Regulation and Roles of Metacyclogenesis and Epimastigogenesis in the Life Cycle of Trypanosoma cruzi
Abstract
1. Introduction
2. Biological Differentiation: Epimastigogenesis
| Feature | TCT (Trypomastigote) | Intermediate Form | Epimastigote |
|---|---|---|---|
| Cell Shape | Slender, fusiform | Pleomorphic, transitioning | Elongated, more robust |
| Flagellum Position | Free flagellum, posterior kinetoplast | Partial retraction of flagellum | Emerges near nucleus, anterior kinetoplast |
| Kinetoplast Position | Posterior to nucleus | Intermediate | Anterior to nucleus |
| Motility | Highly motile | Variable motility | Actively motile (in culture) |
| Replication | Non-replicative in vertebrate host | Limited or no replication | Replicative (in vector or culture) |
| Infectivity | Highly infective to mammalian cells | Variable infectivity (some partially infective) | Traditionally non-infective (except rdEpi) |
| Surface Markers | High expression of trans-sialidase, mucins | Mixed expression | Express cruzipain, GP72 |
| Complement Sensitivity | Complement-resistant | Partially resistant | Sensitive (except rdEpi) |
| Occurrence | Bloodstream or tissue of mammalian host | During transformation (e.g., in vitro epimastigogenesis) | Vector midgut, axenic culture |
| Role in Life Cycle | Infection initiation | Transitional, adaptive stage | Replication in vector; precursors of metacyclics |
| Method | Strain/Clone | From Which Evolutionary Form? (Blood Tripe, Culture Tripe, Metacyclic) | Morphological Characterization? (e.g., Giemsa, Immunofluorescence) | Biochemical Characterization? (Protein Expression, Proteomics, Markers, PCR) | Functional Characterization? (Replication, Invasion, Complement System Assays, etc.) | Reference |
|---|---|---|---|---|---|---|
| In vitro: Incubation in LIT medium with varying oxygen tension (high and low) at different times (1, 2, 4, 6, 8, 11, 12 days) | Clone EPm6 (isolated from human) | Tissue-culture derived trypomastigotes | Microscopy (Giemsa) | Metabolic analysis (glucose, ammonia and pH of the medium) | Replication (growth curve) | [15] |
| In vitro: Semi-defined medium containing L-proline (MEMTAUHLA) (0 to 16 days) and low oxygen content | EPm6 Clone (isolated from human) | Tissue-culture derived trypomastigotes | Microscopy (Giemsa) | Peptidic and antigenic profiling (immunoblotting) | Replication (growth curve) | [8] |
| In vitro: ML15-HA medium (insect embryonic cell culture medium) (0 to 10 days) | Clone Dm28c | Tissue-culture derived trypomastigotes | Microscopy (Giemsa) | Peptidic and antigenic profiling (immunoblotting) | Replication (growth curve) | [12] |
| In vitro: LITB medium (0 to 8 days) with different oxygen levels | Clone EPm6 (isolated from human) | Tissue-culture derived trypomastigotes | Microscopy (Giemsa) | Antigenic profile (stage-specific markers of amastigotes) | Replication (growth curve); Complement system resistance | [12] |
| In vivo: Feeding of Rhodnius prolixus with cultured trypomastigotes (up to 10 days after infection) | Clone EPm6, Strain DmN5 and Strain RpN2 | Tissue-culture derived trypomastigotes | Microscopy (Giemsa staining) | N/A | N/A | [16] |
| In vivo: feeding of Rhodnius prolixus with blood trypomastigotes (up to 15 days after infection) | CL Strain | Bloodstream trypomastigotes | Microscopy (Giemsa staining) | N/A | Migration and differentiation | [17] |
| In vitro: LITB medium (0 a 5 days) | Dm28c clone | Tissue-culture derived trypomastigotes, metacyclic | Immunofluorescence | Protein expression, proteomics | Invasion assays, complement system resistance | [11] |
| In vivo: feeding of Rhodnius prolixus with blood trypomastigotes; anterior midgut (AM) and posterior midgut (PM) were individually dissected and used for immunofluorescence analysis of T. cruzi forms. | Clone Dm28c | Blood trypomastigotes | Immunofluorescence | Protein expression | Invasion assays, complement system resistance | [11] |
3. Biological Differentiation: Metacyclogenesis
In Vitro Models of Metacyclogenesis
4. Environmental Cues: Temperature, Stress, and Nutrient Sensing
5. Intestinal Colonization by T. cruzi: Vector Resistance and Parasite Adaptation
5.1. Immune Responses of the Vector and T. cruzi Persistence
5.2. Biochemical and Molecular Reprogramming
5.3. Metabolic Shifts and Autophagy as Pre-Adaptive Events in Metacyclogenesis
5.4. Autophagy and the Regulation of Metacyclogenesis
5.5. Molecular and Structural Reprogramming During Metacyclogenesis
6. Parasite–Vector Interaction and Transmission Dynamics
6.1. Feeding and Starvation Cycles
6.2. pH Gradients and Immune Responses in the Vector
6.3. Temperature and Feeding Frequency
6.4. Parasite-Induced Modulation of Vector Physiology
7. Genetic Diversity: Relationship with the Development of T. cruzi in the Vector Insect
8. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Tyler, K.M.; Engman, D.M. The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol. 2001, 31, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Kollien, A.H.; Schaub, G.A. The development of Trypanosoma cruzi in triatominae. Parasitol. Today 2000, 16, 381–387. [Google Scholar] [CrossRef]
- Rossi, I.V.; de Souza, D.A.S.; Ramirez, M.I. The End Justifies the Means: Chagas Disease from a Perspective of the Host-Trypanosoma cruzi Interaction. Life 2024, 14, 488. [Google Scholar] [CrossRef]
- Schaub, G.A. Trypanosoma cruzi/Triatomine Interactions—A Review. Pathogens 2025, 14, 392. [Google Scholar] [CrossRef]
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Cucunubá, Z.M.; Gutiérrez-Romero, S.A.; Ramírez, J.D.; Velásquez-Ortiz, N.; Ceccarelli, S.; Parra-Henao, G.; Henao-Martínez, A.F.; Rabinovich, J.; Basáñez, M.G.; Nouvellet, P.; et al. The epidemiology of Chagas disease in the Americas. Lancet Reg. Health Am. 2024, 37, 100881. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol. 2006, 25, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.G.J.; Contreras, U.L.; Graterol, R.; Aguilera, N.; Navarro, M.C.; Contreras, A.; de Lima, R. Trypanosoma cruzi: Epimastigogenesis en condiciones axénicas. Cambios morfológicos, peptídicos, glicopeptídicos y antigénicos. Parasitol. Acta Científica Venez. 2008, 59, 1–11. [Google Scholar]
- Ferreira, R.C.; Kessler, R.L.; Lorenzo, M.G.; Paim, R.M.; Ferreira, L.d.e.L.; Probst, C.M.; Alves-Silva, J.; Guarneri, A.A. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology 2016, 143, 434–443. [Google Scholar] [CrossRef]
- Brener, Z. A new aspect of Trypanosoma cruzi life-cycle in the invertebrate host. J. Protozool. 1972, 19, 23–27. [Google Scholar] [CrossRef]
- Kessler, R.L.; Contreras, V.T.; Marliére, N.P.; Guarneri, A.A.; Silva, L.H.V.; Mazzarotto, G.A.C.A.; Batista, M.; Soccol, V.T.; Krieger, M.A.; Probst, C.M. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Mol. Microbiol. 2017, 104, 712–736. [Google Scholar] [CrossRef] [PubMed]
- Graterol, D.; Arteaga, R.Y.; Navarro, M.C.; Domínguez, M.; de Lima, A.R.; Contreras, V.T. El estadio amastigota precede la evolución del epimastigota durante la epimastigogénesis in vitro de Trypanosoma cruzi. Rev. Soc. Venez. Microbiol. 2013, 33, 72–79. [Google Scholar]
- Rey, L. Parasitologia: Parasitas e Doenças Parasitárias do Homem Nos Trópicos Ocidentais, 4th ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Gonçalves, C.S.; Ávila, A.R.; de Souza, W.; Motta, M.C.M.; Cavalcanti, D.P. Revisiting the Trypanosoma cruzi metacyclogenesis: Morphological and ultrastructural analyses during cell differentiation. Parasit. Vectors 2018, 11, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Querales, M.; Torres, J.; Graterol, D.; Arteaga, R.; Navarro, M.; Contreras, V.; Pineda, W.; De Lima, A.R. Cambios metabólicos durante la epimastigogénesis in vitro de Trypanosoma cruzi. Salus 2013, 17, 6–18. [Google Scholar]
- Navarro, A.M.C.; Córdova, L.A.; Fernández, B.K.N.; Arteaga, O.; Rosa, Y.; Graterol, R.; Diana, I.; Domínguez, B.; María, I.; De Lima, R.; et al. Trypanosoma cruzi Epimastigogenesis: A Method for Studying Trypomastigote to Epimastigote Transformation In Vivo. Kasmera Maracaibo 2012, 40, 122–133. [Google Scholar]
- Ferreira, A.Z.L.; de Araújo, C.N.; Cardoso, I.C.C.; de Souza Mangabeira, K.S.; Rocha, A.P.; Charneau, S.; Santana, J.M.; Motta, F.N.; Bastos, I.M.D. Metacyclogenesis as the Starting Point of Chagas Disease. Int. J. Mol. Sci. 2023, 25, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brener, Z. Biology of Trypanosoma cruzi. Annu. Rev. Microbiol. 1973, 27, 347–382. [Google Scholar] [CrossRef]
- Contreras, V.T.; Salles, J.M.; Thomas, N.; Morel, C.M.; Goldenberg, S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 1985, 16, 315–327. [Google Scholar] [CrossRef]
- Homsy, J.J.; Granger, B.; Krassner, S.M. Some Factors Inducing Formation of Metacyclic Stages of Trypanosoma cruzi. J. Protozool. 1989, 36, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Tanowitz, H.B.; Kirchhoff, L.V.; Simon, D.; Morris, S.A.; Weiss, L.M.; Wittner, M. Chagas’ disease. Clin. Microbiol. Rev. 1992, 5, 400–419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gonzales-Perdomo, M.; Romero, P.; Goldenberg, S. Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Exp. Parasitol. 1988, 66, 205–212. [Google Scholar] [CrossRef]
- Fraidenraich, D.; Peña, C.; Isola, E.L.; Lammel, E.M.; Coso, O.; Añel, A.D.; Pongor, S.; Baralle, F.; Torres, H.N.; Flawia, M.M. Stimulation of Trypanosoma cruzi adenylyl cyclase by an alpha D-globin fragment from Triatoma hindgut: Effect on differentiation of epimastigote to trypomastigote forms. Proc. Natl. Acad. Sci. USA 1993, 90, 10140–10144. [Google Scholar] [CrossRef]
- Sana, A.; Rossi, I.V.; Sabatke, B.; Ramirez, M.I. Extracellular Vesicles Mediate Epimastigogenesis in Trypanosoma cruzi: Strain-Specific Dynamics and Temperature-Dependent Differentiation. Life 2025, 15, 931. [Google Scholar] [CrossRef]
- Lander, N.; Chiurillo, M.A.; Docampo, R. Signalling pathways involved in environmental sensing in Trypanosoma cruzi. Mol. Microbiol. 2021, 115, 819–828. [Google Scholar] [CrossRef]
- Barros, V.C.; Assumpção, J.G.; Cadete, A.M.; Santos, V.C.; Cavalcante, R.R.; Araújo, R.N.; Pereira, M.H.; Gontijo, N.F. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS ONE 2009, 4, e6047. [Google Scholar] [CrossRef]
- Antunes, L.C.M.; Han, J.; Pan, J.; Moreira, C.J.; Azambuja, P.; Borchers, C.H.; Carels, N. Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS ONE 2013, 8, e77283. [Google Scholar] [CrossRef] [PubMed]
- Gumiel, M.; Mattos, D.P.D.; Vieira, C.S.; Moraes, C.S.; Moreira, C.J.D.C.; Gonzalez, M.S.; Teixeira-Ferreira, A.; Waghabi, M.; Azambuja, P.; Carels, N. Proteome of the triatomine digestive tract: From catalytic to immune pathways; focusing on annexin expression. Front. Mol. Biosci. 2020, 7, 589435. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.C.; Sant’Anna, M.R.; Gontijo, N.F.; Araújo, R.N.; Pessoa, G.C.; Koerich, L.B.; Pereira, M.H. Features of interaction between triatomines and vertebrates based on bug feeding parameters. In Triatominae-The Biology of Chagas Disease Vectors; Springer International Publishing: Cham, Switzerland, 2021; pp. 239–264. [Google Scholar]
- Graça-Souza, A.V.; Maya-Monteiro, C.; Paiva-Silva, G.O.; Braz, G.R.; Paes, M.C.; Sorgine, M.H.; Oliveira, P.L. Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochem. Mol. Biol. 2006, 36, 322–335. [Google Scholar] [CrossRef]
- Lara, F.A.; Sant’Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Salles, I.R.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; et al. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem. Biophys. Res. Commun. 2007, 355, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, N.P.; Saraiva, F.M.; Sultano, P.E.; Cunha, P.R.; Laranja, G.A.; Justo, G.A.; Sabino, K.C.C.; Coelho, M.G.P.; Rossini, A.; Atella, G.C.; et al. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: Redox status. PLoS ONE 2015, 10, e0116712. [Google Scholar]
- Whitten, M.; Sun, F.; Tew, I.; Schaub, G.; Soukou, C.; Nappi, A.; Ratcliffe, N. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect Biochem. Mol. Biol. 2007, 37, 440–452. [Google Scholar] [CrossRef]
- Ursic-Bedoya, R.J.; Nazzari, H.; Cooper, D.; Triana, O.; Wolff, M.; Lowenberger, C. Identification and characterization of two novel lysozymes from Rhodnius prolixus, a vector of Chagas disease. J. Insect Physiol. 2008, 54, 593–603. [Google Scholar] [CrossRef]
- Buarque, D.S.; Braz, G.R.; Martins, R.M.; Tanaka-Azevedo, A.M.; Gomes, C.M.; Oliveira, F.A.; Schenkman, S.; Tanaka, A.S. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi. PLoS ONE 2013, 8, e61203. [Google Scholar] [CrossRef]
- Lopez, L.; Morales, G.; Ursic, R.; Wolff, M.; Lowenberger, C. Isolation and characterization of a novel insect defensin from Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol. 2003, 33, 439–447. [Google Scholar] [CrossRef]
- Vieira, C.S.; Waniek, P.J.; Castro, D.P.; Mattos, D.P.; Moreira, O.C.; Azambuja, P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasites Vectors 2016, 9, 119. [Google Scholar] [CrossRef]
- Mello, C.B.; Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Differential in Vitro and in Vivo Behavior of Three Strains of Trypanosoma cruzi in the Gut and Hemolymph of Rhodnius prolixus. Exp. Parasitol. 1996, 82, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.P.; Moraes, C.S.; Gonzalez, M.S.; Ratcliffe, N.A.; Azambuja, P.; Garcia, E.S. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS ONE 2012, 7, e36591. [Google Scholar] [CrossRef] [PubMed]
- Flores-Villegas, A.L.; Salazar-Schettino, P.M.; Córdoba-Aguilar, A.; Gutiérrez-Cabrera, A.E.; Rojas-Wastavino, G.E.; Bucio-Torres, M.I.; Cabrera-Bravo, M. Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites. Bull. Entomol. Res. 2015, 105, 523–532. [Google Scholar] [CrossRef]
- Cazzulo, J.J. Energy metabolism in Trypanosoma cruzi. Subcell. Biochem. 1992, 18, 235–257. [Google Scholar] [PubMed]
- Silber, A.M.; Rojas, R.L.G.; Urias, U.; Colli, W.; Alves, M.J.M. Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Int. J. Parasitol. 2006, 36, 157–163. [Google Scholar] [CrossRef]
- Maugeri, D.A.; Cannata, J.J.; Cazzulo, J.J. Glucose metabolism in Trypanosoma cruzi. Essays Biochem. 2011, 51, 15–30. [Google Scholar] [CrossRef]
- Barisón, M.J.; Damasceno, F.S.; Mantilla, B.S.; Silber, A.M. The active transport of histidine and its role in ATP production in Trypanosoma cruzi. J. Bioenerg. Biomembr. 2016, 48, 437–449. [Google Scholar] [CrossRef]
- Souza, R.O.O.; Damasceno, F.S.; Marsiccobetre, S.; Biran, M.; Murata, G.; Curi, R.; Bringaud, F.; Silber, A.M. Fatty acid oxidation participates in resistance to nutrient-depleted environments in the insect stages of Trypanosoma cruzi. PLoS Pathog. 2021, 17, e1009495. [Google Scholar] [CrossRef]
- Saraiva, F.M.; Cosentino-Gomes, D.; Inacio, J.D.; Almeida-Amaral, E.E.; Louzada-Neto, O.; Rossini, A.; Nogueira, N.P.; Meyer-Fernandes, J.R.; Paes, M.C. Hypoxia effects on Trypanosoma cruzi epimastigotes proliferation, differentiation, and energy metabolism. Pathogens 2022, 11, 897. [Google Scholar] [CrossRef]
- Gonçalves, R.L.; Barreto, R.F.M.; Polycarpo, C.R.; Gadelha, F.R.; Castro, S.L.; Oliveira, M.F. A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J. Bioenerg. Biomembr. 2011, 43, 651–661. [Google Scholar] [CrossRef]
- Manchola, N.C.; Rapado, L.N.; Barisón, M.J.; Silber, A.M. Biochemical characterization of branched chain amino acids uptake in Trypanosoma cruzi. J. Eukaryot. Microbiol. 2016, 63, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Adroher, F.J.; Osuna, A.; Lupiáñez, J.A. Differential energetic metabolism during Trypanosoma cruzi differentiation. II. Hexokinase, phosphofructokinase and pyruvate kinase. Mol. Cell. Biochem. 1990, 94, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Berná, L.; Chiribao, M.L.; Greif, G.; Rodriguez, M.; Alvarez-Valin, F.; Robello, C. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi. PeerJ 2017, 5, e3017. [Google Scholar] [CrossRef]
- Garcia, E.S.; Azambuja, P. Development and interactions of Trypanosoma cruzi within the insect vector. Parasitol. Today 1991, 7, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Kollien, A.H.; Schmidt, J.; Schaub, G.A. Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop. 1998, 70, 127–141. [Google Scholar] [CrossRef]
- Cordero, E.M.; Nakayasu, E.S.; Gentil, L.G.; Yoshida, N.; Almeida, I.C.; da Silveira, J.F. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J. Proteome Res. 2009, 8, 3642–3652. [Google Scholar] [CrossRef]
- Nakayasu, E.S.; Yashunsky, D.V.; Nohara, L.L.; Torrecilhas, A.C.T.; Nikolaev, A.V.; Almeida, I.C. GPIomics: Global analysis of glycosylphosphatidylinositol-anchored molecules of Trypanosoma cruzi. Mol. Syst. Biol. 2009, 5, 261. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, R.M.; Charneau, S.; Motta, F.N.; Santana, J.M.; Roepstorff, P.; Ricart, C.A. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods. J. Proteome Res. 2013, 12, 3255–3263. [Google Scholar] [CrossRef]
- Jesus, A.R.D.; Cooper, R.; Espinosa, M.; Gomes, J.E.P.; Garcia, E.S.; Paul, S.; Cross, G.A. Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. J. Cell Sci. 1993, 106, 1023–1033. [Google Scholar] [CrossRef]
- Basombrío, M.A.; Gómez, L.; Padilla, A.M.; Ciaccio, M.; Nozaki, T.; Cross, G.A. Targeted deletion of the gp72 gene decreases the infectivity of Trypanosoma cruzi for mice and insect vectors. J. Parasitol. 2002, 88, 489–493. [Google Scholar] [CrossRef]
- Tyler, K.M.; Engman, D.M. O alongamento flagelar induzido pela limitação de glicose é pré-adaptativo para a diferenciação do Trypanosoma cruzi. Cell Motil. Cytoskelet. 2000, 46, 269–278. [Google Scholar] [CrossRef]
- Urbina, J.A. Intermediary metabolism of Trypanosoma cruzi. Parasitol. Today 1994, 10, 107–110. [Google Scholar] [CrossRef]
- Barisón, M.J.; Rapado, L.N.; Merino, E.F.; Pral, E.M.F.; Mantilla, B.S.; Marchese, L.; Nowicki, C.; Silber, A.M.; Cassera, M.B.; Cassera, M.B. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. J. Biol. Chem. 2017, 292, 8964–8977. [Google Scholar] [CrossRef] [PubMed]
- Acosta, H.; Burchmore, R.; Naula, C.; Gualdrón-López, M.; Quintero-Troconis, E.; Cáceres, A.J.; Quiñones, W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol. Biochem. Parasitol. 2019, 229, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Nepomuceno-Mejía, T.; Lara-Martínez, R.; Cevallos, A.M.; Lopez-Villasenor, I.; Jiménez-García, L.F.; Hernández, R. The Trypanosoma cruzi nucleolus: A morphometrical analysis of cultured epimastigotes in the exponential and stationary phases. FEMS Microbiol. Lett. 2010, 313, 41–46. [Google Scholar] [CrossRef]
- Cevallos, A.M.; Pérez-Escobar, M.; Espinosa, N.; Herrera, J.; Lopez-Villasenor, I.; Hernández, R. The stabilization of housekeeping transcripts in Trypanosoma cruzi epimastigotes evidences a global regulation of RNA decay during stationary phase. FEMS Microbiol. Lett. 2005, 246, 259–264. [Google Scholar] [CrossRef]
- Hernández, R.; Cevallos, A.M.; Nepomuceno-Mejía, T.; López-Villaseñor, I. Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. Parasitol. Res. 2012, 111, 509–514. [Google Scholar] [CrossRef]
- Camargo, E.P. Growth and differentiation in Trypanosoma cruzi; i. origin of metacyclic trypanosomes in liquid media. Rev. Inst. Med. Trop. São Paulo 1964, 6, 93–100. [Google Scholar] [PubMed]
- Alvarez, V.E.; Kosec, G.; Sant’Anna, C.; Turk, V.; Cazzulo, J.J.; Turk, B. Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J. Biol. Chem. 2008, 283, 3454–3464. [Google Scholar] [CrossRef] [PubMed]
- Vanrell, M.C.; Losinno, A.D.; Cueto, J.A.; Balcazar, D.; Fraccaroli, L.V.; Carrillo, C.; Romano, P.S. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis. PLoS Negl. Trop. Dis. 2017, 11, e0006049. [Google Scholar] [CrossRef] [PubMed]
- Losinno, A.D.; Martínez, S.J.; Labriola, C.A.; Carrillo, C.; Romano, P.S. Induction of autophagy increases the proteolytic activity of reservosomes during Trypanosoma cruzi metacyclogenesis. Autophagy 2021, 17, 439–456. [Google Scholar] [CrossRef]
- Pedra-Rezende, Y.; Fernandes, M.C.; Mesquita-Rodrigues, C.; Stiebler, R.; Bombaça, A.C.S.; Pinho, N.; Cuervo, P.; De Castro, S.L.; Menna-Barreto, R.F. Starvation and pH stress conditions induced mitochondrial dysfunction, ROS production and autophagy in Trypanosoma cruzi epimastigotes. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 166028. [Google Scholar] [CrossRef]
- Romano, P.S.; Arboit, M.A.; Vázquez, C.L.; Colombo, M.I. The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 2009, 5, 6–18. [Google Scholar] [CrossRef]
- Schoijet, A.C.; Sternlieb, T.; Alonso, G.D. The Phosphatidylinositol 3-kinase Class III Complex Containing TcVps15 and TcVps34 Participates in Autophagy in Trypanosoma cruzi. J. Eukaryot. Microbiol. 2017, 64, 308–321. [Google Scholar] [CrossRef]
- Mauthe, M.; Sant’Anna, C.; Menna-Barreto, R. Autophagy in trypanosomatids: From adaptation to potential drug targets. Cells 2022, 11, 1094. [Google Scholar]
- Contreras, V.T.; Morel, C.M.; Goldenberg, S. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol. Biochem. Parasitol. 1985, 14, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.; Salles, J.M.; Contreras, V.T.; Franco, M.L.; Katzin, A.M.; Colli, W.; Morel, C.M. Characterization of messenger RNA from epimastigotes and metacyclic trypomastigotes of Trypanosoma cruzi. FEBS Lett. 1985, 180, 265–270. [Google Scholar] [CrossRef]
- de Godoy, L.M.F.; Marchini, F.K.; Pavoni, D.P.; Rampazzo, R.D.C.P.; Probst, C.M.; Goldenberg, S.; Krieger, M.A. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 2012, 12, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.C.; Batista, M.; da Cunha, E.S.; Lucena, A.C.; Lima, C.V.D.P.; Sousa, K.; Krieger, M.A.; Marchini, F.K. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci. Rep. 2017, 7, 9899. [Google Scholar] [CrossRef]
- Sher, A.L.A.N.; Crane, M.S.J.; Kirchhoff, L.V. Incubation in Mice Provides a Signal for the Differentiation of Trypanosoma cruzi Epimastigotes to Trypomastigotes 1. J. Protozool. 1983, 30, 278–283. [Google Scholar] [CrossRef]
- Parodi-Talice, A.; Monteiro-Goes, V.; Arrambide, N.; Avila, A.R.; Duran, R.; Correa, A.; Dallagiovanna, B.; Cayota, A.; Krieger, M.; Goldenberg, S.; et al. Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis. J. Mass Spectrom. 2007, 42, 1422–1432. [Google Scholar] [CrossRef]
- Kaneda, Y.; Nagakura, K.; Goutsu, T. Lipid composition of three morphological stages of Trypanosoma cruzi. Comp. Biochem. Physiol. B 1986, 83, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Chagas-Lima, A.C.; Pereira, M.G.; Fampa, P.; Lima, M.S.; Kluck, G.E.G.; Atella, G.C. Bioactive lipids regulate Trypanosoma cruzi development. Parasitol. Res. 2019, 118, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, A.F.; Esteves, M.J.; Angluster, J.; Gonzales-Perdomo, M.; Goldenberg, S. Changes in cell-surface carbohydrates of Trypanosoma cruzi during metacyclogenesis under chemically defined conditions. Microbiology 1991, 137, 2845–2849. [Google Scholar] [CrossRef]
- Minning, T.A.; Weatherly, D.B.; Atwood, J., 3rd; Orlando, R.; Tarleton, R.L. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genom. 2009, 10, 370. [Google Scholar] [CrossRef]
- Cruz-Saavedra, L.; Vallejo, G.A.; Guhl, F.; Messenger, L.A.; Ramírez, J.D. Transcriptional remodeling during metacyclogenesis in Trypanosoma cruzi I. Virulence 2020, 11, 968–979. [Google Scholar] [CrossRef]
- Smircich, P.; Eastman, G.; Bispo, S.; Duhagon, M.A.; Guerra-Slompo, E.P.; Garat, B.; Goldenberg, S.; Munroe, D.J.; Dallagiovanna, B.; Holetz, F.; et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genom. 2015, 16, 443. [Google Scholar] [CrossRef]
- Ferreira, L.R.; Dossin, F.D.M.; Ramos, T.C.; Freymüller, E.; Schenkman, S. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. An. Da Acad. Bras. Ciências 2008, 80, 157–166. [Google Scholar] [CrossRef]
- Espinosa, J.M.; Portal, D.; Lobo, G.S.; Pereira, C.A.; Alonso, G.D.; Gómez, E.B.; Lan, G.H.; Pomar, R.V.; Flawiá, M.M.; Torres, H.N. Trypanosoma cruzi poly-zinc finger protein: A novel DNA/RNA-binding CCHC-zinc finger protein. Mol. Biochem. Parasitol. 2003, 131, 35–44. [Google Scholar] [CrossRef]
- Alcantara, M.V.; Kessler, R.L.; Gonçalves, R.E.G.; Marliére, N.P.; Guarneri, A.A.; Picchi, G.F.A.; Fragoso, S.P. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form. Mol. Biochem. Parasitol. 2018, 221, 1–9. [Google Scholar] [CrossRef]
- Romaniuk, M.A.; Frasch, A.C.; Cassola, A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog. 2018, 14, e1007059. [Google Scholar] [CrossRef]
- Cassola, A.; De Gaudenzi, J.G.; Frasch, A.C. Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol. Microbiol. 2007, 65, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors—A Review. Microorganisms 2024, 12, 855. [Google Scholar] [CrossRef]
- de Lana, M.; da Silveira Pinto, A.; Barnabé, C.; Quesney, V.; Noël, S.; Tibayrenc, M. Trypanosoma cruzi: Compared vectorial transmissibility of three major clonal genotypes by Triatoma infestans. Exp. Parasitol. 1998, 90, 20–25. [Google Scholar] [CrossRef]
- Paranaiba, L.F.; Soares, R.P.; Guarneri, A.A. Triatoma infestans susceptibility to different Trypanosoma cruzi strains: Parasite development and early escape from anterior midgut. Parasitology 2021, 148, 295–301. [Google Scholar] [CrossRef]
- Harrison, R.E.; Vogel, K.J.; Etheridge, R.D. Stable colonization of the kissing bug Rhodnius prolixus by Trypanosoma cruzi Y strain. PLoS Negl. Trop. Dis. 2025, 19, e0012906. [Google Scholar] [CrossRef]
- Melo, R.F.P.; Guarneri, A.A.; Silber, A.M. The Influence of Environmental Cues on the Development of Trypanosoma cruzi in Triatominae Vector. Front. Cell. Infect. Microbiol. 2020, 10, 27. [Google Scholar] [CrossRef]
- Gürtler, R.E.; Kitron, U.; Cecere, M.C.; Segura, E.L.; Cohen, J.E. Sustainable vector control and management of Triatoma infestans populations in northwestern Argentina: Effects of long-term starvation. Infect. Genet. Evol. 2009, 9, 441–446. [Google Scholar] [CrossRef]
- Belisário, C.J.; Dias, J.V.; Diotaiuti, L. Profile of the Trypanosoma cruzi vector infestation in Jaboticatubas, State of Minas Gerais, Brazil. Rev. Soc. Bras. Med. Trop. 2013, 46, 779–782. [Google Scholar] [CrossRef]
- Mesquita, R.D.; Vionette-Amaral, R.J.; Lowenberger, C.; Rivera-Pomar, R.; Garcia, E.S.; Azambuja, P. Microbiota modulates redox metabolism in the Trypanosoma cruzi–Rhodnius prolixus interaction. Sci. Rep. 2015, 5, 11447. [Google Scholar] [CrossRef]
- Bonfante-Cabarcas, R.; Rodríguez-Angulo, H.; Rodríguez, M.; Añez, N.; Concepción, J.L. Gene expression and differentiation of Trypanosoma cruzi metacyclic forms in Triatoma infestans. Parasites Vectors 2010, 3, 114. [Google Scholar] [CrossRef]
- Ferro ESilva, A.M.; Sobral-Souza, T.; Vancine, M.H.; Muylaert, R.L.; de Abreu, A.P.; Pelloso, S.M.; de Barros Carvalho, M.D.; de Andrade, L.; Ribeiro, M.C.; Toledo, M.J.O. Spatial prediction of risk areas for vector transmission of Trypanosoma cruzi in the State of Paraná, southern Brazil. PLoS Neglected Trop. Dis. 2018, 12, e0006907. [Google Scholar] [CrossRef]
- González-Rete, B.; Salazar-Schettino, P.M.; Bucio-Torres, M.I.; Córdoba-Aguilar, A.; Cabrera-Bravo, M. Activity of the prophenoloxidase system and survival of triatomines infected with different Trypanosoma cruzi strains under different temperatures: Understanding Chagas disease in the face of climate change. Parasites Vectors 2019, 12, 219. [Google Scholar] [CrossRef]
- Segovia, M.; Schwabl, P.; Sueto, S.; Nakad, C.C.; Londoño, J.C.; Rodriguez, M.; Paiva, M.; Llewellyn, M.S.; Carrasco, H.J. Vector mapping and bloodmeal metabarcoding demonstrate risk of urban Chagas disease transmission in Caracas, Venezuela. PLoS Neglected Trop. Dis. 2023, 17, e0010613. [Google Scholar] [CrossRef]
- Loshouarn, H.; Guarneri, A.A. Effects of fasting on the interplay between temperature and Trypanosoma cruzi infection on the life cycle of the Chagas disease vector Rhodnius prolixus. PLoS Neglected Trop. Dis. 2024, 18, e0012665. [Google Scholar] [CrossRef]
- Macedo, C.M.; Saraiva, F.M.S.; Paula, J.I.O.; Nascimento, S.B.; Costa, D.S.D.S.; Costa, P.R.R.; Dias, A.G.; Paes, M.C.; Nogueira, N.P. The Potent Trypanocidal Effect of LQB303, a Novel Redox-Active Phenyl-Tert-Butyl-Nitrone Derivate That Causes Mitochondrial Collapse in Trypanosoma cruzi. Front. Microbiol. 2021, 12, 617504. [Google Scholar] [CrossRef]
- Paranaiba, L.F.; Guarneri, A.A.; Torrecilhas, A.C.; Melo, M.N.; Soares, R.P. Extracellular vesicles isolated from Trypanosoma cruzi affect early parasite migration in the gut of Rhodnius prolixus but not in Triatoma infestans. Mem. Inst. Oswaldo Cruz 2019, 114, e190217. [Google Scholar] [CrossRef]
- Zingales, B.; Bartholomeu, D.C. Trypanosoma cruzi genetic diversity: Impact on transmission cycles and Chagas disease. Mem. Do Inst. Oswaldo Cruz 2022, 117, e210193. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Jaramillo, A.M.; Peña, V.H.; Triana-Chávez, O. Trypanosoma cruzi: Biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp. Parasitol. 2009, 121, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Noireau, F.; Diosque, P.; Jansen, A.M. Trypanosoma cruzi: Adaptation to its vectors and its hosts. Vet. Res. 2009, 40, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sana, A.; Rossi, I.V.; Ramirez, M.I. Regulation and Roles of Metacyclogenesis and Epimastigogenesis in the Life Cycle of Trypanosoma cruzi. Pathogens 2025, 14, 1149. https://doi.org/10.3390/pathogens14111149
Sana A, Rossi IV, Ramirez MI. Regulation and Roles of Metacyclogenesis and Epimastigogenesis in the Life Cycle of Trypanosoma cruzi. Pathogens. 2025; 14(11):1149. https://doi.org/10.3390/pathogens14111149
Chicago/Turabian StyleSana, Abel, Izadora Volpato Rossi, and Marcel Ivan Ramirez. 2025. "Regulation and Roles of Metacyclogenesis and Epimastigogenesis in the Life Cycle of Trypanosoma cruzi" Pathogens 14, no. 11: 1149. https://doi.org/10.3390/pathogens14111149
APA StyleSana, A., Rossi, I. V., & Ramirez, M. I. (2025). Regulation and Roles of Metacyclogenesis and Epimastigogenesis in the Life Cycle of Trypanosoma cruzi. Pathogens, 14(11), 1149. https://doi.org/10.3390/pathogens14111149
