Integrating Machine Learning and Molecular Methods for Trichophyton indotineae Identification and Resistance Profiling Using MALDI-TOF Spectra
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Terbinafine Susceptibility
2.3. Sequencing of the ITS Region and the ERG1 Gene
2.4. MALDI-TOF Spectra
3. Results
3.1. Isolate Molecular Identification
3.2. Terbinafine Susceptibility
3.3. ERG1 Mutations
3.4. MALDI-TOF Spectra and Machine Learning Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez-Rossi, N.M.; Peres, N.T.A.; Bitencourt, T.A.; Martins, M.P.; Rossi, A. State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J. Fungi 2021, 7, 629. [Google Scholar] [CrossRef]
- Kruithoff, C.; Gamal, A.; McCormick, T.S.; Ghannoum, M.A. Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life 2023, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, F.; Wang, C.; Ye, J.; Xia, P.; Wang, W.; Wu, Y. A Systematic Analysis of the Global, Regional, and National Burden of Fungal Skin Diseases from 1990 to 2021. Front. Epidemiol. 2024, 4, 1489148. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, G.; Horwitz, B.; Duek, L.; Ullman, Y.; Berdicevsky, I. Infection Stages of the Dermatophyte Pathogen Trichophyton: Microscopic Characterization and Proteolytic Enzymes. Med. Mycol. 2007, 45, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Wang, X.; Li, R. Dermatophyte Infection: From Fungal Pathogenicity to Host Immune Responses. Front. Immunol. 2023, 14, 1285887. [Google Scholar] [CrossRef]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. Trichophyton indotineae—An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide—A Multidimensional Perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef]
- Chowdhary, A.; Singh, A.; Kaur, A.; Khurana, A. The Emergence and Worldwide Spread of the Species Trichophyton indotineae Causing Difficult-to-Treat Dermatophytosis: A New Challenge in the Management of Dermatophytosis. PLoS Pathog. 2022, 18, e1010795. [Google Scholar] [CrossRef]
- Pchelin, I.M.; Azarov, D.V.; Churina, M.A.; Scherbak, S.G.; Apalko, S.V.; Vasilyeva, N.V.; Taraskina, A.E. Species Boundaries in the Trichophyton mentagrophytes/T. interdigitale Species Complex. Med. Mycol. 2019, 57, 781–789. [Google Scholar] [CrossRef]
- Švarcová, M.; Kolařík, M.; Li, Y.; Tsui, C.K.M.; Hubka, V. Resolving Phylogenetic Relationships Within the Trichophyton mentagrophytes Complex: A RADseq Genomic Approach Challenges Status of “Terbinafine-Resistant” Trichophyton indotineae as Distinct Species. Mycoses 2025, 68, e70050. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2017, 182, 5–31. [Google Scholar] [CrossRef]
- Tang, C.; Ahmed, S.A.; Deng, S.; Zhang, L.; Zoll, J.; Al-Hatmi, A.M.S.; Meis, J.F.; Thakur, R.; Kang, Y.; de Hoog, G.S. Detection of Emerging Genotypes in Trichophyton mentagrophytes Species Complex: A Proposal for Handling Biodiversity in Dermatophytes. Front. Microbiol. 2022, 13, 960190. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.S.; Todd, G.C.; Zhu, Y.; Sikora, M.; Akoh, C.C.; Jakus, J.; Lipner, S.R.; Graber, K.B.; Acker, K.P.; Morales, A.E.; et al. Clinical Course, Antifungal Susceptibility, and Genomic Sequencing of Trichophyton indotineae. JAMA Dermatol. 2024, 160, 701–709. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Smith, D.J.; Gold, J.A.W. Trichophyton indotineae and Other Terbinafine-Resistant Dermatophytes in North America. J. Clin. Microbiol. 2023, 61, e00903-23. [Google Scholar] [CrossRef]
- Klinger, M.; Theiler, M.; Bosshard, P.P. Epidemiological and Clinical Aspects of Trichophyton mentagrophytes/Trichophyton interdigitale Infections in the Zurich Area: A Retrospective Study Using Genotyping. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1017–1025. [Google Scholar] [CrossRef]
- Nikkholgh, S.; Pchelin, I.M.; Zarei Mahmoudabadi, A.; Shabanzadeh-Bardar, M.; Gharaghani, M.; Sharifzadeh, A.; Mokhtari Hooyeh, M.; Mohammadi, R.; Nouripour-Sisakht, S.; Katiraee, F.; et al. Sheep Serve as a Reservoir of Trichophyton mentagrophytes Genotype V Infection. Med. Mycol. 2023, 61, myad066. [Google Scholar] [CrossRef]
- Kumar, P.; Ramachandran, S.; Das, S.; Bhattacharya, S.N.; Taneja, B. Insights into Changing Dermatophyte Spectrum in India Through Analysis of Cumulative 161,245 Cases Between 1939 and 2021. Mycopathologia 2023, 188, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.; Ványai, B.; Kovács, R.; Jakab, Á.; Szegedi, A.; Balázs, B.; Majoros, L. First Report of Trichophyton indotineae Infection in Hungary. J. Fungi 2025, 11, 248. [Google Scholar] [CrossRef]
- Hayette, M.P.; Sacheli, R. Dermatophytosis, Trends in Epidemiology and Diagnostic Approach. Curr. Fungal Infect. Rep. 2015, 9, 164–179. [Google Scholar] [CrossRef]
- Caplan, A.S.; Chaturvedi, S.; Zhu, Y.; Todd, G.C.; Yin, L.; Lopez, A.; Travis, L.; Smith, D.J.; Chiller, T.; Lockhart, S.R.; et al. Notes from the Field: First Reported U.S. Cases of Tinea Caused by Trichophyton indotineae—New York City, December 2021–March 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Siopi, M.; Efstathiou, I.; Theodoropoulos, K.; Pournaras, S.; Meletiadis, J. Molecular Epidemiology and Antifungal Susceptibility of Trichophyton Isolates in Greece: Emergence of Terbinafine-Resistant Trichophyton mentagrophytes Type VIII Locally and Globally. J. Fungi 2021, 7, 419. [Google Scholar] [CrossRef]
- Cañete-Gibas, C.F.; Mele, J.; Patterson, H.P.; Sanders, C.J.; Ferrer, D.; Garcia, V.; Fan, H.; David, M.; Wiederhold, N.P. Terbinafine-Resistant Dermatophytes and the Presence of Trichophyton indotineae in North America. J. Clin. Microbiol. 2023, 61, e00562-23. [Google Scholar] [CrossRef] [PubMed]
- Ruckenstuhl, C.; Lang, S.; Poschenel, A.; Eidenberger, A.; Baral, P.K.; Kohút, P.; Hapala, I.; Gruber, K.; Turnowsky, F. Characterization of Squalene Epoxidase of Saccharomyces Cerevisiae by Applying Terbinafine-Sensitive Variants. Antimicrob. Agents Chemother. 2007, 51, 275–284. [Google Scholar] [CrossRef]
- Moreno-Sabater, A.; Normand, A.-C.; Bidaud, A.-L.; Cremer, G.; Foulet, F.; Brun, S.; Bonnal, C.; Aït-Ammar, N.; Jabet, A.; Ayachi, A.; et al. Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study. J. Fungi 2022, 8, 220. [Google Scholar] [CrossRef]
- Burmester, A.; Hipler, U.C.; Elsner, P.; Wiegand, C. Point Mutations in the Squalene Epoxidase Erg1 and Sterol 14-α Demethylase Erg11 Gene of T Indotineae Isolates Indicate That the Resistant Mutant Strains Evolved Independently. Mycoses 2022, 65, 97–102. [Google Scholar] [CrossRef]
- Berstecher, N.; Burmester, A.; Gregersen, D.M.; Tittelbach, J.; Wiegand, C. Trichophyton indotineae Erg1Ala448Thr Strain Expressed Constitutively High Levels of Sterol 14-α Demethylase Erg11B MRNA, While Transporter MDR3 and Erg11A MRNA Expression Was Induced After Addition of Short Chain Azoles. J. Fungi 2024, 10, 731. [Google Scholar] [CrossRef]
- Bortoluzzi, P.; Prigitano, A.; Sechi, A.; Boneschi, V.; Germiniasi, F.; Esposto, M.C.; Romanò, L.; Pavan, G.; Matinato, C.; Veraldi, S.; et al. Report of Terbinafine Resistant Trichophyton Spp. in Italy: Clinical Presentations, Molecular Identification, Antifungal Susceptibility Testing and Mutations in the Squalene Epoxidase Gene. Mycoses 2023, 66, 680–687. [Google Scholar] [CrossRef]
- Kaplan, E.; Bingöl, O.; Kandemir, H.; Karakoyun, A.S.; Durdu, M.; Ilkit, M. QPCR-Based Molecular Detection of Trichophyton indotineae by Targeting Divergent Sequences. Mycopathologia 2025, 190, 32. [Google Scholar] [CrossRef]
- Normand, A.C.; Moreno-Sabater, A.; Jabet, A.; Hamane, S.; Cremer, G.; Foulet, F.; Blaize, M.; Dellière, S.; Bonnal, C.; Imbert, S.; et al. MALDI-TOF Mass Spectrometry Online Identification of Trichophyton indotineae Using the MSI-2 Application. J. Fungi 2022, 8, 1103. [Google Scholar] [CrossRef]
- Rodriguez-Temporal, D.; Adrados, D.; Alastruey-Izquierdo, A.; Alkorta, M.; Candela, A.; Canut, A.; Castro, C.; Cilla, C.G.; de Dios Caballero, J.; Ercibengoa, M.; et al. Current Performance of MALDI–TOF Mass Spectrometry Databases for the Identification of Dermatophyte Species. J. Fungi 2025, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Singh, A.; Singh, P.K.; Khurana, A.; Meis, J.F. Perspectives on Misidentification of Trichophyton interdigitale/Trichophyton mentagrophytes Using Internal Transcribed Spacer Region Sequencing: Urgent Need to Update the Sequence Database. Mycoses 2019, 62, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Rouhi, F.; Aboutalebian, S.; Rezaei-Matehkolaei, A.; Jahanshiri, Z.; Shidfar, M.R.; Chadeganipour, A.S.; Shadzi, S.; Kharazi, M.; Erami, M.; Mirhendi, H. Development and Evaluation of SYBR Green Real-Time PCR for Rapid and Specific Identification of Trichophyton indotineae. Mycoses 2025, 68, e70015. [Google Scholar] [CrossRef]
- Rezusta, A.; de la Fuente, S.; Gilaberte, Y.; Vidal-García, M.; Alcalá, L.; López-Calleja, A.; Ruiz, M.A.; Revillo, M.J. Evaluation of Incubation Time for Dermatophytes Cultures. Mycoses 2016, 59, 416–418. [Google Scholar] [CrossRef]
- Moskaluk, A.E.; VandeWoude, S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022, 11, 957. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Kahlmeter, G.; Guinea, J.; Meletiadis, J.; Arendrup, M.C.; Meletiadis, J.; Guinea, J.; Kahlmeter, G.; Arikan-Akdagli, S.; Friberg, F.; et al. How to: Perform Antifungal Susceptibility Testing of Microconidia-Forming Dermatophytes Following the New Reference EUCAST Method E.Def 11.0, Exemplified by Trichophyton. Clin. Microbiol. Infect. 2021, 27, 55–60. [Google Scholar] [CrossRef]
- Johnson, E.M.; Cavling-Arendrup, M. Susceptibility Test Methods: Yeasts and Filamentous Fungi. In Manual of Clinical Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 2255–2281. [Google Scholar] [CrossRef]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy The Principles and Practice of Numerical Classification; WF Freeman & Co.: San Francisco, CA, USA, 1973; 573p, Available online: https://www.scirp.org/reference/referencespapers?referenceid=1985747 (accessed on 17 July 2025).
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton Rubrum Associated with Allylamine Resistance. Antimicrob. Agents Chemother. 2018, 62, e02522-17. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, E.; Ivagnes, V.; Magrì, C.; Falasca, B.; Spanu, T.; Sanguinetti, M. Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts. Microorganisms 2024, 12, 382. [Google Scholar] [CrossRef]
- Candela, A.; Arroyo, M.J.; Sánchez-Cueto, M.; Marín, M.; Cercenado, E.; Méndez, G.; Muñoz, P.; Mancera, L.; Rodríguez-Temporal, D.; Rodríguez-Sánchez, B. Rapid Discrimination of Pseudomonas Aeruginosa ST175 Isolates Involved in a Nosocomial Outbreak Using MALDI-TOF Mass Spectrometry and FTIR Spectroscopy Coupled with Machine Learning. Transbound. Emerg. Dis. 2023, 2023, 8649429. [Google Scholar] [CrossRef]
- Zvezdanova, M.E.; Arroyo, M.J.; Méndez, G.; Candela, A.; Mancera, L.; Rodríguez, J.G.; Serra, J.L.; Jiménez, R.; Lozano, I.; Castro, C.; et al. Detection of Azole Resistance in Aspergillus Fumigatus Complex Isolates Using MALDI-TOF Mass Spectrometry. Clin. Microbiol. Infect. 2022, 28, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Astvad, K.M.T.; Hare, R.K.; Jørgensen, K.M.; Saunte, D.M.L.; Thomsen, P.K.; Arendrup, M.C. Increasing Terbinafine Resistance in Danish Trichophyton Isolates 2019–2020. J. Fungi 2022, 8, 150. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Spruijtenburg, B.; Abhishek; Shaw, D.; de Groot, T.; Meijer, E.F.J.; Narang, T.; Dogra, S.; Chakrabarti, A.; Meis, J.F.; et al. Whole Genome Sequence Analysis of Terbinafine Resistant and Susceptible Trichophyton Isolates from Human and Animal Origin. Mycopathologia 2025, 190, 13. [Google Scholar] [CrossRef] [PubMed]
ERG1 Mutation | Sample n. | Mean | MIC Median | Modal |
---|---|---|---|---|
A448T | 10 | 6.49 | 0.125 | 0.125 |
F397L | 6 | 17.33 | 18.0 | 32.0 |
F415C | 1 | 0.5 | 0.5 | 0.5 |
L393S | 2 | 24.0 | 24.0 | 16.0 |
WT | 4 | 0.125 | 0.125 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivagnes, V.; De Carolis, E.; Magrì, C.; Arroyo, M.J.; Pavan, G.; Prigitano, A.C.M.; Chowdhary, A.; Sanguinetti, M. Integrating Machine Learning and Molecular Methods for Trichophyton indotineae Identification and Resistance Profiling Using MALDI-TOF Spectra. Pathogens 2025, 14, 986. https://doi.org/10.3390/pathogens14100986
Ivagnes V, De Carolis E, Magrì C, Arroyo MJ, Pavan G, Prigitano ACM, Chowdhary A, Sanguinetti M. Integrating Machine Learning and Molecular Methods for Trichophyton indotineae Identification and Resistance Profiling Using MALDI-TOF Spectra. Pathogens. 2025; 14(10):986. https://doi.org/10.3390/pathogens14100986
Chicago/Turabian StyleIvagnes, Vittorio, Elena De Carolis, Carlotta Magrì, Manuel J. Arroyo, Giacomina Pavan, Anna Cristina Maria Prigitano, Anuradha Chowdhary, and Maurizio Sanguinetti. 2025. "Integrating Machine Learning and Molecular Methods for Trichophyton indotineae Identification and Resistance Profiling Using MALDI-TOF Spectra" Pathogens 14, no. 10: 986. https://doi.org/10.3390/pathogens14100986
APA StyleIvagnes, V., De Carolis, E., Magrì, C., Arroyo, M. J., Pavan, G., Prigitano, A. C. M., Chowdhary, A., & Sanguinetti, M. (2025). Integrating Machine Learning and Molecular Methods for Trichophyton indotineae Identification and Resistance Profiling Using MALDI-TOF Spectra. Pathogens, 14(10), 986. https://doi.org/10.3390/pathogens14100986