Can Oncogenic Animal Viruses Pose a Threat to Humans?
Abstract
1. Introduction
2. Oncogenic Viruses in Animals and Animal Models of Oncogenic Virus-Induced Cancers
3. Potential Risk of Transmission to Humans
3.1. Biological Barriers and Conditions Facilitating Spillover
3.2. Historical and Contemporary Evidence of Cross-Species Transmission
Additional Considerations: Historical and Emerging Biotechnological Contexts
3.3. Factors Increasing the Likelihood of Viral Adaptation and Transmission
4. Advances in Molecular Diagnostics and Surveillance
4.1. Molecular Techniques for Detecting Oncogenic Viruses
4.2. Epidemiological Surveillance of Zoonotic Oncogenic Viruses
5. Prevention Strategies and Public Health Considerations
5.1. Preventing Transmission of Oncogenic Animal Viruses
5.2. One Health Approach to Mitigating Viral Risks
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogolyubova, A.V. Human Oncogenic Viruses: Old Facts and New Hypotheses. Mol. Biol. 2019, 53, 871–880. [Google Scholar] [CrossRef]
- zur Hausen, H. The search for infectious causes of human cancers: Where and why. Virology 2009, 392, 1–10. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, E180–E190. [Google Scholar] [CrossRef]
- Biological Agents. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100B, ISBN 978-92-832-1319-2/978-92-832-0134-2. [Google Scholar]
- zur Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef]
- zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef]
- Vogt, P. Retroviral oncogenes: A historical primer. Nat. Rev. Cancer 2012, 12, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.; Flaxman, A.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.; Assadi, R.; Bhala, N.; Cowie, B.; et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 2016, 388, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Grulich, A.; van Leeuwen, M.; Falster, M.; Vajdic, C. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet 2007, 370, 59–67. [Google Scholar] [CrossRef]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens-Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D. The global health burden of infection -associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef]
- Nasir, L.; Campo, M. Bovine papillomaviruses: Their role in the aetiology of cutaneous tumours of bovids and equids. Vet. Dermatol. 2008, 19, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.; Alfieri, A.A.; Otonel, R.A.A.; de Alcantara, B.K.; Rodrigues, W.B.; de Miranda, A.B.; Alfieri, A.F. Genetic characterization of a novel bovine papillomavirus member of the Deltapapillomavirus genus. Vet. Microbiol. 2013, 162, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, M.; de Alcantara, B.K.; Otonel, R.A.A.; Rodrigues, W.B.; Alfieri, A.F.; Alfieri, A.A. Bovine Papillomavirus Type 13 DNA in Equine Sarcoids. J. Clin. Microbiol. 2013, 51, 2167–2171. [Google Scholar] [CrossRef]
- Pierangeli, A.; Antonelli, G.; Gentile, G. Immunodeficiency-associated viral oncogenesis. Clin. Microbiol. Infect. 2015, 21, 975–983. [Google Scholar] [CrossRef]
- Payne, L.; Nair, V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012, 41, 11–19. [Google Scholar] [CrossRef]
- Buehring, G.; Shen, H.; Jensen, H.; Choi, K.; Sun, D.; Nuovo, G. Bovine Leukemia Virus DNA in Human Breast Tissue. Emerg. Infect. Dis. 2014, 20, 772–782. [Google Scholar] [CrossRef]
- Campo, M. Animal models of papillomavirus pathogenesis. Virus Res. 2002, 89, 249–261. [Google Scholar] [CrossRef]
- Funk, A.; Mhamdi, M.; Will, H.; Sirma, H. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism. World J. Gastrol. 2007, 13, 91–103. [Google Scholar] [CrossRef]
- Summers, J.; Mason, W. Replication of the genome of a hepatitis-B-like virus by reverse transcriptione of an RNA intermediate. Cell 1982, 29, 403–415. [Google Scholar] [CrossRef]
- Sharp, P.; Hahn, B. Origins of HIV and the AIDS Pandemic. CSH Perspect. Med. 2011, 1, a006841. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.; Wang, X.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.; Zhu, Y.; Li, B.; Huang, C.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.; Crawford, L. T-antigen is bound to a host protein in SV-40 transformed cells. Nature 1979, 278, 261–263. [Google Scholar] [CrossRef]
- Khatami, A.; Pormohammad, A.; Farzi, R.; Saadati, H.; Mehrabi, M.; Kiani, S.; Ghorbani, S. Bovine Leukemia virus (BLV) and risk of breast cancer: A systematic review and meta-analysis of case-control studies. Infect. Agents Cancer 2020, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.; Salmons, B.; Glenn, W. Oncogenic viruses and Breast Cancer: Mouse Mammary Tumor virus (MMTV), Bovine Leukemia virus (BLV), Human Papilloma virus (HPV), and epstein-Barr virus (EBV). Front. Oncol. 2018, 8, 1. [Google Scholar] [CrossRef]
- Lawson, J.; Glenn, W. The viral origins of breast cancer. Infect. Agents Cancer 2024, 19, 39. [Google Scholar] [CrossRef]
- Moran, P.; Farias, M.; Dolcini, G.; Ceriani, M. Infectivity and persistence of bovine leukemia virus in human breast cells: Assessing a possible zoonotic link to cancer. Vet. Res. Commun. 2025, 49, 173. [Google Scholar] [CrossRef]
- Campo, M.S. Papillomavirus and disease in humans and animals. Vet. Comp. Oncol. 2003, 1, 3–14. [Google Scholar] [CrossRef]
- Munday, J.S.; Thomson, N.; Dunowska, M.; Knight, C.G.; Laurie, R.E.; Hills, S. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Vet. Microbiol. 2015, 177, 289–295. [Google Scholar] [CrossRef]
- Melo, A.; Vásquez, A.; Andana, A.; Matamala, M.; Pino, T.; Guzmán, P.; Hoffstetter, R.; Ili, C.; Brebi, P.; Roa, J. Genotyping of human papillomavirus in women under 25 years old treated in the screening program for cervical cancer. Rev. Chil. Infect. 2014, 31, 542–548. [Google Scholar] [CrossRef]
- Band, V.; Dalal, S.; Delmolino, L.; Androphy, E. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial-cells. EMBO J. 1993, 12, 1847–1852. [Google Scholar] [CrossRef]
- Francis, D.; Schmid, S.; Howley, P. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 2000, 74, 2679–2686. [Google Scholar] [CrossRef]
- Araldi, R.P.; Reis Assaf, S.M.; de Carvalho, R.F.; Caldas Rocha de Carvalho, M.A.; de Souza, J.M.; Magnelli, R.F.; Modolo, D.G.; Roperto, F.P.; Stocco, R.d.C.; Becak, W. Papillomaviruses: A systematic review. Genet. Mol. Biol. 2017, 40, 1–21. [Google Scholar] [CrossRef]
- Yang, A.; Peng, S.; Farmer, E.; Zeng, Q.; Cheng, M.; Pang, X.; Wu, T.; Hung, C. Enhancing antitumor immunogenicity of HPV16-E7 DNA vaccine by fusing DNA encoding E7-antigenic peptide to DNA encoding capsid protein L1 of Bovine papillomavirus. Cell Biosci. 2017, 7, 46. [Google Scholar] [CrossRef]
- Jarosinski, K.; Tischer, B.; Trapp, S.; Osterrieder, N. Marek’s disease virus: Lytic replication, oncogenesis and control. Expert Rev. Vaccines 2006, 5, 761–772. [Google Scholar] [CrossRef]
- Burgess, S.; Basaran, B.; Davison, T. Resistance to Marek’s disease herpesvirus-induced lymphoma is multiphasic and dependent on host genotype. Vet. Pathol. 2001, 38, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davison, T. Identification of the neoplastically transformed cells in Marek’s disease herpesvirus-induced lymphomas: Recognition by the monoclonal antibody AV37. J. Virol. 2002, 76, 7276–7292. [Google Scholar] [CrossRef] [PubMed]
- Parcells, M.; Dienglewicz, R.; Anderson, A.; Morgan, R. Recombinant Marek’s disease virus (MDV)-derived lymphoblastoid cell lines: Regulation of a marker gene within the context of the MDV genome. J. Virol. 1999, 73, 1362–1373. [Google Scholar] [CrossRef]
- Parcells, M.; Burnside, J.; Morgan, R. Marek’s Disease Virus-Induced T-Cell Lymphomas. In Cancer Associated Viruses; Springer: Boston, MA, USA, 2012; pp. 307–335. [Google Scholar] [CrossRef]
- Mironova, M.; Ghany, M. Hepatitis B Vaccine: Four Decades on. Vaccines 2024, 12, 439. [Google Scholar] [CrossRef]
- Malagón, T.; Franco, E.; Tejada, R.; Vaccarella, S. Epidemiology of HPV-associated cancers past, present and future: Towards prevention and elimination. Nat. Rev. Clin. Oncol. 2024, 21, 522–538. [Google Scholar] [CrossRef]
- Faiz, N.; Cortes, A.; Guy, J.; Fogle, J.; Gimeno, I. Efficacy of various Marek’s disease vaccines protocols for prevention of Marek’s disease virus-induced immunosuppression. Vaccine 2016, 34, 4180–4187. [Google Scholar] [CrossRef] [PubMed]
- Chassot, S.; Lambert, V.; Kay, A.; Trepo, C.; Cova, L. Duck Hepatitis-B Virus (DHBV) as a model for understanding hepadnavirus neutralization. In Archives of Virology Supplementum; Springer: Vienna, Austria, 1993; pp. 133–139. [Google Scholar]
- Liu, Q.; Jia, R.; Wang, M.; Huang, J.; Zhu, D.; Chen, S.; Yin, Z.; Wang, Y.; Chen, X.; Cheng, A. Cloning, expression and purification of duck hepatitis B virus (DHBV) core protein and its use in the development of an indirect ELISA for serologic detection of DHBV infection. Arch. Virol. 2014, 159, 897–904. [Google Scholar] [CrossRef]
- Frie, M.; Coussens, P. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet. Immunol. Immunopath. 2015, 163, 103–114. [Google Scholar] [CrossRef]
- Aida, Y.; Murakami, H.; Takahashi, M.; Takeshima, S. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol. 2013, 4, 328. [Google Scholar] [CrossRef]
- Buehring, G.; Shen, H.; Jensen, H.; Jin, D.; Hudes, M.; Block, G. Exposure to Bovine Leukemia Virus Is Associated with Breast Cancer: A Case-Control Study. PLoS ONE 2015, 10, e0134304. [Google Scholar] [CrossRef]
- Woo, S.; Fuertes, M.; Corrales, L.; Spranger, S.; Furdyna, M.; Leung, M.; Duggan, R.; Wang, Y.; Barber, G.; Fitzgerald, K.; et al. STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity 2014, 41, 830–842. [Google Scholar] [CrossRef]
- Rouse, B.; Sehrawat, S. Immunity and immunopathology to viruses: What decides the outcome? Nat. Rev. Immunol. 2010, 10, 514–526. [Google Scholar] [CrossRef]
- Hachana, M.; Trimeche, M.; Ziadi, S.; Amara, K.; Korbi, S. Evidence for a role of the Simian Virus 40 in human breast carcinomas. BCRT 2009, 113, 43–58. [Google Scholar] [CrossRef]
- Strickler, H.; Goedert, J. Exposure to SV40-contaminated poliovirus vaccine and the risk of cancer—A review of the epidemiological evidence. Dev. Biol. Satand. 1998, 94, 235–244. [Google Scholar]
- Carbone, M.; Rizzo, P.; Pass, H. Simian Virus 40: The link with human malignant mesothelioma is well established. Anticancer Res. 2000, 20, 875–877. [Google Scholar]
- Lauring, A.; Frydman, J.; Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 2013, 11, 327–336. [Google Scholar] [CrossRef]
- Amato, S.; Ramsey, J.; Ahern, T.; Rovnak, J.; Barlow, J.; Weaver, D.; Eyasu, L.; Singh, R.; Cintolo-Gonzalez, J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. BCRT 2023, 202, 325–334. [Google Scholar] [CrossRef]
- Blanco, R.; Quezada-Romegialli, C.; Muñoz, J. Bovine Leukemia Virus and Human Breast Cancer: A Review of Clinical and Molecular Evidence. Viruses 2025, 17, 324. [Google Scholar] [CrossRef]
- Saeedi-Moghaddam, F.; Mohammaditabar, M.; Mozhgani, S. Bovine leukemia virus (BLV) and risk of breast cancer; A systematic review and meta-analysis. Retrovirology 2024, 21, 20. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, J.; Sun, W.; Zhang, J.; Huang, K.; Gu, X.; Yang, Y.; Xu, X.; Shi, Y.; Wang, C. Lack of association between bovine leukemia virus and breast cancer in Chinese patients. BCR 2016, 18, 101. [Google Scholar] [CrossRef]
- Perelygina, L.; Patrusheva, I.; Vasireddi, M.; Brock, N.; Hilliard, J. B Virus (Macacine herpesvirus 1) Glycoprotein D Is Functional but Dispensable for Virus Entry into Macaque and Human Skin Cells. J. Virol. 2015, 89, 5515–5524. [Google Scholar] [CrossRef]
- Vasireddi, M.; Hilliard, J. Herpes B Virus, Macacine Herpesvirus 1, Breaks Simplex Virus Tradition via Major Histocompatibility Complex Class I Expression in Cells from Human and Macaque Hosts. J. Virol. 2012, 86, 12503–12511. [Google Scholar] [CrossRef]
- Katz, D.; Gowda, M.; Vasireddi, M.; Patrusheva, I.; Seoh, H.; Filfili, C.; Wildesl, M.; Oh, J.; Hilliard, J. Identification of unique B virus (Macacine Herpesvirus 1) epitopes of zoonotic and macaque isolates using monoclonal antibodies. PLoS ONE 2017, 12, e0182355. [Google Scholar] [CrossRef]
- Kent, J.; Kang, W.; Miller, C.; Fraser, N. Herpes simplex virus latency-associated transcript gene function. J. Neurovirol. 2003, 9, 285–290. [Google Scholar] [CrossRef][Green Version]
- Smith, R. Contamination of clinical specimens with MLV-encoding nucleic acids: Implications for XMRV and other candidate human retroviruses. Retrovirology 2010, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Kearney, M.; Spindler, J.; Wiegand, A.; Shao, W.; Anderson, E.; Maldarelli, F.; Ruscetti, F.; Mellors, J.; Hughes, S.; Le Grice, S.; et al. Multiple Sources of Contamination in Samples from Patients Reported to Have XMRV Infection. PLoS ONE 2012, 7, e30889. [Google Scholar] [CrossRef]
- Zammarchi, F.; Pistello, M.; Piersigilli, A.; Murr, R.; Di Cristofano, C.; Naccarato, A.; Bevilacqua, G. MMTV-Iike sequences in human breast cancer: A fluorescent PCR/laser microdissection approach. J. Pathol. 2006, 209, 436–444. [Google Scholar] [CrossRef]
- Lawson, J.; Glenn, W. Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Brest Cancer 2019, 5, 40. [Google Scholar] [CrossRef]
- Denner, J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021, 13, 2156. [Google Scholar] [CrossRef]
- Niu, D.; Wei, H.; Lin, L.; George, H.; Wang, T.; Lee, H.; Zhao, H.; Wang, Y.; Kan, Y.; Shrock, E.; et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017, 357, 1303–1307. [Google Scholar] [CrossRef]
- Geng, G.; Xu, Y.; Hu, Z.; Wang, H.; Chen, X.; Yuan, W.; Shu, Y. Viral and non-viral vectors in gene therapy: Current state and clinical perspectives. Ebiomedicine 2025, 118, 105834. [Google Scholar] [CrossRef]
- Naldini, L. Gene therapy returns to centre stage. Nature 2015, 526, 351–360. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S.; Garrigue, A.; Wang, G.; Soulier, J.; Lim, A.; Morillon, E.; Clappier, E.; Caccavelli, L.; Delabesse, E.; Beldjord, K.; et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 2008, 118, 3132–3142. [Google Scholar] [CrossRef]
- Rodríguez, S.; Florins, A.; Gillet, N.; de Brogniez, A.; Sánchez-Alcaraz, M.; Boxus, M.; Boulanger, F.; Gutiérrez, G.; Trono, K.; Alvarez, I.; et al. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV. Viruses 2011, 3, 1210–1248. [Google Scholar] [CrossRef]
- Gonzalez, N.; Marques, M.; Domingo, J.L. Respiratory viruses in foods and their potential transmission through the diet: A review of the literature. Environ. Res. 2021, 195, 110826. [Google Scholar] [CrossRef]
- Pomeroy, L.; Bjornstad, O.; Holmes, E. The evolutionary and epidemiological dynamics of the paramyxoviridae. J. Mol. Evol. 2008, 66, 98–106. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- Higuchi, R.; Dollinger, G.; Walsh, P.; Griffith, R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 1992, 10, 413–417. [Google Scholar] [CrossRef]
- Mullis, K.; Faloona, F. Specific syntesis of DNA invitro via a polymerase-catalyzed chain reaction. Method. Enzymol. 1987, 155, 335–350. [Google Scholar]
- Brandwein, M.; Nuovo, G.; Biller, H. Analysis of prevalence of human papillomavirus in laryngeal carcinomas—Study of 40 cases using polymerase chain reaction and consensus primers. Ann. Otol. Rinol. Laryngol. 1993, 102, 309–313. [Google Scholar] [CrossRef]
- Hesselink, A.; Berkhof, J.; van der Salm, M.; van Splunter, A.; Geelen, T.; van Kemenade, F.; Bleeker, M.; Heideman, D. Clinical Validation of the HPV-Risk Assay, a Novel Real-Time PCR Assay for Detection of High-Risk Human Papillomavirus DNA by Targeting the E7 Region. J. Clin. Microbiol. 2014, 52, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Jacquin, E.; Saunier, M.; Mauny, F.; Schwarz, E.; Mougin, C.; Prétet, J. Real-time duplex PCR for simultaneous HPV 16 and HPV 18 DNA quantitation. J. Virol. Methods 2013, 193, 498–502. [Google Scholar] [CrossRef]
- Dagalp, S.B.; Dogan, F.; Farzani, T.A.; Salar, S.; Bastan, A. The genetic diversity of bovine papillomaviruses (BPV) from different papillomatosis cases in dairy cows in Turkey. Arch. Virol. 2017, 162, 1507–1518. [Google Scholar] [CrossRef]
- Mardis, E. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 2008, 9, 387–402. [Google Scholar] [CrossRef]
- Kato, J.; Masaki, A.; Fujii, K.; Takino, H.; Murase, T.; Yonekura, K.; Utsunomiya, A.; Ishida, T.; Iida, S.; Inagaki, H. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections. Pathol. Int. 2016, 66, 618–621. [Google Scholar] [CrossRef]
- Ji, H.; Chang, L.; Yan, Y.; Wang, L. Development and validation of a duplex real-time PCR for the rapid detection and quantitation of HTLV-1. Virol. J. 2023, 20, 9. [Google Scholar] [CrossRef]
- Geoghegan, J.; Duchêne, S.; Holmes, E. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 2017, 13, e1006215. [Google Scholar] [CrossRef]
- Flippot, R.; Malouf, G.; Su, X.; Khayat, D.; Spano, J. Oncogenic viruses: Lessons learned using next-generation sequencing technologies. Eur. J. Cancer 2016, 61, 61–68. [Google Scholar] [CrossRef]
- Hama, H.; Aboudharam, G.; Barbieri, R.; Lepidi, H.; Drancourt, M. Immunohistochemical diagnosis of human infectious diseases: A review. Diagn. Pathol. 2022, 17, 17. [Google Scholar] [CrossRef]
- Qvick, A.; Andersson, E.; Almeren, A.; Waenerlund, M.; Stenmark, B.; Karlsson, C.; Karlsson, M.; Helenius, G. Sensitive and Specific Droplet Digital PCR Assays for Circulating Tumor HPV DNA: Development, Validation, and Clinical Application in HPV-Associated Cancers. Mol. Diagn. Ther. 2024, 28, 835–845. [Google Scholar] [CrossRef]
- Bhambhani, C.; Sandford, E.; Haring, C.; Brummel, C.; Tuck, K.; Olesnavich, M.; Bhangale, A.; Walline, H.; Dermody, S.; Spector, M.; et al. Development of a high-performance multi-probe droplet digital PCR assay for high-sensitivity detection of human papillomavirus circulating tumor DNA from plasma. Oral Oncol. 2023, 143, 106436. [Google Scholar] [CrossRef]
- Larsson, G.; Helenius, G. Digital droplet PCR (ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45-a short report. Cell. Oncol. 2017, 40, 521–527. [Google Scholar] [CrossRef]
- Engvall, E. Citation Classic The ELISA, Enzyme-Linked Immunosorbent Assay. Clin. Chem. 2010, 56, 319–320. [Google Scholar] [CrossRef]
- Payne, L. Retrovirus-induced disease in poultry. Poult. Sci. 1998, 77, 1204–1212. [Google Scholar] [CrossRef]
- Karesh, W.; Dobson, A.; Lloyd-Smith, J.; Lubroth, J.; Dixon, M.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.; et al. Zoonoses 1 Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Sahashi, Y.; Oshima, M.; Yamagishi, J.; Muramatsu, C.; Shimizu, K.; Inoshima, Y. Bovine leukemia virus genotype surveillance in cattle at a slaughterhouse in Aichi Prefecture, Japan, in 2019 using polymerase chain reaction combined with restriction fragment length polymorphism. J. Vet. Med. Sci. 2021, 83, 1730–1734. [Google Scholar] [CrossRef]
- Stern, A.; Markel, H. The history of vaccines and immunization: Familiar patterns, new challenges. Health Aff. 2005, 24, 611–621. [Google Scholar] [CrossRef]
- Hirai, K.; Sakaguchi, M. Polyvalent recombinant Marek’s disease virus vaccine against poultry diseases. Marek’s Dis. Curr. Top. Microbiol. Immunol. 2001, 255, 261–287. [Google Scholar]
- Witter, R. Protective efficacy of Marek’s disease Vaccines. Marek’s Dis. Curr. Top. Microbiol. Immunol. 2001, 255, 57–90. [Google Scholar]
- Marciani, D.; Kensil, C.; Beltz, G.; Hung, C.; Cronier, J.; Aubert, A. Genetically-engineered subunit vaccine against feline leukaemia virus—Protective immune response in cats. Vaccine 1991, 9, 89–96. [Google Scholar] [CrossRef]
- Jin, X.; Cowsert, L.; Marshall, D.; Reed, D.; Pilacinski, W.; Lim, L.; Jenson, A. Bovine serological response to a recombinant BPV-1 major capsid protein vaccine. Intervirology 1990, 31, 345–354. [Google Scholar] [CrossRef]
- Chu, P.; Chen, S.; Zhou, X.; Wei, Z.; Zhai, S. Getah Virus: A New Contaminant in Veterinary Vaccines. Vet. Sci. 2025, 12, 82. [Google Scholar] [CrossRef]
- Abdala, A.; Alvarez, I.; Brossel, H.; Calvinho, L.; Carignano, H.; Franco, L.; Gazon, H.; Gillissen, C.; Hamaidia, M.; Hoyos, C.; et al. BLV: Lessons on vaccine development. Retrovirology 2019, 16, 26. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.; Angulo, F.; Tauxe, R.; Widdowson, M.; Roy, S.; Jones, J.; Griffin, P. Foodborne Illness Acquired in the United States-Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; Zanella, J.R.C.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- Rabinowitz, P.; Conti, L. One Health and Emerging Infectious Diseases: Clinical Perspectives. In One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Disease: The Concept and Examples of a One Health Approach; Springer: Berlin/Heidelberg, Germany, 2013; Volume 365, pp. 17–29. [Google Scholar] [CrossRef]
- Judson, S.; Rabinowitz, P. Zoonoses and global epidemics. Curr. Opin. Infect. Dis. 2021, 34, 385–392. [Google Scholar] [CrossRef]
- Karesh, W.; Cook, R. The human-animal link. Foreign Aff. 2005, 84, 38. [Google Scholar] [CrossRef]
| Virus Family | Human Oncogenic Viruses (Associated Cancers) | Animal Oncogenic Viruses (Associated Diseases) | Principal Mechanisms of Oncogenesis |
|---|---|---|---|
| Papillomaviridae | human papillomavirus (HPV)—cervical, anogenital, and oropharyngeal cancers | bovine papillomavirus (BPV), canine papillomavirus (CPV)—fibropapillomas, sarcoids, squamous cell carcinomas | E6/E7 oncoproteins disrupt cell-cycle control by inactivating tumour suppressors p53 and pRb [12,14,18,28,29,30,31,32,33,34] |
| Herpesviridae | Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV)—lymphomas, Kaposi’s sarcoma | Marek’s disease virus (MDV), simian herpesvirus B (SHBV)—lymphomas, encephalitis | Latency, immune modulation, chronic inflammation, expression of viral oncogenes [35,36,37,38,39,42] |
| Hepadnaviridae | hepatitis B virus (HBV)—hepatocellular carcinoma | duck hepatitis B virus (DHBV)—hepatocellular carcinoma in ducks | Chronic inflammation, oxidative stress, and epigenetic alterations (DNA methylation, histone modification) [19,20,43,44] |
| Retroviridae | human T-cell leukaemia virus type 1 (HTLV-1)—adult T-cell leukaemia/lymphoma | feline leukaemia virus (FeLV), bovine leukaemia virus (BLV)—lymphomas, leukaemias | Proviral integration, insertional mutagenesis, proto-oncogene activation (e.g., Myc), Tax-mediated transcriptional activation [16,17,45,46] |
| Virus/Vector Type | Source or Context | Evidence of Human Exposure | Oncogenic and Zoonotic Risks | Current Status/Mitigation |
|---|---|---|---|---|
| SV40 (simian virus 40) | Contamination of polio vaccines (1950s–1960s) via rhesus monkey kidney cells | Millions vaccinated; viral DNA detected in some human tissue data | Transforms human cells in vitro; no consistent epidemiological link to cancer | No ongoing exposure; modern vaccines produced under stringent biosafety and screening standards [23,50,51,52] |
| Murine retroviruses (MLV-like, XMRV) | Laboratory contamination, mouse cell lines, xenografts | Sporadic sequence detection in prostate cancer and chronic fatigue syndrome samples | No replication-competent virus confirmed; contamination most likely | Routine molecular controls and reagent screening prevent recurrence [62,63] |
| MMTV-like sequences | Detected in certain human breast cancers | PCR-based detection in tumour DNA | Controversial; origin may be contamination or cross-species transfer | No replicating virus identified; further studies required [25,26,55,64,65] |
| Porcine endogenous retroviruses (PERV-A/B) | Xenotransplantation, porcine tissue grafts | In vitro infection of human cells; no in vivo infections | Theoretical risk of recombination or zoonosis | CRISPR-Cas9 excision of active PERVs; pathogen-free pig lines established [66,67] |
| Gene-therapy viral vectors (retroviral, adenoviral, AAV) | Biomedical biotechnology and clinical gene therapy | Human recipients of viral vector-based therapy | Rare insertional oncogenesis in early trials; no zoonosis | Replication-defective vectors; rigorous preclinical safety testing and biosafety regulation [68,69,70] |
| Category | Examples/Supporting Evidence | Potential Impact and Mechanistic Explanation |
|---|---|---|
| Occupational exposure | Dairy workers, veterinarians, slaughterhouse workers, butchers. BLV antibodies were detected in ~37% of dairy workers vs. 10% of controls [17] | Direct contact with infected blood, milk, or tissues may permit viral entry through cuts or mucosal abrasions. Frequent exposure increases the likelihood of transient infection or immune sensitisation |
| Dietary exposure | Consumption of unpasteurised milk or undercooked beef. BLV DNA was detected in 30–60% of dairy products; papillomavirus DNA is occasionally found in meat samples [71,72,73] | Ingestion of infectious particles may allow entry through microabrasions in the oral or intestinal mucosa. The resistance of some viral particles to gastric acidity could facilitate limited infection of epithelial cells |
| Close contact with wildlife | Handling of primates (e.g., Simian herpesvirus B from macaques) [35,61] | Direct zoonotic transmission through bites, scratches, or mucosal contact can result in severe disease (e.g., fatal SHBV encephalitis); illustrates potential for herpesvirus spillover |
| Immunosuppression | HIV infection, post-transplant immunosuppressive therapy [49] | Decreased antiviral immunity and impaired interferon responses may permit transient replication of species-restricted oncogenic viruses, increasing spillover potential |
| Co-infections with immunomodulatory viruses | Coinfection with CMV, EBV, or HIV [49] | Synergistic immunosuppressive effects can lower host defences, allow the persistence of foreign viral genomes, or promote viral recombination |
| Viral mutations and recombination | Retroviral envelope mutations; papillomavirus recombination events; horizontal gene transfer in hepadnaviruses [74] | Mutation and recombination can alter receptor specificity, expand the host range, and enhance adaptation to human cells; comparative genomics revealed 60–85% sequence similarity between some animal and human oncogenic viruses |
| High-intensity animal–human interfaces | Intensive farming, live-animal markets, wildlife trade [17,23,24] | Increased contact frequency raises the probability of viral exposure and mutation–selection cycles conducive to host adaptation |
| Environmental persistence of viral particles | Viral stability in milk, meat, or laboratory samples [72,73] | Certain non-enveloped viruses (e.g., papillomaviruses) remain infectious for extended periods outside the host, increasing the risk of indirect exposure through contaminated materials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczerba-Turek, A. Can Oncogenic Animal Viruses Pose a Threat to Humans? Pathogens 2025, 14, 1163. https://doi.org/10.3390/pathogens14111163
Szczerba-Turek A. Can Oncogenic Animal Viruses Pose a Threat to Humans? Pathogens. 2025; 14(11):1163. https://doi.org/10.3390/pathogens14111163
Chicago/Turabian StyleSzczerba-Turek, Anna. 2025. "Can Oncogenic Animal Viruses Pose a Threat to Humans?" Pathogens 14, no. 11: 1163. https://doi.org/10.3390/pathogens14111163
APA StyleSzczerba-Turek, A. (2025). Can Oncogenic Animal Viruses Pose a Threat to Humans? Pathogens, 14(11), 1163. https://doi.org/10.3390/pathogens14111163

