Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment
Abstract
1. Introduction
2. Insight into the Mechanisms of Urolithiasis Development
3. Immune Mechanisms Contributing to Calcium Oxalate Crystallization and Kidney Stone Formation
4. Involvement of E. coli in Calcium Oxalate Nephrolithiasis: Insights into Selected Mechanisms
5. Potential Strategies to Prevent the Development of Kidney Stones
6. Approaches to Infectious Urolithiasis: Surgical Interventions, Drug Therapies and Future Directions
7. Overview of KSD Pathogenesis and Management
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UTIs | Urinary tract infections |
KSs | Kidney stones |
KSD | Kidney stone disease |
CaOx | Calcium oxalate |
EQUC | quantitative urine culture |
CaP | Calcium phosphate |
UPEC | Uropathogenic E. coli |
IL-8 | Interleukin-8 |
MIP-1 | Macrophage inflammatory protein-1 |
MCP-1 | Monocyte chemoattractant protein-1 |
EUC | E. coli urine cultures |
ESC | E. coli stone cultures |
ROCK | Rho-associated protein kinase |
siRNA | Small-interfering RNA |
PPK1 | Polyphosphate kinase 1 |
PAMPs | Pathogen-associated molecular patterns |
TLRs | Toll-like receptors |
HK-2 | Human renal proximal tubule cells |
WT-CFT073 | Wild-type E. coli strain CFT073 |
ROS | Reactive oxygen species |
SOD1 | Superoxide dismutase 1 |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
EUK | E. coli-associated with urinary kidney stones |
EUU | E. coli-associated urine without stones |
EF-Tu | Elongation factor Tu |
OMVs | Outer membrane vesicles |
oxc | Oxalyl-CoA decarboxylase |
frc | Formyl-CoA transferase |
SCFAs | Short-chain fatty acids |
ESWL | Extracorporeal shock wave lithotripsy |
FURS | Flexible urethroscopy |
PCNL | Percutaneous nephrolithotomy |
AHA | Acetohydroxamic acid |
References
- Foxman, B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Zhang, J.; Deng, Q.; Liang, H. Recent Advances on the Mechanisms of Kidney Stone Formation (Review). Int. J. Mol. Med. 2021, 48, 149. [Google Scholar] [CrossRef]
- Vilapurathu, J.K.; Carlmana, C.A.; Francisa, D.; Varghesea, S. A Comprehensive Investigation of the Prevalence and Risk Factors Associated with Renal Calculi in Southern India: A Prospective Study. Urol. Sci. 2025, 36, 20–24. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Ferraro, P.M.; Lombardi, G.; Friso, S.; Gambaro, G. Unravelling the Complex Relationship between Diet and Nephrolithiasis: The Role of Nutrigenomics and Nutrigenetics. Nutrients 2022, 14, 4961. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yoo, D.M.; Bang, W.J.; Choi, H.G. Obesity Is Positively Associated and Alcohol Intake Is Negatively Associated with Nephrolithiasis. Nutrients 2022, 14, 4122. [Google Scholar] [CrossRef]
- Wigner, P.; Grębowski, R.; Bijak, M.; Szemraj, J.; Saluk-Bijak, J. The Molecular Aspect of Nephrolithiasis Development. Cells 2021, 10, 1926. [Google Scholar] [CrossRef]
- Tamborino, F.; Cicchetti, R.; Mascitti, M.; Litterio, G.; Orsini, A.; Ferretti, S.; Basconi, M.; De Palma, A.; Ferro, M.; Marchioni, M.; et al. Pathophysiology and Main Molecular Mechanisms of Urinary Stone Formation and Recurrence. Int. J. Mol. Sci. 2024, 25, 3075. [Google Scholar] [CrossRef]
- Sui, W.; Hancock, J.; Asplin, J.R.; Gould, E.R.; Hsi, R.S. Nephrolithiasis and Elevated Urinary Ammonium: A Matched Comparative Study. Urology 2020, 144, 77–82. [Google Scholar] [CrossRef]
- Stern, J.M.; Moazami, S.; Qiu, Y.; Kurland, I.; Chen, Z.; Agalliu, I.; Burk, R.; Davies, K.P. Evidence for a Distinct Gut Microbiome in Kidney Stone Formers Compared to Non-Stone Formers. Urolithiasis 2016, 44, 399–407. [Google Scholar] [CrossRef]
- Zhao, E.; Zhang, W.; Geng, B.; You, B.; Wang, W.; Li, X. Intestinal Dysbacteriosis Leads to Kidney Stone Disease. Mol. Med. Rep. 2020, 23, 180. [Google Scholar] [CrossRef]
- Cicerello, E.; Ciaccia, M.; Cova, G.D.; Mangano, M.S. The New Patterns of Nephrolithiasis: What Has Been Changing in the Last Millennium? Arch. Ital. Urol. E Androl. 2021, 93, 195–199. [Google Scholar] [CrossRef]
- Cicerello, E.; Mangano, M.S.; Cova, G.; Ciaccia, M. Changing in Gender Prevalence of Nephrolithiasis. Urol. J. 2021, 88, 90–93. [Google Scholar] [CrossRef]
- Peerapen, P.; Thongboonkerd, V. Protein Network Analysis and Functional Enrichment via Computational Biotechnology Unravel Molecular and Pathogenic Mechanisms of Kidney Stone Disease. Biomed. J. 2023, 46, 100577. [Google Scholar] [CrossRef]
- Awedew, A.F.; Han, H.; Berice, B.N.; Dodge, M.; Schneider, R.D.; Abbasi-Kangevari, M.; Al-Aly, Z.; Almidani, O.; Alvand, S.; Arabloo, J.; et al. The Global, Regional, and National Burden of Urolithiasis in 204 Countries and Territories, 2000–2021: A Systematic Analysis for the Global Burden of Disease Study 2021. eClinicalMedicine 2024, 78, 102924. [Google Scholar] [CrossRef]
- Nazarian, R.; Lin, N.; Thaker, S.; Yang, R.; Wong, G.C.L.; Scotland, K.B. What Causes Calcium Oxalate Kidney Stones to Form? An Update on Recent Advances. Uro 2025, 5, 6. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Q.; Zhou, Q.; Xu, N.; Zheng, D.; Pan, Q.; Wang, X.; Xu, R. Trend Analysis of Pediatric Urolithiasis Prevalence from 1990 to 2021 in the BRICS. Front. Pediatr. 2025, 13, 1551046. [Google Scholar] [CrossRef]
- Alelign, T.; Petros, B. Kidney Stone Disease: An Update on Current Concepts. Adv. Urol. 2018, 2018, 3068365. [Google Scholar] [CrossRef]
- Aggarwal, K.P.; Narula, S.; Kakkar, M.; Tandon, C. Nephrolithiasis: Molecular Mechanism of Renal Stone Formation and the Critical Role Played by Modulators. BioMed Res. Int. 2013, 2013, 292953. [Google Scholar] [CrossRef]
- Tavasoli, S.; Taheri, M. Vitamin D and Calcium Kidney Stones: A Review and a Proposal. Int. Urol. Nephrol. 2019, 51, 101–111. [Google Scholar] [CrossRef]
- Ye, Z.; Zeng, G.; Yang, H.; Li, J.; Tang, K.; Wang, G.; Wang, S.; Yu, Y.; Wang, Y.; Zhang, T.; et al. The Status and Characteristics of Urinary Stone Composition in China. BJU Int. 2020, 125, 801–809. [Google Scholar] [CrossRef]
- Sakhaee, K. Pathogenesis and Medical Management of Cystinuria. Semin. Nephrol. 1996, 16, 435–447. [Google Scholar] [PubMed]
- Strologo, L.D.; Pras, E.; Pontesilli, C.; Beccia, E.; Ricci-Barbini, V.; De Sanctis, L.; Ponzone, A.; Gallucci, M.; Bisceglia, L.; Zelante, L.; et al. Comparison between SLC3A1 and SLC7A9 Cystinuria Patients and Carriers: A Need for a New Classification. J. Am. Soc. Nephrol. 2002, 13, 2547–2553. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Krambeck, A.E.; Rule, A.D. Determining the True Burden of Kidney Stone Disease. Nat. Rev. Nephrol. 2020, 16, 736–746. [Google Scholar] [CrossRef]
- Geraghty, R.; Wood, K.; Sayer, J.A. Calcium Oxalate Crystal Deposition in the Kidney: Identification, Causes and Consequences. Urolithiasis 2020, 48, 377–384. [Google Scholar] [CrossRef]
- Wan, W.; Wu, W.; Amier, Y.; Li, X.; Yang, J.; Huang, Y.; Xun, Y.; Yu, X. Engineered Microorganisms: A New Direction in Kidney Stone Prevention and Treatment. Synth. Syst. Biotechnol. 2024, 9, 294–303. [Google Scholar] [CrossRef]
- Evan, A.P.; Worcester, E.M.; Coe, F.L.; Williams, J.; Lingeman, J.E. Mechanisms of Human Kidney Stone Formation. Urolithiasis 2015, 43, 19–32. [Google Scholar] [CrossRef]
- Chung, H.-J. The Role of Randall Plaques on Kidney Stone Formation. Transl. Androl. Urol. 2014, 3, 251–254. [Google Scholar] [CrossRef]
- Khan, S.R.; Canales, B.K.; Dominguez-Gutierrez, P.R. Randall’s Plaque and Calcium Oxalate Stone Formation: Role for Immunity and Inflammation. Nat. Rev. Nephrol. 2021, 17, 417–433. [Google Scholar] [CrossRef]
- Taguchi, K.; Okada, A.; Unno, R.; Hamamoto, S.; Yasui, T. Macrophage Function in Calcium Oxalate Kidney Stone Formation: A Systematic Review of Literature. Front. Immunol. 2021, 12, 673690. [Google Scholar] [CrossRef]
- Anders, H.-J.; Suarez-Alvarez, B.; Grigorescu, M.; Foresto-Neto, O.; Steiger, S.; Desai, J.; Marschner, J.A.; Honarpisheh, M.; Shi, C.; Jordan, J.; et al. The Macrophage Phenotype and Inflammasome Component NLRP3 Contributes to Nephrocalcinosis-Related Chronic Kidney Disease Independent from IL-1–Mediated Tissue Injury. Kidney Int. 2018, 93, 656–669. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Tian, J.; Lee, S.O.; Dang, Q.; Huang, C.-K.; Yeh, S.; Erturk, E.; Bushinsky, D.; Chang, L.S.; et al. Androgen Receptor Enhances Kidney Stone-CaOx Crystal Formation via Modulation of Oxalate Biosynthesis & Oxidative Stress. Mol. Endocrinol. 2014, 28, 1291–1303. [Google Scholar] [CrossRef]
- Fuster, D.G.; Morard, G.A.; Schneider, L.; Mattmann, C.; Lüthi, D.; Vogt, B.; Dhayat, N.A. Association of Urinary Sex Steroid Hormones with Urinary Calcium, Oxalate and Citrate Excretion in Kidney Stone Formers. Nephrol. Dial. Transplant. 2022, 37, 335–348. [Google Scholar] [CrossRef]
- Siddiqui, H.; Nederbragt, A.J.; Lagesen, K.; Jeansson, S.L.; Jakobsen, K.S. Assessing Diversity of the Female Urine Microbiota by High Throughput Sequencing of 16S rDNA Amplicons. BMC Microbiol. 2011, 11, 244. [Google Scholar] [CrossRef]
- Mehta, M.; Goldfarb, D.S.; Nazzal, L. The Role of the Microbiome in Kidney Stone Formation. Int. J. Surg. 2016, 36, 607–612. [Google Scholar] [CrossRef]
- Neugent, M.L.; Hulyalkar, N.V.; Nguyen, V.H.; Zimmern, P.E.; De Nisco, N.J. Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef]
- Lu, J.; Tao, K. Urinary Microbiota in Patients with Kidney Stones: A Systematic Review and Meta-Analysis. Microb. Pathog. 2025, 205, 107641. [Google Scholar] [CrossRef]
- Espinosa-Ortiz, E.J.; Eisner, B.H.; Lange, D.; Gerlach, R. Current Insights into the Mechanisms and Management of Infection Stones. Nat. Rev. Urol. 2019, 16, 35–53. [Google Scholar] [CrossRef]
- Trinchieri, A. Urinary Calculi and Infection. Urol. J. 2014, 81, 93–98. [Google Scholar] [CrossRef]
- Falony, G. Beyond Oxalobacter: The Gut Microbiota and Kidney Stone Formation. Gut 2018, 67, 2078–2079. [Google Scholar] [CrossRef]
- Rodgers, A.L. Physicochemical Mechanisms of Stone Formation. Urolithiasis 2017, 45, 27–32. [Google Scholar] [CrossRef]
- Okada, A.; Yasui, T.; Fujii, Y.; Niimi, K.; Hamamoto, S.; Hirose, M.; Kojima, Y.; Itoh, Y.; Tozawa, K.; Hayashi, Y.; et al. Renal Macrophage Migration and Crystal Phagocytosis via Inflammatory-Related Gene Expression during Kidney Stone Formation and Elimination in Mice: Detection by Association Analysis of Stone-Related Gene Expression and Microstructural Observation. J. Bone Miner. Res. 2010, 25, 2701–2711. [Google Scholar] [CrossRef]
- Nikolic-Paterson, D.J.; Wang, S.; Lan, H.Y. Macrophages Promote Renal Fibrosis through Direct and Indirect Mechanisms. Kidney Int. Suppl. 2014, 4, 34–38. [Google Scholar] [CrossRef]
- Taguchi, K.; Okada, A.; Hamamoto, S.; Unno, R.; Moritoki, Y.; Ando, R.; Mizuno, K.; Tozawa, K.; Kohri, K.; Yasui, T. M1/M2-Macrophage Phenotypes Regulate Renal Calcium Oxalate Crystal Development. Sci. Rep. 2016, 6, 35167. [Google Scholar] [CrossRef]
- Kusmartsev, S.; Dominguez-Gutierrez, P.R.; Canales, B.K.; Bird, V.G.; Vieweg, J.; Khan, S.R. Calcium Oxalate Stone Fragment and Crystal Phagocytosis by Human Macrophages. J. Urol. 2016, 195, 1143–1151. [Google Scholar] [CrossRef]
- Dominguez-Gutierrez, P.R.; Kusmartsev, S.; Canales, B.K.; Khan, S.R. Calcium Oxalate Differentiates Human Monocytes into Inflammatory M1 Macrophages. Front. Immunol. 2018, 9, 1863. [Google Scholar] [CrossRef]
- Singhto, N.; Kanlaya, R.; Nilnumkhum, A.; Thongboonkerd, V. Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals. Front. Immunol. 2018, 9, 316. [Google Scholar] [CrossRef]
- Singhto, N.; Thongboonkerd, V. Exosomes Derived from Calcium Oxalate-Exposed Macrophages Enhance IL-8 Production from Renal Cells, Neutrophil Migration and Crystal Invasion through Extracellular Matrix. J. Proteom. 2018, 185, 64–76. [Google Scholar] [CrossRef]
- Speer, T.; Dimmeler, S.; Schunk, S.J.; Fliser, D.; Ridker, P.M. Targeting Innate Immunity-Driven Inflammation in CKD and Cardiovascular Disease. Nat. Rev. Nephrol. 2022, 18, 762–778. [Google Scholar] [CrossRef]
- Sakhaee, K. Exploring the Role of Inflammation toward the Pathogenesis of Calcium Nephrolithiasis. Clin. J. Am. Soc. Nephrol. 2022, 17, 338–339. [Google Scholar] [CrossRef]
- Paniri, A.; Akhavan-Niaki, H. Emerging Role of IL-6 and NLRP3 Inflammasome as Potential Therapeutic Targets to Combat COVID-19: Role of lncRNAs in Cytokine Storm Modulation. Life Sci. 2020, 257, 118114. [Google Scholar] [CrossRef]
- Ding, T.; Zhao, T.; Li, Y.; Liu, Z.; Ding, J.; Ji, B.; Wang, Y.; Guo, Z. Vitexin Exerts Protective Effects against Calcium Oxalate Crystal-Induced Kidney Pyroptosis In Vivo and In Vitro. Phytomedicine 2021, 86, 153562. [Google Scholar] [CrossRef]
- Yao, H.; Yu, D.; He, Q.; Ning, X. Causal Associations of Inflammatory Cytokines and Urinary Stones: A Two-Sample Mendelian Randomization Study. Transl. Androl. Urol. 2025, 14, 258–265. [Google Scholar] [CrossRef]
- Bichler, K.-H.; Eipper, E.; Naber, K.; Braun, V.; Zimmermann, R.; Lahme, S. Urinary Infection Stones. Int. J. Antimicrob. Agents 2002, 19, 488–498. [Google Scholar] [CrossRef]
- He, Z.; Jing, Z.; Jing-Cun, Z.; Chuan-Yi, H.; Fei, G. Compositional Analysis of Various Layers of Upper Urinary Tract Stones by Infrared Spectroscopy. Exp. Ther. Med. 2017, 14, 3165–3169. [Google Scholar] [CrossRef]
- Hirose, M.; Yasui, T.; Okada, A.; Hamamoto, S.; Shimizu, H.; Itoh, Y.; Tozawa, K.; Kohri, K. Renal Tubular Epithelial Cell Injury and Oxidative Stress Induce Calcium Oxalate Crystal Formation in Mouse Kidney. Int. J. Urol. 2010, 17, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R. Reactive Oxygen Species as the Molecular Modulators of Calcium Oxalate Kidney Stone Formation: Evidence from Clinical and Experimental Investigations. J. Urol. 2013, 189, 803–811. [Google Scholar] [CrossRef]
- Djojodimedjo, T.; Soebadi, D.M. Soetjipto Escherichia Coli Infection Induces Mucosal Damage and Expression of Proteins Promoting Urinary Stone Formation. Urolithiasis 2013, 41, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jiang, C.; Liang, X.; Zhong, F.; Huang, J.; Lin, Y.; Zhao, Z.; Duan, X.; Zeng, G.; Wu, W. Early and Rapid Prediction of Postoperative Infections Following Percutaneous Nephrolithotomy in Patients with Complex Kidney Stones. BJU Int. 2019, 123, 1041–1047. [Google Scholar] [CrossRef]
- An, L.; Wu, W.; Li, S.; Lai, Y.; Chen, D.; He, Z.; Chang, Z.; Xu, P.; Huang, Y.; Lei, M.; et al. Escherichia Coli Aggravates Calcium Oxalate Stone Formation via PPK1/Flagellin-Mediated Renal Oxidative Injury and Inflammation. Oxidative Med. Cell. Longev. 2021, 2021, 9949697. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Sutthimethakorn, S.; Chiangjong, W.; Thongboonkerd, V. Bacteria Can Promote Calcium Oxalate Crystal Growth and Aggregation. JBIC J. Biol. Inorg. Chem. 2013, 18, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.; Wu, W.; Chen, D.; Lai, Y.; Tiselius, H.-G.; Jiang, C.; Huang, J.; Duan, X.; Choong, S.; Liang, Y.; et al. The Characteristic and Relationship of Escherichia Coli Isolated from Urine and Stones in Patients with Calcium Oxalate Stones. Urolithiasis 2021, 49, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Tavichakorntrakool, R.; Prasongwattana, V.; Sungkeeree, S.; Saisud, P.; Sribenjalux, P.; Pimratana, C.; Bovornpadungkitti, S.; Sriboonlue, P.; Thongboonkerd, V. Extensive Characterizations of Bacteria Isolated from Catheterized Urine and Stone Matrices in Patients with Nephrolithiasis. Nephrol. Dial. Transplant. 2012, 27, 4125–4130. [Google Scholar] [CrossRef] [PubMed]
- Bauza, J.L.; Pieras, E.C.; Grases, F.; Tubau, V.; Guimerà, J.; Sabaté, X.A.; Pizà, P. Urinary Tract Infection’s Etiopathogenic Role in Nephrolithiasis Formation. Med. Hypotheses 2018, 118, 34–35. [Google Scholar] [CrossRef]
- Gault, M.H.; Longerich, L.L.; Crane, G.; Cooper, R.; Dow, D.; Best, L.; Stockall, E.; Brown, W. Bacteriology of Urinary Tract Stones. J. Urol. 1995, 153, 1164–1170. [Google Scholar] [CrossRef]
- Tavichakorntrakool, R.; Boonsiri, P.; Prasongwatana, V.; Lulitanond, A.; Wongkham, C.; Thongboonkerd, V. Differential Colony Size, Cell Length, and Cellular Proteome of Escherichia Coli Isolated from Urine vs. Stone Nidus of Kidney Stone Patients. Clin. Chim. Acta 2017, 466, 112–119. [Google Scholar] [CrossRef]
- Welch, R.A.; Burland, V.; Plunkett, G.; Redford, P.; Roesch, P.; Rasko, D.; Buckles, E.L.; Liou, S.-R.; Boutin, A.; Hackett, J.; et al. Extensive Mosaic Structure Revealed by the Complete Genome Sequence of Uropathogenic Escherichia Coli. Proc. Natl. Acad. Sci. USA 2002, 99, 17020–17024. [Google Scholar] [CrossRef]
- Hébert, M.; Potin, S.; Sebbagh, M.; Bertoglio, J.; Bréard, J.; Hamelin, J. Rho-ROCK-Dependent Ezrin-Radixin-Moesin Phosphorylation Regulates Fas-Mediated Apoptosis in Jurkat Cells. J. Immunol. 2008, 181, 5963–5973. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Guo, Z.; Zhao, J.; Wu, B.; Deng, H.; Zhou, T.; Xiang, H.; Gao, F.; Yu, X.; et al. Rho Kinase Phosphorylation Promotes Ezrin-Mediated Metastasis in Hepatocellular Carcinoma. Cancer Res. 2011, 71, 1721–1729. [Google Scholar] [CrossRef]
- Kanlaya, R.; Thongboonkerd, V. Persistent Escherichia Coli Infection in Renal Tubular Cells Enhances Calcium Oxalate Crystal–Cell Adhesion by Inducing Ezrin Translocation to Apical Membranes via Rho/ROCK Pathway. Cell. Mol. Life Sci. 2022, 79, 381. [Google Scholar] [CrossRef]
- Li, H.; Xue, X.; Meng, G.; He, C.; Tong, L.; Lai, Y. The Roles of Bacteria on Urolithiasis Progression and Associated Compounds. Biochem. Pharmacol. 2025, 237, 116958. [Google Scholar] [CrossRef]
- Kanlaya, R.; Naruepantawart, O.; Thongboonkerd, V. Flagellum Is Responsible for Promoting Effects of Viable Escherichia Coli on Calcium Oxalate Crystallization, Crystal Growth, and Crystal Aggregation. Front. Microbiol. 2019, 10, 2507. [Google Scholar] [CrossRef]
- Bayer, M.E.; Sloyer, J.L. The Electrophoretic Mobility of Gram-Negative and Gram-Positive Bacteria: An Electrokinetic Analysis. J. Gen. Microbiol. 1990, 136, 867–874. [Google Scholar] [CrossRef]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia Coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Lai, H.-C.; Chang, S.-N.; Lin, H.-C.; Hsu, Y.-L.; Wei, H.-M.; Kuo, C.-C.; Hwang, K.-P.; Chiang, H.-Y. Association between Urine pH and Common Uropathogens in Children with Urinary Tract Infections. J. Microbiol. Immunol. Infect. 2021, 54, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Taheri, H.; Feizabadi, M.M.; Keikha, R.; Afkari, R. Therapeutic Effects of Probiotics and Herbal Medications on Oxalate Nephrolithiasis: A Mini Systematic Review. Iran. J. Microbiol. 2024, 16, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Amimanan, P.; Tavichakorntrakool, R.; Fong-ngern, K.; Sribenjalux, P.; Lulitanond, A.; Prasongwatana, V.; Wongkham, C.; Boonsiri, P.; Umka Welbat, J.; Thongboonkerd, V. Elongation Factor Tu on Escherichia Coli Isolated from Urine of Kidney Stone Patients Promotes Calcium Oxalate Crystal Growth and Aggregation. Sci. Rep. 2017, 7, 2953. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Huang, W.-H.; Lo, S.-C.; Huang, E.; Chiang, E.-P.I.; Huang, C.-C.; Yang, Y.-T. Conversion of Escherichia Coli into Mixotrophic CO2 Assimilation with Malate and Hydrogen Based on Recombinant Expression of 2-Oxoglutarate:Ferredoxin Oxidoreductase Using Adaptive Laboratory Evolution. Microorganisms 2023, 11, 253. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Burgos-Cara, A.; Ruiz-Agudo, C.; Ibañez-Velasco, A.; Cölfen, H.; Rodriguez-Navarro, C. A Non-Classical View on Calcium Oxalate Precipitation and the Role of Citrate. Nat. Commun. 2017, 8, 768. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.; Birowo, P.; Widyahening, I.S.; Rasyid, N. Effect of Citrus-Based Products on Urine Profile: A Systematic Review and Meta-Analysis. F1000Research 2017, 6, 220. [Google Scholar] [CrossRef]
- Edin-Liljegren, A.; Hedelin, H.H.; Grenabo, L.; Pettersson, S. Impact of Escherichia Coli on Urine Citrate and Urease-Induced Crystallization. Scanning Microsc. 1995, 9, 901–905. [Google Scholar]
- Gupta, S.; Kanwar, S.S. Therapeutic Applications of Microbial Enzymes in the Management of Kidney Stone Diseases. In Microbial Enzymes: Roles and Applications in Industries; Arora, N.K., Mishra, J., Mishra, V., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2020; Volume 11, pp. 319–329. ISBN 978-981-15-1709-9. [Google Scholar]
- Daniel, S.L.; Moradi, L.; Paiste, H.; Wood, K.D.; Assimos, D.G.; Holmes, R.P.; Nazzal, L.; Hatch, M.; Knight, J. Forty Years of Oxalobacter Formigenes, a Gutsy Oxalate-Degrading Specialist. Appl. Environ. Microbiol. 2021, 87, e00544-21. [Google Scholar] [CrossRef] [PubMed]
- Suman, D. Oxalate Degrading Lactic Acid Bacteria in Prevention and Management of Kidney Stone. Open Access J. Complement. Altern. Med. 2021, 3, 420–425. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Zhao, Y.-Y.; Pahl, M.V. Altered Intestinal Microbial Flora and Impaired Epithelial Barrier Structure and Function in CKD: The Nature, Mechanisms, Consequences and Potential Treatment. Nephrol. Dial. Transplant. 2016, 31, 737–746. [Google Scholar] [CrossRef]
- Mani, R.R.; Ranganathan, V.; Panneerselvam, J.; Begam, S.; Chinnappan, S.; Anbalagan, M. Therapeutic Applications of Oxalate-Degrading Bacteria in Kidney Stone Prevention. Nat. Prod. J. 2025, 15, e22103155352643. [Google Scholar] [CrossRef]
- Suryavanshi, M.V.; Bhute, S.S.; Gune, R.P.; Shouche, Y.S. Functional Eubacteria Species along with Trans-Domain Gut Inhabitants Favour Dysgenic Diversity in Oxalate Stone Disease. Sci. Rep. 2018, 8, 16598. [Google Scholar] [CrossRef] [PubMed]
- Denburg, M.R.; Koepsell, K.; Lee, J.-J.; Gerber, J.; Bittinger, K.; Tasian, G.E. Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease. J. Am. Soc. Nephrol. 2020, 31, 1358–1369. [Google Scholar] [CrossRef]
- Noonin, C.; Thongboonkerd, V. Beneficial Roles of Gastrointestinal and Urinary Microbiomes in Kidney Stone Prevention via Their Oxalate-Degrading Ability and Beyond. Microbiol. Res. 2024, 282, 127663. [Google Scholar] [CrossRef]
- He, M.; Dong, Y.; Cai, W.; Cai, J.; Xie, Y.; Yu, M.; Li, C.; Wen, L. Recent Advances in the Treatment of Renal Stones Using Flexible Ureteroscopys. Int. J. Surg. 2024, 110, 4320–4328. [Google Scholar] [CrossRef] [PubMed]
- Papatsoris, A.; Alba, A.B.; Galán Llopis, J.A.; Musafer, M.A.; Alameedee, M.; Ather, H.; Caballero-Romeu, J.P.; Costa-Bauzá, A.; Dellis, A.; El Howairis, M.; et al. Management of Urinary Stones: State of the Art and Future Perspectives by Experts in Stone Disease. Arch. Ital. Urol. E Androl. 2024, 96, 12703. [Google Scholar] [CrossRef]
- Yang, X.; Koohi-Moghadam, M.; Wang, R.; Chang, Y.-Y.; Woo, P.C.Y.; Wang, J.; Li, H.; Sun, H. Metallochaperone UreG Serves as a New Target for Design of Urease Inhibitor: A Novel Strategy for Development of Antimicrobials. PLoS Biol. 2018, 16, e2003887. [Google Scholar] [CrossRef] [PubMed]
- Milo, S.; Heylen, R.A.; Glancy, J.; Williams, G.T.; Patenall, B.L.; Hathaway, H.J.; Thet, N.T.; Allinson, S.L.; Laabei, M.; Jenkins, A.T.A. A Small-Molecular Inhibitor against Proteus Mirabilis Urease to Treat Catheter-Associated Urinary Tract Infections. Sci. Rep. 2021, 11, 3726. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Gao, C.; Lu, J.; Liao, S.; Gong, G. Key Biological Processes and Essential Genes for Proteus Mirabilis Biofilm Development Inhibition by Protocatechuic Acid. Int. J. Food Microbiol. 2024, 412, 110570. [Google Scholar] [CrossRef] [PubMed]
Microbial and Molecular Mechanisms in Urolithiasis Pathogenesis | ||
---|---|---|
Factor/Mechanism | Mode of Action | Lithogenic Impact |
Urease activity (rare in E. coli) | Catalyzes urea hydrolysis into NH3 and CO2, increases local pH | Promotes struvite stone formation via increased Mg2+/NH4+/PO43− precipitation |
Flagellar motility and adhesion | Bidirectional flagellar rotation enhances chemotaxis and adherence to epithelium and stone surfaces | Facilitates colonization, biofilm formation, and CaOx stone nucleation |
PPK1/flagellin signaling | Polyphosphate kinase 1 regulates flagellin expression, induces ROS, and activates NF-κB/p38 MAPK pathways | Promotes oxidative stress, inflammation, and CaOx aggregation in renal tubules |
EF-Tu on OMVs | Surface-exposed EF-Tu interacts electrostatically with CaOx crystals | Enhances nucleation, growth kinetics, and crystal aggregation |
Ezrin (cytoskeletal linker) | Rho/ROCK pathway activation leads ezrin to apical membrane, binds CaOx via F-actin interactions | Stabilizes crystal adhesion and retention on tubular epithelium |
Citrate lyase, enzymatic degradation of citrate | Enzymatic conversion of citrate to oxaloacetate and acetate | Reduces urinary citrate, impairing calcium chelation, promotes CaOx supersaturation |
Surface morphology of CaOx stones | Rough, heterogeneous surfaces increase surface energy and bacterial/biofilm adhesion sites | Protects bacteria within stones, supporting persistent infection |
Oxidative damage of renal epithelium | ROS-induced lipid peroxidation exposes phosphatidylserine and nucleation sites | Initiates heterogenous CaOx nucleation and epithelial injury |
Bacterial secreted metabolites | Modulate urine supersaturation, promote aggregation, alter physicochemical environment | Foster stone matrix development and bacterial incorporation |
Calcium-containing Calcifying nanoparticles | Mineral–protein nanoparticles that bind calcium and promote carbonate apatite biomineralization at physiological pH; induce oxidative stress and apoptosis pathways | Act as nucleation foci facilitating stone calcification; contribute to stone growth via oxidative and apoptotic mechanisms |
Urinary pH modulation | Acidic pH (4.5–5.5) favors CaOx monohydrate formation and adhesion; alkaline pH supports CaOx dihydrate formation | Alters crystal type, solubility, and adhesive potential |
Gut microbiota oxalate metabolism (Oxalobacter, Bifidobacterium, Lactobacillus) | Enzymatic degradation of dietary and endogenous oxalate | Reduces urinary oxalate load, lowering CaOx supersaturation and stone risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewska-Piątek, B.; Nagórka, M.; Piątek, R. Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment. Pathogens 2025, 14, 991. https://doi.org/10.3390/pathogens14100991
Zalewska-Piątek B, Nagórka M, Piątek R. Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment. Pathogens. 2025; 14(10):991. https://doi.org/10.3390/pathogens14100991
Chicago/Turabian StyleZalewska-Piątek, Beata, Michalina Nagórka, and Rafał Piątek. 2025. "Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment" Pathogens 14, no. 10: 991. https://doi.org/10.3390/pathogens14100991
APA StyleZalewska-Piątek, B., Nagórka, M., & Piątek, R. (2025). Role of Uropathogenic Escherichia coli and Other Pathogens in Kidney Stone Formation: From Pathogenesis to Treatment. Pathogens, 14(10), 991. https://doi.org/10.3390/pathogens14100991