Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Animal Experiments and Clinical Sampling
2.3. Necropsy and Gross Pathological Evaluation
2.4. Sample Processing and Storage
2.5. Viral DNA Extractions and Quantitative PCR (qPCR)
2.6. Plasma Cytokine Quantification by ELISA
2.7. Flow Cytometry
2.8. mRNAseq, Differentially Expressed Genes, and Gene Ontology Analysis
2.9. Statistical Analysis
3. Results
3.1. Post-Challenge Clinical Progression, Virus qPCR, and Pathology
3.2. Plasma Cytokine Perturbations
3.3. Changes in Circulating Leukocyte Populations
3.4. Differentially Expressed Genes (DEGs) and Gene Ontology (GO) Processes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Vizcaíno, J.H.; Heath, D.L. African swine fever (infection with African swine fever virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th ed.; Office International des Epizooties: Paris, France, 2019. [Google Scholar]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African Swine Fever Virus: An Emerging DNA Arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar] [CrossRef]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African swine fever virus. Virus Res. 2013, 173, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, W.; Moreno, C.; Duran, U.; Henao, N.; Bencosme, M.; Lora, P.; Reyes, R.; Núñez, R.; De Gracia, A.; Perez, A.M. African swine fever in the Dominican Republic. Transbound. Emerg. Dis. 2021, 68, 3018–3019. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health (WOAH). African Swine Fever: WOAH Warns Veterinary Authorities and Pig Industry of Risk from Use of Sub-Standard Vaccines. 2023. Available online: https://www.woah.org/app/uploads/2024/01/en-woah-positionstatement-asf-substandard-vaccines.pdf (accessed on 8 August 2025).
- Van Diep, N.; Van Duc, N.; Ngoc, N.T.; Dang, V.X.; Tiep, T.N.; Nguyen, V.D.; Than, T.T.; Maydaniuk, D.; Goonewardene, K.; Ambagala, A.; et al. Genotype II Live-Attenuated ASFV Vaccine Strains Unable to Completely Protect Pigs against the Emerging Recombinant ASFV Genotype I/II Strain in Vietnam. Vaccines 2024, 12, 1114. [Google Scholar] [CrossRef]
- Dixon, L.K.; Chapman, D.A.; Netherton, C.L.; Upton, C. African swine fever virus replication and genomics. Virus Res. 2013, 173, 3–14. [Google Scholar] [CrossRef]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A Proteomic Atlas of the African Swine Fever Virus Particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef]
- Keßler, C.; Forth, J.H.; Keil, G.M.; Mettenleiter, T.C.; Blome, S.; Karger, A. The intracellular proteome of African swine fever virus. Sci. Rep. 2018, 8, 14714. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Dietze, K.; Breithaupt, A.; Beer, M. High Virulence of African Swine Fever Virus Caucasus Isolate in European Wild Boars of All Ages. Emerg. Infect. Dis. 2012, 18, 708. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Pikalo, J.; Zani, L.; Hühr, J.; Beer, M.; Blome, S. Pathogenesis of African swine fever in domestic pigs and European wild boar—Lessons learned from recent animal trials. Virus Res. 2019, 271, 197614. [Google Scholar] [CrossRef]
- Thomson, G.R.; Gainaru, M.D.; Van Dellen, A.F. Experimental infection of warthos (Phacochoerus aethiopicus) with African swine fever virus. Onderstepoort J. Vet. Res. 1980, 47, 19–22. [Google Scholar] [PubMed]
- Anderson, E.; Hutchings, G.; Mukarati, N.; Wilkinson, P. African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Vet. Microbiol. 1998, 62, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jori, F.; Bastos, A.D.S. Role of Wild Suids in the Epidemiology of African Swine Fever. Ecohealth 2009, 6, 296–310. [Google Scholar] [CrossRef] [PubMed]
- del Moral, M.G.; Ortuño, E.; FernánDez-Zapatero, P.; Alonso, F.; Alonso, C.; Ezquerra, A.; DomínGuez, J. African swine fever virus infection induces tumor necrosis factor alpha production: Implications in pathogenesis. J. Virol. 1999, 73, 2173–2180. [Google Scholar] [CrossRef]
- Carrasco, L.; Núñez, A.; Salguero, F.; Segundo, F.D.S.; Sánchez-Cordón, P.; Gómez-Villamandos, J.; Sierra, M. African swine fever: Expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. J. Comp. Pathol. 2002, 126, 194–201. [Google Scholar] [CrossRef]
- Salguero, F.; Ruiz-Villamor, E.; Bautista, M.; Sánchez-Cordón, P.; Carrasco, L.; Gómez-Villamandos, J. Changes in macrophages in spleen and lymph nodes during acute African swine fever: Expression of cytokines. Vet. Immunol. Immunopathol. 2002, 90, 11–22. [Google Scholar] [CrossRef]
- Salguero, F.; Sánchez-Cordón, P.; Núñez, A.; de Marco, M.F.; Gómez-Villamandos, J. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J. Comp. Pathol. 2005, 132, 289–302. [Google Scholar] [CrossRef]
- Gómez-Villamandos, J.; Bautista, M.; Sánchez-Cordón, P.; Carrasco, L. Pathology of African swine fever: The role of monocyte-macrophage. Virus Res. 2013, 173, 140–149. [Google Scholar] [CrossRef]
- Correia, S.; Ventura, S.; Parkhouse, R.M. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res. 2013, 173, 87–100. [Google Scholar] [CrossRef]
- Wu, L.; Yang, B.; Yuan, X.; Hong, J.; Peng, M.; Chen, J.-L.; Song, Z. Regulation and Evasion of Host Immune Response by African Swine Fever Virus. Front. Microbiol. 2021, 12, 698001. [Google Scholar] [CrossRef]
- Pérez-Núñez, D.; Castillo-Rosa, E.; Vigara-Astillero, G.; García-Belmonte, R.; Gallardo, C.; Revilla, Y. Identification and Isolation of Two Different Subpopulations Within African Swine Fever Virus Arm/07 Stock. Vaccines 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, A.L.; Bustos, M.J.; de Leon, P. Methods for growing and titrating African swine fever virus: Field and laboratory samples. Curr. Protoc. Cell Biol. 2011, 53, 26.14.1–26.14.25. [Google Scholar] [CrossRef] [PubMed]
- McDowell, C.D.; Bold, D.; Trujillo, J.D.; Meekins, D.A.; Keating, C.; Cool, K.; Kwon, T.; Madden, D.W.; Artiaga, B.L.; Balaraman, V.; et al. Experimental Infection of Domestic Pigs with African Swine Fever Virus Isolated in 2019 in Mongolia. Viruses 2022, 14, 2698. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, S.-Y.; Pérez-Núñez, D.; Morozov, I.; Sánchez, E.G.; Gaudreault, N.N.; Trujillo, J.D.; Mur, L.; Nogal, M.; Madden, D.; Urbaniak, K.; et al. DNA-Protein Vaccination Strategy Does Not Protect from Challenge with African Swine Fever Virus Armenia 2007 Strain. Vaccines 2019, 7, 12. [Google Scholar] [CrossRef]
- Zsak, L.; Borca, M.V.; Risatti, G.R.; Zsak, A.; French, R.A.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Callahan, J.D.; Nelson, W.M.; et al. Preclinical diagnosis of African swine fever in contact-exposed swine by a real-time PCR assay. J. Clin. Microbiol. 2005, 43, 112–119. [Google Scholar] [CrossRef]
- Pérez-Núñez, D.; Madden, D.W.; Vigara-Astillero, G.; Meekins, D.A.; McDowell, C.D.; Libanori-Artiaga, B.; García-Belmonte, R.; Bold, D.; Trujillo, J.D.; Cool, K.; et al. Generation and Genetic Stability of a PolX and 5′ MGF-Deficient African Swine Fever Virus Mutant for Vaccine Development. Vaccines 2024, 12, 1125. [Google Scholar] [CrossRef]
- Artiaga, B.L.; Yang, G.; Hutchinson, T.E.; Loeb, J.C.; Richt, J.A.; Lednicky, J.A.; Salek-Ardakani, S.; Driver, J.P. Rapid control of pandemic H1N1 influenza by targeting NKT-cells. Sci. Rep. 2016, 6, 37999. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Putri, G.H.; Anders, S.; Pyl, P.T.; E Pimanda, J.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Netherton, C.; Rouiller, I.; Wileman, T. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-terminal KDEL endoplasmic reticulum retention motifs. J. Virol. 2004, 78, 3710–3721. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Chen, H.; Zhang, H.; Dong, P.; Sun, L.; Huang, X.; Lin, P.; Wu, L.; Jing, D.; et al. Structural insights into the CP312R protein of the African swine fever virus. Biochem. Biophys. Res. Commun. 2022, 624, 68–74. [Google Scholar] [CrossRef]
- Kudryashov, D.A.; Nefedeva, M.V.; Malogolovkin, A.S.; Titov, I.A. Multigenic family 110 (1 L-5-6 L) of African swine fever virus modulate cytokine genes expression in vitro. Mol. Biol. Rep. 2024, 51, 948. [Google Scholar] [CrossRef]
- Ramirez-Medina, E.; Vuono, E.; Silva, E.; Rai, A.; Valladares, A.; Pruitt, S.; Espinoza, N.; Velazquez-Salinas, L.; Borca, M.V.; Gladue, D.P. Evaluation of the Deletion of MGF110-5L-6L on Swine Virulence from the Pandemic Strain of African Swine Fever Virus and Use as a DIVA Marker in Vaccine Candidate ASFV-G-ΔI177L. J. Virol. 2022, 96, e0059722. [Google Scholar] [CrossRef]
- Gómez-Puertas, P.; Rodríguez, F.; Oviedo, J.M.; Brun, A.; Alonso, C.; Escribano, J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 1998, 243, 461–471. [Google Scholar] [CrossRef]
- Hübner, A.; Keßler, C.; Pannhorst, K.; Forth, J.H.; Kabuuka, T.; Karger, A.; Mettenleiter, T.C.; Fuchs, W. Identification and characterization of the 285L and K145R proteins of African swine fever virus. J. Gen. Virol. 2019, 100, 1303–1314. [Google Scholar] [CrossRef]
- Oh, S.-I.; Sheet, S.; Bui, V.N.; Dao, D.T.; Bui, N.A.; Kim, T.-H.; Cha, J.; Park, M.-R.; Hur, T.-Y.; Jung, Y.-H.; et al. Transcriptome profiles of organ tissues from pigs experimentally infected with African swine fever virus in early phase of infection. Emerg. Microbes Infect. 2024, 13, 2366406. [Google Scholar] [CrossRef]
- Hernandez, A.M.M.; Tabares, E. Expression and characterization of the thymidine kinase gene of African swine fever virus. J. Virol. 1991, 65, 1046–1052. [Google Scholar] [CrossRef]
- Oliveros, M.; García-Escudero, R.; Alejo, A.; ViñuEla, E.; Salas, M.L.; Salas, J. African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. J. Virol. 1999, 73, 8934–8943. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Alcaraz, C.; Brun, A.; Sussman, M.D.; Onisk, D.V.; Escribano, J.M.; Rock, D.L. Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus. Virology 1992, 189, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Rouiller, I.; Brookes, S.M.; Hyatt, A.D.; Windsor, M.; Wileman, T. African swine fever virus is wrapped by the endoplasmic reticulum. J. Virol. 1998, 72, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Fan, S.; Du, Y.; Zhang, Y.; Zhang, A.; Jiang, D.; Han, S.; Wan, B.; Zhang, G. African Swine Fever Virus MGF110-7L Induces Host Cell Translation Suppression and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway. Microbiol. Spectr. 2022, 10, e0328222. [Google Scholar] [CrossRef]
- Dolata, K.M.; Fuchs, W.; Caignard, G.; Dupré, J.; Pannhorst, K.; Blome, S.; Mettenleiter, T.C.; Karger, A. CP204L Is a Multifunctional Protein of African Swine Fever Virus That Interacts with the VPS39 Subunit of the Homotypic Fusion and Vacuole Protein Sorting Complex and Promotes Lysosome Clustering. J. Virol. 2023, 97, e0194322. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, L.; Wang, J.; Su, D.; Li, D.; Du, Y.; Yang, G.; Zhang, G.; Chu, B. African Swine Fever Virus K205R Induces ER Stress and Consequently Activates Autophagy and the NF-κB Signaling Pathway. Viruses 2022, 14, 394. [Google Scholar] [CrossRef]
- Salguero, F.J. Comparative Pathology and Pathogenesis of African Swine Fever Infection in Swine. Front. Vet. Sci. 2020, 7, 282. [Google Scholar] [CrossRef]
- Murphy, K.; Janeway, C.A., Jr.; Travers, P.; Walport, M.J. Janeway’s Immunobiology, 8th ed.; Garland Science: New York, NY, USA, 2012. [Google Scholar]
- Franzoni, G.; Pedrera, M.; Sánchez-Cordón, P.J. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023, 15, 233. [Google Scholar] [CrossRef]
- Karalyan, Z.; Zakaryan, H.; Sargsyan, K.; Voskanyan, H.; Arzumanyan, H.; Avagyan, H.; Karalova, E. Interferon status and white blood cells during infection with African swine fever virus in vivo. Vet. Immunol. Immunopathol. 2012, 145, 551–555. [Google Scholar] [CrossRef]
- Zakaryan, H.; Cholakyans, V.; Simonyan, L.; Misakyan, A.; Karalova, E.; Chavushyan, A.; Karalyan, Z. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch. Virol. 2015, 160, 1407–1414. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Zhang, Y.; Yang, J.; Wang, L.; Qi, Y.; Han, X.; Zhou, X.; Miao, F.; Chen, T.; et al. Cytokine Storm in Domestic Pigs Induced by Infection of Virulent African Swine Fever Virus. Front. Vet. Sci. 2020, 7, 601641. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, W.; Jiang, C.; Zhang, X.; Sun, Y.; Liu, R.; Wang, J.; Yang, D.; Zhao, D.; Bu, Z.; et al. Host Responses to Live-Attenuated ASFV (HLJ/18–7GD). Viruses 2022, 14, 2003. [Google Scholar] [CrossRef] [PubMed]
- Zsak, L.; Caler, E.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J. Virol. 1998, 72, 1028–1035. [Google Scholar] [CrossRef]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, P.L.; Lacasta, A.; López, E.; Bosch, L.; Collado, J.; Pina-Pedrero, S.; Correa-Fiz, F.; Accensi, F.; Navas, M.J.; Vidal, E.; et al. BA71ΔCD2: A New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J. Virol. 2017, 91, 10-1128. [Google Scholar] [CrossRef]
- Gladue, D.P.; Ramirez-Medina, E.; Vuono, E.; Silva, E.; Rai, A.; Pruitt, S.; Espinoza, N.; Velazquez-Salinas, L.; Borca, M.V. Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus. J. Virol. 2021, 95, e0113921. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Kang, L.; Huang, L.; Zhou, S.; Hu, L.; Zheng, J.; Li, C.; Zhang, X.; He, X.; et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathog. 2021, 17, e1009733. [Google Scholar] [CrossRef]
- Razzuoli, E.; Armando, F.; De Paolis, L.; Ciurkiewicz, M.; Amadori, M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022, 11, 175. [Google Scholar] [CrossRef]
- Huang, L.; Chen, W.; Liu, H.; Xue, M.; Dong, S.; Liu, X.; Feng, C.; Cao, S.; Ye, G.; Zhou, Q.; et al. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase–STING and IFN Signaling Pathways. J. Immunol. 2023, 210, 1338–1350. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; Ma, C.; Yang, F.; Cao, W.; Liu, H.; Chen, X.; Feng, T.; Shi, Z.; Tian, H.; et al. African Swine Fever Virus E184L Protein Interacts with Innate Immune Adaptor STING to Block IFN Production for Viral Replication and Pathogenesis. J. Immunol. 2023, 210, 442–458. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Ye, G.; Liu, H.; Feng, C.; Chen, W.; Hu, L.; Zhou, Q.; Zhang, Z.; Li, J.; et al. African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS Pathog. 2024, 20, e1012136. [Google Scholar] [CrossRef]
- Sunwoo, S.-Y.; García-Belmonte, R.; Walczak, M.; Vigara-Astillero, G.; Kim, D.-M.; Szymankiewicz, K.; Kochanowski, M.; Liu, L.; Tark, D.; Podgórska, K.; et al. Deletion of MGF505-2R Gene Activates the cGAS-STING Pathway Leading to Attenuation and Protection against Virulent African Swine Fever Virus. Vaccines 2024, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Duque, G.A.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; O’donnell, V.; Alfano, M.; Salinas, L.V.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Higgs, S.; Borca, M.V. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model. Viruses 2016, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.L.; Abrams, C.C.; Goatley, L.C.; Netherton, C.; Chapman, D.G.; Sanchez-Cordon, P.; Dixon, L.K. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 2016, 34, 4698–4705. [Google Scholar] [CrossRef]
- Post, J.; Weesendorp, E.; Montoya, M.; Loeffen, W.L. Influence of Age and Dose of African Swine Fever Virus Infections on Clinical Outcome and Blood Parameters in Pigs. Viral Immunol. 2017, 30, 58–69. [Google Scholar] [CrossRef]
- Radulovic, E.; Mehinagic, K.; Wüthrich, T.; Hilty, M.; Posthaus, H.; Summerfield, A.; Ruggli, N.; Benarafa, C. The baseline immunological and hygienic status of pigs impact disease severity of African swine fever. PLoS Pathog. 2022, 18, e1010522. [Google Scholar] [CrossRef]
- Waters, J.P.; Pober, J.S.; Bradley, J.R. Tumour necrosis factor in infectious disease. J. Pathol. 2013, 230, 132–147. [Google Scholar] [CrossRef]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2022, 23, 289–303. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Chen, T.; Yang, J.; Yue, H.; Wang, L.; Zhou, X.; Qi, Y.; Han, X.; Ke, J.; et al. Deletion of the L7L-L11L Genes Attenuates ASFV and Induces Protection against Homologous Challenge. Viruses 2021, 13, 255. [Google Scholar] [CrossRef]
- Wang, T.; Luo, R.; Zhang, J.; Lan, J.; Lu, Z.; Zhai, H.; Li, L.-F.; Sun, Y.; Qiu, H.-J. The African swine fever virus MGF300-4L protein is associated with viral pathogenicity by promoting the autophagic degradation of IKK β and increasing the stability of I κ B α. Emerg. Microbes Infect. 2024, 13, 2333381. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Luo, R.; Zhang, J.; Lu, Z.; Li, L.-F.; Zheng, Y.-H.; Pan, L.; Lan, J.; Zhai, H.; Huang, S.; et al. The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKα and IKKβ through the recruitment of TOLLIP. PLoS Pathog. 2023, 19, e1011580. [Google Scholar] [CrossRef] [PubMed]
- Wojno, E.D.T.; Hunter, C.A.; Stumhofer, J.S. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019, 50, 851–870. [Google Scholar] [CrossRef] [PubMed]
- Spolski, R.; Li, P.; Leonard, W.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy. Nat. Rev. Immunol. 2018, 18, 648–659. [Google Scholar] [CrossRef]
- Couper, K.N.; Blount, D.G.; Riley, E.M. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef]
- Saraiva, M.; O’GArra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Jabbar, T.; Berrezaie, M.; Chapman, D.; Reis, A.; Sastre, P.; Rueda, P.; Goatley, L.; Dixon, L.K. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine 2018, 36, 707–715. [Google Scholar] [CrossRef]
- Reis, A.L.; Goatley, L.C.; Jabbar, T.; Lopez, E.; Rathakrishnan, A.; Dixon, L.K. Deletion of the Gene for the Type I Interferon Inhibitor I329L from the Attenuated African Swine Fever Virus OURT88/3 Strain Reduces Protection Induced in Pigs. Vaccines 2020, 8, 262. [Google Scholar] [CrossRef]
- Barroso-Arévalo, S.; Barasona, J.A.; Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M. The Role of Interleukine-10 and Interferon-γ as Potential Markers of the Evolution of African Swine Fever Virus Infection in Wild Boar. Pathogens 2021, 10, 757. [Google Scholar] [CrossRef]
- Li, M.O.; Flavell, R.A. TGF-β: A Master of All T Cell Trades. Cell 2008, 134, 392–404. [Google Scholar] [CrossRef]
- Mccullough, K.C.; Basta, S.; Knötig, S.; Gerber, H.; Schaffner, R.; Kim, Y.B.; Saalmüller, A.; Summerfield, A. Intermediate stages in monocyte–macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology 1999, 98, 203–212. [Google Scholar] [CrossRef]
- Petersen, C.; Nygård, A.-B.; Viuff, B.; Fredholm, M.; Aasted, B.; Salomonsen, J. Porcine ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1/CD203a): Cloning, transcription, expression, mapping, and identification of an NPP1/CD203a epitope for swine workshop cluster 9 (SWC9) monoclonal antibodies. Dev. Comp. Immunol. 2007, 31, 618–631. [Google Scholar] [CrossRef]
- Carozza, J.A.; Cordova, A.F.; Brown, J.A.; AlSaif, Y.; Böhnert, V.; Cao, X.; Mardjuki, R.E.; Skariah, G.; Fernandez, D.; Li, L. ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proc. Natl. Acad. Sci. USA 2022, 119, e2119189119. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.-F.; Wan, B.; Ming, S.-L.; Li, G.-L.; Su, B.-Q.; Liu, J.-Y.; Wei, Y.-S.; Yang, G.-Y.; Chu, B.-B. Maintenance of cyclic GMP–AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol. Immunol. 2018, 95, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Oura, C.A.L.; Denyer, M.S.; Takamatsu, H.; Parkhouse, R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 2005, 86, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Hühr, J.; Schäfer, A.; Schwaiger, T.; Zani, L.; Sehl, J.; Mettenleiter, T.C.; Blome, S.; Blohm, U. Impaired T-cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transbound. Emerg. Dis. 2020, 67, 3016–3032. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Liu, H.; Zhu, Z.; Yang, F.; Song, Y.; Li, Z.; Xue, Z.; Cao, W.; Liu, X.; Zheng, H. African Swine Fever Virus Regulates Host Energy and Amino Acid Metabolism To Promote Viral Replication. J. Virol. 2022, 96, e01919-21. [Google Scholar] [CrossRef]
- Jaing, C.; Rowland, R.R.R.; Allen, J.E.; Certoma, A.; Thissen, J.B.; Bingham, J.; Rowe, B.; White, J.R.; Wynne, J.W.; Johnson, D.; et al. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci. Rep. 2017, 7, 10115. [Google Scholar] [CrossRef]
- Almendral, J.M.; Almazán, F.; Blasco, R.; Viñuela, E. Multigene families in African swine fever virus: Family 110. J. Virol. 1990, 64, 2064–2072. [Google Scholar] [CrossRef]
- Huang, Z.; Kong, C.; Zhang, W.; You, J.; Gao, C.; Yi, J.; Mai, Z.; Chen, X.; Zhou, P.; Gong, L.; et al. pK205R targets the proximal element of IFN-I signaling pathway to assist African swine fever virus to escape host innate immunity at the early stage of infection. PLoS Pathog. 2024, 20, e1012613. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Li, J.; Guo, S.; Chen, Q.; Zhang, Y.; Liu, Z.; Tan, C.; Chen, H.; Wang, X. African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J. Virol. 2022, 96, e0094422. [Google Scholar] [CrossRef]
- Riera, E.; García-Belmonte, R.; Madrid, R.; Pérez-Núñez, D.; Revilla, Y. African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation. Front. Microbiol. 2022, 13, 1081035. [Google Scholar] [CrossRef]
Marker | Clone | Isotype | Source | Fluorochrome |
---|---|---|---|---|
CD3ε | BB23-8E6-8C8 | Mouse IgG2aκ | BD Biosciences | PE-Cy7 |
CD4 | 74-12-4 | Mouse IgG2aκ | BD Biosciences | PE |
CD8α | 76-2-11 | Mouse IgG2aκ | Invitrogen | PE-Cy5 |
CD14 | MIL2 | Mouse IgG2b | Bio-Rad | Qdot 800 * |
CD79a | HM47 | Mouse IgG1κ | Invitrogen | PE |
CD163 | 2A10/11 | Mouse IgG1 | Bio-Rad | PE |
CD203a | PM18-7 | Mouse IgG1 | Bio-Rad | NFB 660 ^ |
DPC | GO Biological Process | ↑ or ↓ | # of DEGs | FDR p-Value |
---|---|---|---|---|
1 DPC | amide biosynthetic process (GO:0043604) | ↓ | 17 | 4.68 × 10−3 |
amide metabolic process (GO:0043603) | ↓ | 18 | 5.82 × 10−3 | |
peptide metabolic process (GO:0006518) | ↓ | 16 | 7.75 × 10−3 | |
peptide biosynthetic process (GO:0043043) | ↓ | 16 | 1.16 × 10−2 | |
translation (GO:0006412) | ↓ | 16 | 2.33 × 10−2 | |
cytoplasmic translation (GO:0002181) | ↓ | 8 | 3.96 × 10−2 | |
5 DPC | peptide biosynthetic process (GO:0043043) | ↓ | 66 | 2.44 × 10−9 |
translation (GO:0006412) | ↓ | 66 | 3.66 × 10−9 | |
peptide metabolic process (GO:0006518) | ↓ | 66 | 7.31 × 10−9 | |
amide metabolic process (GO:0043603) | ↓ | 72 | 5.32 × 10−8 | |
amide biosynthetic process (GO:0043604) | ↓ | 72 | 6.66 × 10−8 | |
macromolecule biosynthetic process (GO:0009059) | ↓ | 80 | 3.79 × 10−6 | |
gene expression (GO:0010467) | ↓ | 88 | 3.85 × 10−6 | |
defense response to virus (GO:0051607) | ↑ | 30 | 4.13 × 10−6 | |
defense response to symbiont (GO:0140546) | ↑ | 30 | 4.64 × 10−6 | |
organonitrogen compound biosynthetic process (GO:1901566) | ↓ | 86 | 3.72 × 10−5 | |
cellular nitrogen compound biosynthetic process (GO:0044271) | ↓ | 88 | 6.70 × 10−5 | |
response to virus (GO:0009615) | ↑ | 34 | 1.47 × 10−4 | |
ribonucleoprotein complex biogenesis (GO:0022613) | ↓ | 37 | 1.83 × 10−4 | |
ribosome biogenesis (GO:0042254) | ↓ | 33 | 2.29 × 10−4 | |
cytoplasmic translation (GO:0002181) | ↓ | 21 | 3.15 × 10−4 | |
positive regulation of defense response (GO:0031349) | ↑ | 15 | 7.22 × 10−4 | |
cellular biosynthetic process (GO:0044249) | ↓ | 94 | 7.40 × 10−4 | |
regulation of innate immune response (GO:0045088) | ↑ | 18 | 1.48 × 10−3 | |
regulation of defense response (GO:0031347) | ↑ | 23 | 1.76 × 10−3 | |
negative regulation of viral process (GO:0048525) | ↑ | 17 | 2.04 × 10−3 | |
positive regulation of innate immune response (GO:0045089) | ↑ | 13 | 2.18 × 10−3 | |
regulation of response to biotic stimulus (GO:0002831) | ↑ | 21 | 3.45 × 10−3 | |
non-membrane-bounded organelle assembly (GO:0140694) | ↓ | 20 | 3.48 × 10−3 | |
organic substance biosynthetic process (GO:1901576) | ↓ | 101 | 4.15 × 10−3 | |
regulation of viral process (GO:0050792) | ↑ | 22 | 5.49 × 10−3 | |
biosynthetic process (GO:0009058) | ↓ | 103 | 5.62 × 10−3 | |
negative regulation of viral genome replication (GO:0045071) | ↑ | 14 | 5.79 × 10−3 | |
protein-RNA complex assembly (GO:0022618) | ↓ | 18 | 5.95 × 10−3 | |
ribosome assembly (GO:0042255) | ↓ | 14 | 5.98 × 10−3 | |
protein-RNA complex organization (GO:0071826) | ↓ | 18 | 6.17 × 10−3 | |
ribosomal small subunit biogenesis (GO:0042274) | ↓ | 17 | 9.58 × 10−3 | |
regulation of viral life cycle (GO:1903900) | ↑ | 21 | 9.73 × 10−3 | |
cellular component biogenesis (GO:0044085) | ↓ | 76 | 1.13 × 10−2 | |
positive regulation of response to biotic stimulus (GO:0002833) | ↑ | 14 | 1.23 × 10−2 | |
cellular nitrogen compound metabolic process (GO:0034641) | ↓ | 121 | 1.24 × 10−2 | |
ribosomal large subunit biogenesis (GO:0042273) | ↓ | 16 | 1.41 × 10−2 | |
protein metabolic process (GO:0019538) | ↓ | 134 | 1.83 × 10−2 | |
regulation of viral genome replication (GO:0045069) | ↑ | 16 | 2.01 × 10−2 | |
defense response to other organism (GO:0098542) | ↑ | 54 | 2.36 × 10−2 | |
regulation of response to external stimulus (GO:0032101) | ↑ | 33 | 2.92 × 10−2 | |
organelle assembly (GO:0070925) | ↓ | 24 | 2.95 × 10−2 | |
ribosomal small subunit assembly (GO:0000028) | ↓ | 8 | 2.98 × 10−2 | |
protein-containing complex assembly (GO:0065003) | ↓ | 43 | 3.01 × 10−2 | |
interspecies interaction between organisms (GO:0044419) | ↑ | 66 | 3.03 × 10−2 | |
defense response (GO:0006952) | ↑ | 61 | 4.45 × 10−2 | |
7 DPC | defense response (GO:0006952) | ↑ | 81 | 8.12 × 10−4 |
interspecies interaction between organisms (GO:0044419) | ↑ | 80 | 8.68 × 10−4 | |
defense response to virus (GO:0051607) | ↑ | 26 | 8.86 × 10−4 | |
response to external biotic stimulus (GO:0043207) | ↑ | 78 | 9.32 × 10−4 | |
response to other organism (GO:0051707) | ↑ | 78 | 1.07 × 10−3 | |
defense response to symbiont (GO:0140546) | ↑ | 26 | 1.18 × 10−3 | |
response to biotic stimulus (GO:0009607) | ↑ | 79 | 1.20 × 10−3 | |
defense response to other organism (GO:0098542) | ↑ | 64 | 1.27 × 10−3 | |
response to bacterium (GO:0009617) | ↑ | 24 | 7.90 × 10−3 | |
response to virus (GO:0009615) | ↑ | 31 | 1.11 × 10−2 | |
response to external stimulus (GO:0009605) | ↑ | 104 | 1.94 × 10−2 | |
antimicrobial humoral response (GO:0019730) | ↑ | 8 | 2.06 × 10−2 | |
regulation of defense response (GO:0031347) | ↑ | 45 | 2.35 × 10−2 | |
positive regulation of defense response (GO:0031349) | ↑ | 27 | 2.61 × 10−2 | |
response to stress (GO:0006950) | ↑ | 133 | 2.72 × 10−2 | |
regulation of viral genome replication (GO:0045069) | ↑ | 15 | 3.64 × 10−2 | |
negative regulation of viral genome replication (GO:0045071) | ↑ | 14 | 3.99 × 10−2 | |
innate immune response (GO:0045087) | ↑ | 52 | 4.64 × 10−2 |
ASFV Gene | RPKM | Description | References | |
---|---|---|---|---|
5 DPC | MGF 110-7L * | 1.17 × 105 | Suppresses host cell translation | [36] |
285L * | 1.16 × 105 | Early viral gene product; membrane protein; nonessential in vitro | [37] | |
CP312R * | 9.57 × 104 | ssDNA binding protein | [38] | |
E165R * | 9.06 × 104 | dUTPase | [39] | |
K205R * | 8.20 × 104 | Activates autophagy and NF-κB signaling | [40,41] | |
MGF 110-3L * | 7.91 × 104 | Protein XP124L; virus morphogenesis | [42] | |
CP204L * | 6.70 × 104 | Protein p30; virus internalization; endosome trafficking | [43,44,45] | |
MGF 110-5L-6L * | 5.58 × 104 | Uncharacterized; nonessential | [46] | |
MGF 110-4L * | 3.74 × 104 | Uncharacterized; has ER retention motif | [42] | |
K196R | 2.39 × 104 | Thymidine kinase | [47] | |
7 DPC | MGF 110-7L * | 1.45 × 105 | Suppresses host cell translation | [36] |
K205R * | 1.20 × 105 | Activates autophagy and NF-κB signaling | [40,41] | |
MGF 110-3L * | 1.08 × 105 | Protein XP124L; virus morphogenesis | [42] | |
285L * | 9.86 × 104 | Early viral gene product; membrane protein; nonessential in vitro | [37] | |
CP204L * | 9.14 × 104 | Protein p30; virus internalization; endosome trafficking | [43,44,45] | |
E165R * | 7.79 × 104 | dUTPase | [39] | |
MGF 110-5L-6L * | 7.60 × 104 | Uncharacterized; nonessential | [46] | |
CP312R * | 5.90 × 104 | ssDNA binding protein | [38] | |
MGF 110-4L * | 4.61 × 104 | Uncharacterized; has ER retention motif | [42] | |
I215L | 3.07 × 104 | Ubiquitin-conjugating enzyme; inhibits type I IFN signaling | [48,49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madden, D.W.; Artiaga, B.L.; Trujillo, J.D.; Assato, P.; McDowell, C.D.; Fitz, I.; Kwon, T.; Cool, K.; Li, Y.; Gaudreault, N.N.; et al. Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus. Pathogens 2025, 14, 992. https://doi.org/10.3390/pathogens14100992
Madden DW, Artiaga BL, Trujillo JD, Assato P, McDowell CD, Fitz I, Kwon T, Cool K, Li Y, Gaudreault NN, et al. Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus. Pathogens. 2025; 14(10):992. https://doi.org/10.3390/pathogens14100992
Chicago/Turabian StyleMadden, Daniel W., Bianca Libanori Artiaga, Jessie D. Trujillo, Patricia Assato, Chester D. McDowell, Isaac Fitz, Taeyong Kwon, Konner Cool, Yonghai Li, Natasha N. Gaudreault, and et al. 2025. "Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus" Pathogens 14, no. 10: 992. https://doi.org/10.3390/pathogens14100992
APA StyleMadden, D. W., Artiaga, B. L., Trujillo, J. D., Assato, P., McDowell, C. D., Fitz, I., Kwon, T., Cool, K., Li, Y., Gaudreault, N. N., Morozov, I., & Richt, J. A. (2025). Temporal Dynamics of Cytokine, Leukocyte, and Whole Blood Transcriptome Profiles of Pigs Infected with African Swine Fever Virus. Pathogens, 14(10), 992. https://doi.org/10.3390/pathogens14100992