoS Neglected Trop. Dis. 2021, 15, e0009324. [Google Scholar] [CrossRef]
- Cote, C.K.; Biryukov, S.S.; Klimko, C.P.; Shoe, J.L.; Hunter, M.; Rosario-Acevedo, R.; Fetterer, D.P.; Moody, K.L.; Meyer, J.R.; Rill, N.O.; et al. Protection Elicited by Attenuated Live Yersinia pestis Vaccine Strains against Lethal Infection with Virulent Y. pestis. Vaccines 2021, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Demeure, C.E.; Dussurget, O.; Mas Fiol, G.; Le Guern, A.S.; Savin, C.; Pizarro-Cerdá, J. Yersinia pestis and plague: An updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun. 2019, 20, 357–370. [Google Scholar] [CrossRef]
- Garcia, E.; Elliott, J.M.; Ramanculov, E.; Chain, P.S.; Chu, M.C.; Molineux, I.J. The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J. Bacteriol. 2003, 185, 5248–5262. [Google Scholar] [CrossRef]
- Garcia, E.; Chain, P.; Elliott, J.M.; Bobrov, A.G.; Motin, V.L.; Kirillina, O.; Lao, V.; Calendar, R.; Filippov, A.A. Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 2008, 372, 85–96. [Google Scholar] [CrossRef]
- Qi, Z.; Meng, B.; Wei, X.; Li, X.; Peng, H.; Li, Y.; Feng, Q.; Huang, Y.; Zhang, Q.; Xu, X.; et al. Identification and characterization of P2-like bacteriophages of Yersinia pestis. Virus Res. 2022, 322, 198934. [Google Scholar] [CrossRef]
- Suladze, T.; Jaiani, E.; Darsavelidze, M.; Elizbarashvili, M.; Gorge, O.; Kusradze, I.; Kokashvili, T.; Lashkhi, N.; Tsertsvadze, G.; Janelidze, N.; et al. New Bacteriophages with Podoviridal Morphotypes Active against Yersinia pestis: Characterization and Application Potential. Viruses 2023, 15, 1484. [Google Scholar] [CrossRef]
- Rashid, M.H.; Revazishvili, T.; Dean, T.; Butani, A.; Verratti, K.; Bishop-Lilly, K.A.; Sozhamannan, S.; Sulakvelidze, A.; Rajanna, C. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2012, 2, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses 2021, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xi, H.; Dai, J.; Zhong, Y.; Lu, S.; Wang, T.; Yang, L.; Guan, Y.; Wang, P. The characteristics and genome analysis of the novel Y. pestis phage JC221. Virus Res. 2020, 283, 197982. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, W.; Qi, Z.; Cui, Y.; Yan, Y.; Guo, Z.; Wang, Z.; Wang, H.; Deng, H.; Xue, Y.; et al. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi. J. Gen. Virol. 2011, 92 Pt 1, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Ryu, S.; Lim, J.A. Bacteriophage cocktail LEC2-LEC10 for broad-spectrum control of pathogenic and uncharacterized Escherichia coli in fresh produce. Front. Microbiol. 2025, 16, 1594533. [Google Scholar] [CrossRef]
- Wójcicki, M.; Shymialevich, D.; Średnicka, P.; Emanowicz, P.; Ostrowska, A.; Cieślak, H.; Sokołowska, B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int. J. Mol. Sci. 2024, 25, 12930. [Google Scholar] [CrossRef]
- Li, L.; Fan, R.; Chen, Y.; Zhang, Q.; Zhao, X.; Hu, M.; Lv, Q.; Luo, Y.; Xu, X.; Cai, Y.; et al. Characterization, genome analysis, and therapeutic evaluation of a novel Salmonella phage vB_SalS_JNS02: A candidate bacteriophage for phage therapy. Poult. Sci. 2024, 103, 103845. [Google Scholar] [CrossRef]
- Am, K. Practical Advice on the One-Step Growth Curve. In Methods in Molecular Biology; Springer: Clifton, NJ, USA, 2018; Volume 1681, pp. 41–47. [Google Scholar]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adriaenssens, E.M.; Lefkowitz, E.J.; Oksanen, H.M.; Siddell, S.G.; Zerbini, F.M.; Alfenas-Zerbini, P.; Aylward, F.O.; Dempsey, D.M.; Dutilh, B.E.; et al. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2024, 169, 236. [Google Scholar] [CrossRef]
- Khan, M.A.; Islam, Z.; Barua, C.; Sarkar, M.M.; Ahmed, M.F.; Rahman, S.R. Phenotypic characterization and genomic analysis of a Salmonella phage L223 for biocontrol of Salmonella spp. in poultry. Sci. Rep. 2024, 14, 15347. [Google Scholar] [CrossRef]
- Prevelige, P.E., Jr.; Cortines, J.R. Phage assembly and the special role of the portal protein. Curr. Opin. Virol. 2018, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Roeder, G.S.; Sadowski, P.D. Bacteriophage T7 morphogenesis: Phage-related particles in cells infected with wild-type and mutant T7 phage. Virology 1977, 76, 263–285. [Google Scholar] [CrossRef]
- Evelien, M.A.; Brister, J.R. How to Name and Classify Your Phage: An Informal Guide. Viruses 2017, 9, 70. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Zhang, P.; Xu, M.; Yuan, W.; Bian, L.; Liu, Y.; Xia, J.; Leung, S.S. Phage-Derived Depolymerase as an Antibiotic Adjuvant Against Multidrug-Resistant Acinetobacter baumannii. Front. Microbiol. 2022, 13, 845500. [Google Scholar] [CrossRef]
- Shahed-Al-Mahmud, M.; Roy, R.; Sugiokto, F.G.; Islam, M.N.; Lin, M.D.; Lin, L.C.; Lin, N.T. Phage φAB6-Borne Depolymerase Combats Acinetobacter baumannii Biofilm Formation and Infection. Antibiotics 2021, 10, 279. [Google Scholar] [CrossRef]
- Lyu, D.; Duan, Q.; Duan, R.; Qin, S.; Zheng, X.; Lu, X.; Bukai, A.; Zhang, P.; Han, H.; He, Z.; et al. Symbiosis of a lytic bacteriophage and Yersinia pestis and characteristics of plague in Marmota himalayana. Appl. Environ. Microbiol. 2024, 90, e0099524. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, Y.; Yan, Y.; Du, Z.; Tan, Y.; Yang, H.; Bi, Y.; Zhang, P.; Zhou, L.; Zhou, D.; et al. Outer Membrane Proteins Ail and OmpF of Yersinia pestis Are Involved in the Adsorption of T7-Related Bacteriophage Yep-phi. J. Virol. 2018, 92, 12260–12269. [Google Scholar] [CrossRef]
- Abedon, S.T. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics 2023, 12, 245. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.; Ryu, S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: Recent advances and future trends. Crit. Rev. Food Sci. Nutr. 2023, 63, 8919–8938. [Google Scholar] [CrossRef]
- Lu, S.; Le, S.; Tan, Y.; Li, M.; Liu, C.; Zhang, K.; Huang, J.; Chen, H.; Rao, X.; Zhu, J.; et al. Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity. BMC Genom. 2014, 15, 803. [Google Scholar] [CrossRef]
- Teng, W.; Liao, B.; Chen, M.; Shu, W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol. Spectr. 2023, 11, e0214522. [Google Scholar] [CrossRef]
- Chuckran, P.F.; Flagg, C.; Propster, J.; Rutherford, W.A.; Sieradzki, E.T.; Blazewicz, S.J.; Hungate, B.; Pett-Ridge, J.; Schwartz, E.; Dijkstra, P. Edaphic controls on genome size and GC content of bacteria in soil microbial communities. Soil Biol. Biochem. 2022, 178, 108935. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z.; Hu, S.; Yu, J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol. Direct 2012, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Magaziner, S.J.; Salmond, G.P. A novel T4- and λ-based receptor binding protein family for bacteriophage therapy host range engineering. Front. Microbiol. 2022, 13, 1010330. [Google Scholar] [CrossRef]
- Romiguier, J.; Roux, C. Analytical Biases Associated with GC-Content in Molecular Evolution. Front. Genet. 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Mavrich, T.N.; Hatfull, G.F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2017, 2, 17112. [Google Scholar] [CrossRef]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef] [PubMed]





| (No.) | Species of Stains | Name of Stains | JC53 | ||
|---|---|---|---|---|---|
| 21 °C | 28 °C | 37 °C | |||
| 1 | Y. pestis (biovar 1.1N3) from wild rodent plague foci | YN1060 | ++ | ++ | ++ |
| 2 | YN1327 | ++ | ++ | ++ | |
| 3 | YN1036 | ++ | ++ | ++ | |
| 4 | YN777 | ++ | ++ | ++ | |
| 5 | YN459 | ++ | ++ | ++ | |
| 6 | YN462 | ++ | ++ | ++ | |
| 7 | YN1075 | ++ | ++ | ++ | |
| 8 | YN1323 | ++ | ++ | ++ | |
| 9 | YN400 | ++ | ++ | ++ | |
| 10 | YN480 | ++ | ++ | ++ | |
| 11 | YN794 | ++ | ++ | ++ | |
| 12 | YN466 | ++ | ++ | ++ | |
| 13 | YN414 | ++ | ++ | ++ | |
| 14 | YN1077 | ++ | ++ | ++ | |
| 15 | YN402 | ++ | ++ | ++ | |
| 16 | Y. pestis (biovar 1.ORI2) from house mouse plague foci | YN1938 | ++ | ++ | ++ |
| 17 | YN1827 | ++ | ++ | ++ | |
| 18 | YN1377 | ++ | ++ | ++ | |
| 19 | YN1788 | ++ | ++ | ++ | |
| 20 | YN2445 | ++ | ++ | ++ | |
| 21 | YN1481 | ++ | ++ | ++ | |
| 22 | YN727 | ++ | ++ | ++ | |
| 23 | YN1483 | ++ | ++ | ++ | |
| 24 | YN1394 | ++ | ++ | ++ | |
| 25 | YN1843 | ++ | ++ | ++ | |
| 26 | YN1942 | ++ | ++ | ++ | |
| 27 | YN623 | ++ | ++ | ++ | |
| 28 | YN1666 | ++ | ++ | ++ | |
| 29 | YN944 | ++ | ++ | ++ | |
| 30 | YN2403 | ++ | ++ | ++ | |
| 31 | YN404 | ++ | ++ | ++ | |
| 32 | Yersinia pseudotuberculosis | Y. pseudotuberculosis I | - | + | ++ |
| 33 | Y. pseudotuberculosis II | ++ | ++ | ++ | |
| 34 | Y. pseudotuberculosis III | ++ | ++ | ++ | |
| 35 | Y. pseudotuberculosis IV | ++ | ++ | + | |
| 36 | Y. pseudotuberculosis V | - | - | - | |
| 37 | Y. pseudotuberculosis VI | ++ | + | ++ | |
| 38 | Shigella | S. sonnei serotype I | + | - | - |
| 39 | S. sonnei serotype II | - | - | + | |
| 40 | S. flexneri 1a | - | - | - | |
| 41 | S. flexneri 2a | - | - | - | |
| 42 | S. flexneri 3a | - | - | - | |
| 43 | S. flexneri 4a | - | - | - | |
| 44 | S. flexneri variant X | - | - | - | |
| 45 | S. boydii | - | - | - | |
| 46 | S. dysenteriae | - | - | - | |
| 47 | S. dysenteriae 1 | - | - | - | |
| 48 | S. dysenteriae 2 | - | - | - | |
| 49 | Y. enterocolitica | 52202 | + | - | - |
| 50 | 52301 | - | - | - | |
| 51 | Enterobacteriaceae | E. aerogenes 11 | - | - | - |
| 52 | P. stuartii | - | - | - | |
| 53 | P. alcalifaciens | - | - | - | |
| 54 | E. cloacae 138 | - | - | - | |
| 55 | E. cloacae | - | - | - | |
| 56 | E. albertii | - | - | - | |
| 57 | E. cloacae 18 | - | - | - | |
| 58 | E. faecium 16 | - | - | - | |
| 59 | E. aerogenes 9 | - | - | - | |
| 60 | E. faecium 5 | - | - | - | |
| 61 | E. coli 1040 | - | - | - | |
| 62 | E. coli 1095 | - | - | - | |
| 63 | E. coli 59 | - | - | - | |
| 64 | E. coli 41 | - | - | - | |
| 65 | E. coli H | - | - | - | |
| 66 | Klebsiella spp. | K. pneumoniae | - | - | - |
| 67 | K. aerogenes 241 | - | - | - | |
| 68 | K. oxytoca 29 | - | - | - | |
| 69 | γ-Proteobacteria | P. putida | - | - | - |
| 70 | S. maltophilia | - | - | - | |
| 71 | A. hydrophila | - | - | - | |
| 72 | P. aeruginosa | - | - | - | |
| 73 | Acinetobacter | A. baumannii 4 | - | - | - |
| 74 | A. baumannii 33 | - | - | - | |
| 75 | Pantoea | P. spp. 1 | - | - | - |
| 76 | P. agglomerans 49 | - | - | - | |
| 77 | Salmonella. spp. | S. Typhi 25 | - | - | - |
| 78 | S. paratyphi B | - | - | - | |
| 79 | Serratia spp. | S. marcescens | - | - | - |
| 80 | Proteus spp. | P. mirabilis | - | - | - |
| 81 | Burkholderia spp. | B. cepacia | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zhong, Y.; Liu, P.; Mao, C.; Zhang, H.; Shi, L.; Zi, S.; Qin, X.; Shao, Z.; Cao, R.; et al. A Novel, Broad-Spectrum, Virulent Bacteriophage Targeting Yersinia pestis Isolated from the Soil of Wild Rodent Nests in Yunnan Province, China. Pathogens 2025, 14, 1195. https://doi.org/10.3390/pathogens14121195
Long Y, Zhong Y, Liu P, Mao C, Zhang H, Shi L, Zi S, Qin X, Shao Z, Cao R, et al. A Novel, Broad-Spectrum, Virulent Bacteriophage Targeting Yersinia pestis Isolated from the Soil of Wild Rodent Nests in Yunnan Province, China. Pathogens. 2025; 14(12):1195. https://doi.org/10.3390/pathogens14121195
Chicago/Turabian StyleLong, Ying, Youhong Zhong, Pan Liu, Chunpeng Mao, Haipeng Zhang, Liyuan Shi, Shaogui Zi, Xinyu Qin, Zongti Shao, Rongji Cao, and et al. 2025. "A Novel, Broad-Spectrum, Virulent Bacteriophage Targeting Yersinia pestis Isolated from the Soil of Wild Rodent Nests in Yunnan Province, China" Pathogens 14, no. 12: 1195. https://doi.org/10.3390/pathogens14121195
APA StyleLong, Y., Zhong, Y., Liu, P., Mao, C., Zhang, H., Shi, L., Zi, S., Qin, X., Shao, Z., Cao, R., Liu, H., Gao, Q., Yang, L., Chen, Y., Shen, Y., & Wang, P. (2025). A Novel, Broad-Spectrum, Virulent Bacteriophage Targeting Yersinia pestis Isolated from the Soil of Wild Rodent Nests in Yunnan Province, China. Pathogens, 14(12), 1195. https://doi.org/10.3390/pathogens14121195

