Epidemiologic Characteristics Determining the Choice of Direct-Acting Antiviral Therapy in HCV Patients: An Italian Real-World Evidence Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design, Study Population, and Patient Cohorts’ Definition
2.3. Analysis of Demographic and Clinical Characteristics of Patients
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AISF | Italian Association for the Study of the Liver |
| ATC | Anatomical Therapeutic Chemical |
| CCI | Charlson Comorbidity Index |
| CYP | Cytochrome P450 |
| DAAs | Direct-Acting Antivirals |
| DDIs | Drug–Drug Interactions |
| DRG | Diagnosis-Related Group |
| EASL | European Association for the Study of the Liver |
| GLE | Glecaprevir |
| GLE/PIB | Glecaprevir/Pibrentasvir |
| HCV | Hepatitis C Virus |
| HIV | Human Immunodeficiency Virus |
| ICD-9-CM | International Classification of Diseases, Ninth Revision, Clinical Modification |
| NHS | National Health Service |
| NS3/4A | Nonstructural protein 3/4A (HCV protease) |
| NS5A | Nonstructural protein 5A (HCV replication complex) |
| NS5B | Nonstructural protein 5B (RNA-dependent RNA polymerase) |
| OTC | Over-the-Counter |
| Peg-IFN–RBV | Pegylated Interferon Ribavirin |
| pDAAs | Pangenotypic Direct-Acting Antivirals |
| PIB | Pibrentasvir |
| SD | Standard Deviation |
| SOF | Sofosbuvir |
| SOF/VEL | Sofosbuvir/Velpatasvir |
| SVR | Sustained Virological Response |
| WHO | World Health Organization |
References
- World Health Organization. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections. 2021. Available online: https://www.who.int/publications/i/item/9789240027077 (accessed on 21 July 2025).
- Spada, E.; Marcantonio, C.; Vescio, M.F.; Marascio, N.; Villano, U.; Pisani, G.; Tritarelli, E.; Bruni, R.; Barreca, G.S.; Torti, C.; et al. Viral Hepatitis ISS-UNICZ study group Changing epidemiology of hepatitis C in Italy: A population-based survey in a historically high endemic area. Minerva Medica 2023, 114, 191–202. [Google Scholar] [CrossRef]
- Nevola, R.; Messina, V.; Marrone, A.; Coppola, N.; Rescigno, C.; Esposito, V.; Sangiovanni, V.; Claar, E.; Pisaturo, M.; Fusco, F.M.; et al. Epidemiology of HCV and HBV in a High Endemic Area of Southern Italy: Opportunities from the COVID-19 Pandemic-Standardized National Screening or One Tailored to Local Epidemiology? Biology 2022, 11, 609. [Google Scholar] [CrossRef]
- Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 533–550. [Google Scholar] [CrossRef]
- Chung, R.T.; Baumert, T.F. Curing chronic hepatitis C—The arc of a medical triumph. N. Engl. J. Med. 2014, 370, 1576–1578. [Google Scholar] [CrossRef]
- Lange, C.M.; Jacobson, I.M.; Rice, C.M.; Zeuzem, S. Emerging therapies for the treatment of hepatitis C. EMBO Mol. Med. 2014, 6, 4–15. [Google Scholar] [CrossRef]
- Lam, B.P.; Jeffers, T.; Younoszai, Z.; Fazel, Y.; Younossi, Z.M. The changing landscape of hepatitis C virus therapy: Focus on interferon-free treatment. Ther. Adv. Gastroenterol. 2015, 8, 298–312. [Google Scholar] [CrossRef]
- Shiffman, M.L.; Suter, F.; Bacon, B.R.; Nelson, D.; Harley, H.; Solá, R.; Shafran, S.D.; Barange, K.; Lin, A.; Soman, A.; et al. Peginterferon alfa-2a and ribavirin for 16 or 24 weeks in HCV genotype 2 or 3. N. Engl. J. Med. 2007, 357, 124–134. [Google Scholar] [CrossRef]
- Pawlotsky, J.M. New hepatitis C therapies: The toolbox, strategies, and challenges. Gastroenterology 2014, 146, 1176–1192. [Google Scholar] [CrossRef]
- Bourlière, M.; Pietri, O.; Castellani, P.; Oules, V.; Adhoute, X. Sofosbuvir, velpatasvir and voxilaprevir: A new triple combination for hepatitis C virus treatment. One pill fits all? Is it the end of the road? Ther. Adv. Gastroenterol. 2018, 11, 175628481881235. [Google Scholar] [CrossRef]
- Curry, M.P.; O’lEary, J.G.; Bzowej, N.; Muir, A.J.; Korenblat, K.M.; Fenkel, J.M.; Reddy, K.R.; Lawitz, E.; Flamm, S.L.; Schiano, T.; et al. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis. N. Engl. J. Med. 2015, 373, 2618–2628. [Google Scholar] [CrossRef]
- Zhuang, L.; Li, J.; Zhang, Y.; Ji, S.; Xing, H. Real-world effectiveness of sofosbuvir/velpatasvir, glecaprevir/pibrentasvir, and sofosbuvir/velpatasvir/voxilaprevir against genotype 3 hepatitis C virus infection: A systematic review and meta-analysis. Front. Gastroenterol. 2025, 4, 1511150. [Google Scholar] [CrossRef]
- Chang, K.-C.; Tung, S.-Y.; Wei, K.-L.; Shen, C.-H.; Hsieh, Y.-Y.; Chen, W.-M.; Chen, Y.-H.; Chen, C.-H.; Yen, C.-W.; Xu, H.-W.; et al. Real-world efficacy and safety of pangenotypic direct-acting antivirals against hepatitis C virus infection in Taiwan. Sci. Rep. 2021, 11, 13543. [Google Scholar] [CrossRef]
- Ahmed, R.; Kareem, R.; Venkatesan, N.; Botleroo, R.A.; Ogeyingbo, O.D.; Bhandari, R.; Gyawali, M.; Elshaikh, A.O. Sofosbuvir/velpatasvir: A promising treatment for chronic hepatitis C virus infection. Cureus 2021, 13, e17237. [Google Scholar] [CrossRef]
- Zoratti, M.J.; Siddiqua, A.; Morassut, R.E.; Zeraatkar, D.; Chou, R.; van Holten, J.; Xie, F.; Druyts, E. Pangenotypic direct acting antivirals for the treatment of chronic hepatitis C virus infection: A systematic literature review and meta-analysis. EClinicalMedicine 2020, 18, 100237. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, P. Efficacy and safety of glecaprevir/pibrentasvir in patients with chronic HCV infection. J. Clin. Transl. Hepatol. 2021, 9, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, I.M.; Bourgeois, S.; Mathurin, P.; Thuluvath, P.; Ryder, S.D.; Gerken, G.; Hernandez, C.; Vanstraelen, K.; Scherbakovsky, S.; Osinusi, A.; et al. The tolerability of sofosbuvir/velpatasvir for 12 weeks in patients treated in the ASTRAL 1, 2 and 3 studies: A pooled safety analysis. J. Viral Hepat. 2023, 30, 448–454. [Google Scholar] [CrossRef]
- Margusino-Framiñán, L.; Cid-Silva, P.; Rotea-Salvo, S.; Mena-De-Cea, Á.; Suárez-López, F.; Vázquez-Rodríguez, P.; Delgado-Blanco, M.; Sanclaudio-Luhia, A.I.; Martín-Herranz, I.; Castro-Iglesias, Á. Effectiveness and safety of sofosbuvir/velpatasvir ± ribavirin vs glecaprevir/pibrentasvir in genotype 3 hepatitis C virus infected patients. Eur. J. Hosp. Pharm. 2020, 27, e41–e47. [Google Scholar] [CrossRef]
- Santander Ballestín, S.; Gómez Martín, D.; Lorente Pérez, S.; Luesma Bartolomé, M.J. Hepatitis C: A pharmacological therapeutic update. J. Clin. Med. 2021, 10, 1568. [Google Scholar] [CrossRef]
- Kondili, L.A.; Gamkrelidze, I.; Blach, S.; Marcellusi, A.; Galli, M.; Petta, S.; Puoti, M.; Vella, S.; Razavi, H.; Craxi, A.; et al. Optimization of hepatitis C virus screening strategies by birth cohort in Italy. Liver Int. 2020, 40, 1545–1555. [Google Scholar] [CrossRef]
- Kiser, J.J.; Burton, J.R.; Everson, G.T. Drug-drug interactions during antiviral therapy for chronic hepatitis C. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 596–606. [Google Scholar] [CrossRef]
- Soriano, V.; Labarga, P.; Barreiro, P.; Fernandez-Montero, J.V.; de Mendoza, C.; Esposito, I.; Benítez-Gutiérrez, L.; Peña, J.M. Drug interactions with new hepatitis C oral drugs. Expert Opin. Drug Metab. Toxicol. 2015, 11, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Kondili, L.A.; Gaeta, G.B.; Brunetto, M.R.; Di Leo, A.; Iannone, A.; Santantonio, T.A.; Giammario, A.; Raimondo, G.; Filomia, R.; Coppola, C.; et al. Incidence of DAA failure and the clinical impact of retreatment in real-life patients treated in the advanced stage of liver disease: Interim evaluations from the PITER network. PLoS ONE 2017, 12, e0185728. [Google Scholar] [CrossRef]
- Negro, F.; Forton, D.; Craxì, A.; Sulkowski, M.S.; Feld, J.J.; Manns, M.P. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology 2015, 149, 1345–1360. [Google Scholar] [CrossRef]
- Zignego, A.L.; Ferri, C.; Pileri, S.A.; Caini, P.; Bianchi, F.B.; Italian Association of the Study of Liver Commission on Extrahepatic Manifestations of HCV Infection. Extrahepatic manifestations of Hepatitis C Virus infection: A general overview and guidelines for a clinical approach. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2007, 39, 2–17. [Google Scholar] [CrossRef]
- Mangia, A.; Scaglione, F.; Toniutto, P.; Pirisi, M.; Coppola, N.; Di Perri, G.; Alvarez Nieto, G.; Calabrese, S.; Hernandez, C.; Perrone, V.; et al. Drug-Drug Interactions in Italian Patients with Chronic Hepatitis C Treated with Pangenotypic Direct Acting Agents: Insights from a Real-World Study. Int. J. Environ. Res. Public Health 2021, 18, 7144. [Google Scholar] [CrossRef]
- Fagiuoli, S.; Toniutto, P.; Coppola, N.; Ancona, D.D.; Andretta, M.; Bartolini, F.; Ferrante, F.; Lupi, A.; Palcic, S.; Rizzi, F.V.; et al. Italian real-world analysis of the impact of polypharmacy and aging on the risk of multiple drug-drug interactions (DDIs) in HCV patients treated with pangenotypic direct-acting antivirals (pDAA). Ther. Clin. Risk Manag. 2023, 19, 57–65. [Google Scholar] [CrossRef]
- Curry, M.P.; Flamm, S.L.; Milligan, S.; Tsai, N.; Wick, N.; Younossi, Z.; Afdhal, N.H. Prevalence of drug-drug interactions with pangenotypic direct-acting antivirals for hepatitis C and real-world care management in the United States: A retrospective observational study. J. Manag. Care Spec. Pharm. 2021, 27, 1239–1248. [Google Scholar] [CrossRef]
- Di Perri, G.; Cariti, G. Drug-drug interactions in anti-HCV therapy: A comparison among options available in Italy. Infez. Med. 2019, 27, 239–250. [Google Scholar]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Agenzia Italiana del Farmaco (AIFA). Determina n. 780/2017 del 21 Aprile 2017 “Epclusa”. 2017. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2017-04-26&atto.codiceRedazionale=17A02903 (accessed on 21 July 2025).
- Agenzia Italiana del Farmaco (AIFA). Determina n. 1612/2017 del 25 Settembre 2017 “Maviret”. 2017. Available online: https://www.aifa.gov.it/documents/20142/241028/Determina_1612-2017_Maviret.pdf (accessed on 21 July 2025).
- Kosloski, M.P.; Bow, D.A.; Kikuchi, R.; Wang, H.; Kim, E.J.; Marsh, K.; Mensa, F.; Kort, J.; Liu, W. Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvir. J. Pharmacol. Exp. Ther. 2019, 370, 278–287. [Google Scholar] [CrossRef]
- University of Liverpool. Hepatitis Drug Interactions. (n.d.). Available online: https://www.hep-druginteractions.org/interactions/2640/all (accessed on 21 July 2025).
- Turnes, J.; Hezode, C.; Hernandez, C.; Mangia, A. Letter: Now is the time to remove complexity from HCV guidelines to ensure that elimination remains a priority. Aliment. Pharmacol. Ther. 2020, 52, 1096–1097. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Documento di Indirizzo dell’Associazione Italiana per lo Studio del Fegato per l’uso Razionale dei Farmaci Anti-HCV Disponibili in Italia. Available online: https://www.webaisf.org/documento-hcv-2020/ (accessed on 21 July 2025).
- Andreoni, M.; Coppola, N.; Craxì, A.; Fagiuoli, S.; Gardini, I.; Mangia, A.; Nava, F.A.; Pasqualetti, P. Meet-Test-Treat for HCV management: Patients’ and clinicians’ preferences in hospital and drug addiction services in Italy. BMC Infect. Dis. 2022, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Nasiri, M.; Koroglu, A.; Bliss, S.; Davis, M.; McNutt, L.-A.; Miller, C. A cross-sectional study comparing the frequency of drug interactions after adding simeprevir- or sofosbuvir-containing therapy to medication profiles of hepatitis C monoinfected patients. Infect. Dis. Ther. 2015, 4, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Polepally, A.R.; King, J.R.; Ding, B.; Shuster, D.L.; Dumas, E.O.; Khatri, A.; Chiu, Y.-L.; Podsadecki, T.J.; Menon, R.M. Drug-drug interactions between the anti-hepatitis C virus 3D regimen of ombitasvir, paritaprevir/ritonavir, and dasabuvir and eight commonly used medications in healthy volunteers. Clin. Pharmacokinet. 2016, 55, 1003–1014. [Google Scholar] [CrossRef]
- Höner Zu Siederdissen, C.; Maasoumy, B.; Marra, F.; Deterding, K.; Port, K.; Manns, M.P.; Cornberg, M.; Back, D.; Wedemeyer, H. Drug-drug interactions with novel all oral interferon-free antiviral agents in a large real-world cohort. Clin. Infect. Dis. 2016, 62, 561–567. [Google Scholar] [CrossRef]
- Aghemo, A.; Persico, M.; D’aMbrosio, R.; Andreoni, M.; Villa, E.; Bhagat, A.; Gallinaro, V.; Gualberti, G.; Merolla, R.C.D.; Gasbarrini, A.; et al. Safety and effectiveness of 8 weeks of glecaprevir/pibrentasvir in challenging HCV patients: Italian data from the CREST study. PLoS ONE 2023, 18, e0280165. [Google Scholar]
- Cornberg, M.; Ahumada, A.; Aghemo, A.; Andreoni, M.; Bhagat, A.; Butrymowicz, I.; Carmiel, M.; Chodick, G.; Conway, B.; Song, Y.; et al. Safety and effectiveness using 8 weeks of glecaprevir/pibrentasvir in HCV-infected treatment-naïve patients with compensated cirrhosis: The CREST study. Adv. Ther. 2022, 39, 3146–3158. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Erren, P.; Naumann, U.; Rieke, A.; Stoehr, A.; Zimmermann, T.; Lohmann, K.; König, B.; Mauss, S. Glecaprevir/pibrentasvir is safe and effective in hepatitis C patients with cirrhosis: Real-world data from the German Hepatitis C-Registry. Liver Int. 2021, 41, 949–955. [Google Scholar] [CrossRef]
- Klinker, H.; Naumann, U.; Rössle, M.; Berg, T.; Bondin, M.; Lohmann, K.; Koenig, B.; Zeuzem, S.; Cornberg, M. Glecaprevir/pibrentasvir for 8 weeks in patients with compensated cirrhosis: Safety and effectiveness data from the German Hepatitis C-Registry. Liver Int. 2021, 41, 1518–1522. [Google Scholar] [CrossRef]
- Italian Medicines Agency (AIFA). AIFA Registers for Monitoring Anti-HCV Drugs. Available online: https://www.aifa.gov.it/en/aggiornamento-epatite-c (accessed on 21 July 2025).
- Kondili, L.A.; Quaranta, M.G.; Cavalletto, L.; Calvaruso, V.; Ferrigno, L.; D’Ambrosio, R.; Simonelli, I.; Brancaccio, G.; Raimondo, G.; Brunetto, M.R.; et al. PITER Collaborating Investigators Profiling the risk of hepatocellular carcinoma after long-term HCV eradication in patients with liver cirrhosis in the PITER cohort. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2023, 55, 907–917. [Google Scholar] [CrossRef]
- Elshafie, S.; Trivedi-Kapoor, R.; Ebell, M. Safety and efficacy of sofosbuvir-based medication regimens with and without ribavirin in hepatitis C patients: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2022, 47, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Von den Hoff, D.W.; Berden, F.A.C.; Drenth, J.P.H.; Schellekens, A.F.A.; HepNed, NISPA. Implementation of a decentralized hepatitis C care pathway for people who use drugs in Dutch addiction care: Study protocol for the Hepatitis C: Chain of addiction care (CAC) project. Addict. Sci. Clin. Pract. 2022, 17, 67. [Google Scholar] [CrossRef]
- Turnes, J.; García-Herola, A.; Morillo-Verdugo, R.; Méndez, M.; Hernández, C.; Sicras-Mainar, A. Impact of potential multiple drug-drug interactions on the adverse event profile of patients with hepatitis C treated with pangenotypic direct-acting antivirals in Spain. Rev. Española Sanid. Penit. 2024, 26, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, M.; Peng, C.; Hsieh, T.; Huang, Y.; Su, W.; Cheng, P.; Lin, C.; Lo, C.; Chen, C.; et al. Comorbidities, concomitant medications and potential drug-drug interactions with interferon-free direct-acting antiviral agents in hepatitis C patients in Taiwan. Aliment. Pharmacol. Ther. 2018, 48, 1290–1300. [Google Scholar] [CrossRef]
- Sicras Mainar, A.; Navarro Artieda, R.; Hernández, I.; Morillo, R. Prevalence of the potential drug-drug interactions between pangenotypic direct-acting antivirals and the concomitant medications associated with patients with chronic hepatitis C virus infection in Spain. Gastroenterol. Hepatol. 2019, 42, 465–475. [Google Scholar] [CrossRef]
- Zhuang, L.; Li, J.; Zhang, Y.; Ji, S.; Li, Y.; Zhao, Y.; Li, B.; Li, W.; Quan, M.; Duan, Y.; et al. Real-World Effectiveness of Direct-Acting Antiviral Regimens against Hepatitis C Virus (HCV) Genotype 3 Infection: A Systematic Review and Meta-Analysis. Ann. Hepatol. 2021, 23, 100268. [Google Scholar] [CrossRef]
- Yamana, Y.; Kanda, T.; Matsumoto, N.; Honda, M.; Kumagawa, M.; Sasaki, R.; Kanezawa, S.; Mizutani, T.; Yamagami, H.; Masuzaki, R.; et al. Efficacy of Glecaprevir/Pibrentasvir for Real-World HCV Infected Patients in the Northern Part of Tokyo, Japan. J. Clin. Med. 2021, 10, 5529. [Google Scholar] [CrossRef]
- Takehara, T.; Sakamoto, N.; Nishiguchi, S.; Ikeda, F.; Tatsumi, T.; Ueno, Y.; Yatsuhashi, H.; Takikawa, Y.; Kanda, T.; Sakamoto, M.; et al. Efficacy and safety of sofosbuvir-velpatasvir with or without ribavirin in HCV-infected Japanese patients with decompensated cirrhosis: An open-label phase 3 trial. J. Gastroenterol. 2019, 54, 87–95. [Google Scholar] [CrossRef]
- Italian Platform for the Study of Viral Hepatitis Therapies—PITER. Progetto PITER—Slide e Materiali. (n.d.). Available online: https://www.progettopiter.it/slide/ (accessed on 16 July 2025).
- Marcellusi, A.; Viti, R.; Kondili, L.A.; Rosato, S.; Vella, S.; Mennini, F.S.; PITER Collaborating group. Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data. PharmacoEconomics 2019, 37, 255–266. [Google Scholar] [CrossRef]
- Marcellusi, A.; Mennini, F.S.; Andreoni, M.; Kondili, L.A.; PITER collaboration study group. Screening strategy to advance HCV elimination in Italy: A cost-consequence analysis. Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 2024, 25, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Mennini, F.S.; Marcellusi, A.; Robbins Scott, S.; Montilla, S.; Craxi, A.; Buti, M.; Gheorghe, L.; Ryder, S.; Kondili, L.A. The impact of direct acting antivirals on hepatitis C virus disease burden and associated costs in four european countries. Liver Int. Off. J. Int. Assoc. Study Liver 2021, 41, 934–948. [Google Scholar] [CrossRef] [PubMed]

| Overall | GLE/PIB-Treated | SOF/VEL-Treated | p | |
|---|---|---|---|---|
| N. of patients, N (%) | 5565 | 2735 (49%) | 2830 (51%) | |
| Male sex, N (%) | 3384 (60.8%) | 1641 (60.0%) | 1743 (61.6%) | 0.224 |
| Age, years, mean ± SD | 59.2 ± 15.0 | 57.6 ± 14.9 | 60.8 ± 15.0 | <0.001 |
| 18–35 years old, N (%) | 304 (5.5%) | 150 (6.6%) | 156 (4.4%) | <0.001 |
| 36–55 years old, N (%) | 2188 (39.3%) | 1075 (42.3%) | 1112 (36.5%) | |
| ≥56 years old, N (%) | 3073 (55.2%) | 1510 (51.2%) | 1562 (59.2%) | |
| CCI, mean ± SD | 0.5 ± 1.0 | 0.4 ± 0.9 | 0.6 ± 1.1 | <0.001 |
| CCI = 0 | 3964 (71.2%) | 1947 (74.9%) | 2015 (67.7%) | <0.001 |
| CCI = 1–2 | 1248 (22.4%) | 613 (20.3%) | 634 (24.5%) | |
| CCI = 3–4 | 301 (5.4%) | 148 (4.0%) | 153 (6.8%) | |
| CCI ≥ 5 | 52 (0.9%) | 25 (0.9%) | 25 (1.0%) | |
| CVD | 398 (7.2%) | 183 (6.7%) | 215 (7.6%) | 0.157 |
| Diabetes | 683 (12.3%) | 287 (10.5%) | 396 (14.0%) | <0.001 |
| Drug addiction | 117 (2.1%) | 52 (1.9%) | 65 (2.3%) | 0.224 |
| Mental disorders | 886 (15.9%) | 386 (14.1%) | 501 (17.7%) | <0.001 |
| Tumors | 558 (10.0%) | 213 (7.8%) | 345 (12.2%) | <0.001 |
| Cirrhosis | 665 (11.9%) | 222 (8.1%) | 444 (15.7%) | <0.001 |
| Overall (N = 5565) | GLE/PIB-Treated (N = 2735) | SOF/VEL-Treated (N = 2830) | p | |
|---|---|---|---|---|
| A. Hospitalizations, N (%) | ||||
| Hepatobiliary system and pancreas | 735 (13.2%) | 282 (10.3%) | 453 (16.0%) | <0.001 |
| Musculoskeletal system and connective tissue | 695 (12.5%) | 337 (12.3%) | 358 (12.7%) | 0.711 |
| Circulatory system | 495 (8.9%) | 222 (8.1%) | 273 (9.6%) | <0.050 |
| Digestive system | 465 (8.4%) | 205 (7.5%) | 260 (9.2%) | <0.050 |
| Respiratory system | 332 (6.0%) | 156 (5.7%) | 176 (6.2%) | 0.658 |
| Nervous system | 259 (4.7%) | 115 (4.2%) | 144 (5.1%) | 0.118 |
| Skin, subcutaneous tissue, and breast | 255 (4.6%) | 122 (4.5%) | 133 (4.7%) | 0.670 |
| Kidney and urinary tract | 226 (4.1%) | 142 (5.2%) | - * | - |
| Ear, nose, mouth, and throat | 194 (3.5%) | 94 (3.4%) | 100 (3.5%) | 0.844 |
| Mental diseases and disorders | 167 (3.0%) | - * | 116 (4.1%) | - |
| B. Exemption codes, N (%) | ||||
| Chronic hepatitis | 2151 (38.7%) | 1102 (40.3%) | 1049 (37.1%) | <0.050 |
| Hypertension | 566 (10.1%) | 234 (8.5%) | 332 (11.8%) | <0.001 |
| Diabetes mellitus | 390 (7.0%) | 149 (5.4%) | 241 (8.5%) | <0.001 |
| Malignant neoplastic diseases | 377 (6.8%) | 153 (5.6%) | 224 (7.9%) | <0.001 |
| Dependence on drug, psychotropic, and alcohol substances | 363 (6.5%) | 174 (6.4%) | 189 (6.7%) | 0.633 |
| HIV infection | 192 (3.5%) | 56 (2.0%) | 136 (4.8%) | <0.001 |
| Liver cirrhosis, biliary cirrhosis | 169 (3.0%) | 36 (1.3%) | 133 (4.7%) | <0.001 |
| Circulatory system diseases | 128 (2.3%) | 48 (1.8%) | 80 (2.8%) | <0.010 |
| Congenital hypothyroidism, severe acquired hypothyroidism | 70 (1.3%) | 35 (1.3%) | 35 (1.2%) | 0.886 |
| Chronic renal failure | 52 (0.9%) | 41 (1.5%) | - ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, N.; Conti, F.; Rosato, V.; Gallo, P.; Gitto, S.; Riglietta, M.; Frigerio, F.; Perrone, V.; Veronesi, C.; Cappuccilli, M.; et al. Epidemiologic Characteristics Determining the Choice of Direct-Acting Antiviral Therapy in HCV Patients: An Italian Real-World Evidence Study. Pathogens 2025, 14, 1177. https://doi.org/10.3390/pathogens14111177
Pugliese N, Conti F, Rosato V, Gallo P, Gitto S, Riglietta M, Frigerio F, Perrone V, Veronesi C, Cappuccilli M, et al. Epidemiologic Characteristics Determining the Choice of Direct-Acting Antiviral Therapy in HCV Patients: An Italian Real-World Evidence Study. Pathogens. 2025; 14(11):1177. https://doi.org/10.3390/pathogens14111177
Chicago/Turabian StylePugliese, Nicola, Fabio Conti, Valerio Rosato, Paolo Gallo, Stefano Gitto, Marco Riglietta, Francesca Frigerio, Valentina Perrone, Chiara Veronesi, Maria Cappuccilli, and et al. 2025. "Epidemiologic Characteristics Determining the Choice of Direct-Acting Antiviral Therapy in HCV Patients: An Italian Real-World Evidence Study" Pathogens 14, no. 11: 1177. https://doi.org/10.3390/pathogens14111177
APA StylePugliese, N., Conti, F., Rosato, V., Gallo, P., Gitto, S., Riglietta, M., Frigerio, F., Perrone, V., Veronesi, C., Cappuccilli, M., Degli Esposti, L., Mangia, A., & Kondili, L. A. (2025). Epidemiologic Characteristics Determining the Choice of Direct-Acting Antiviral Therapy in HCV Patients: An Italian Real-World Evidence Study. Pathogens, 14(11), 1177. https://doi.org/10.3390/pathogens14111177

