Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) in New York State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Processing
2.4. Serology
2.5. Data Analysis
3. Results
3.1. Seroprevalence of Toxoplasma gondii in White-Tailed Deer in New York State
3.2. Juvenile Deer Are More Likely to Be Seropositive in Onondaga County
3.3. Human Population Density Does Not Consistently Correlate with Percent Seropositivity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lilly, E.L.; Wortham, C.D. High prevalence of Toxoplasma gondii oocyst shedding in stray and pet cats (Felis catus) in Virginia, United States. Parasit. Vectors 2013, 6, 266. [Google Scholar] [CrossRef]
- Arranz-Solis, D.; Warschkau, D.; Fabian, B.T.; Seeber, F.; Saeij, J.P.J. Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 2023, 14, e0286822. [Google Scholar] [CrossRef]
- Montazeri, M.; Mikaeili Galeh, T.; Moosazadeh, M.; Sarvi, S.; Dodangeh, S.; Javidnia, J.; Sharif, M.; Daryani, A. The global serological prevalence of Toxoplasma gondii in felids during the last five decades (1967–2017): A systematic review and meta-analysis. Parasit. Vectors 2020, 13, 82. [Google Scholar] [CrossRef]
- Sims, V.; Evans, K.L.; Newson, S.E.; Tratalos, J.A.; Gaston, K.J. Avian assemblage structure and domestic cat densities in urban environments. Divers. Distrib. 2008, 14, 387–399. [Google Scholar] [CrossRef]
- Barros, M.; Cabezon, O.; Dubey, J.P.; Almeria, S.; Ribas, M.P.; Escobar, L.E.; Ramos, B.; Medina-Vogel, G. Toxoplasma gondii infection in wild mustelids and cats across an urban-rural gradient. PLoS ONE 2018, 13, e0199085. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Van Wormer, E.; Shapiro, K. More people, more cats, more parasites: Human population density and temperature variation predict prevalence of Toxoplasma gondii oocyst shedding in free-ranging domestic and wild felids. PLoS ONE 2023, 18, e0286808. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.G.; Wilson, S.; Alavi, N.; Lapen, D.R. Human density is associated with the increased prevalence of a generalist zoonotic parasite in mammalian wildlife. Proc. Biol. Sci. 2021, 288, 20211724. [Google Scholar] [CrossRef]
- Dauphiné, N.C.R. Impacts of free-ranging domestic cats (Felis catus) on birds in the United States: A review of recent research with conservation and management recommendations. In Proceedings of the Fourth International Partners in Flight Conference: Tundra to Tropics, McAllen, TX, USA, 13–16 February 2008; pp. 205–219. [Google Scholar]
- Hill, D.E.; Dubey, J.P. Toxoplasma gondii as a Parasite in Food: Analysis and Control. Microbiol. Spectr. 2016, 4, 227–247. [Google Scholar] [CrossRef]
- Deganich, M.; Boudreaux, C.; Benmerzouga, I. Toxoplasmosis Infection during Pregnancy. Trop. Med. Infect. Dis. 2022, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.J.; Kirchgessner, M.S.; Whipps, C.M.; Mohammed, H.O.; Bunting, E.M.; Wade, S.E. Prevalence of antibodies to Toxoplasma gondii in white-tailed deer (Odocoileus virginianus) in New York State, USA. J. Wildl. Dis. 2013, 49, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Ballash, G.A.; Dubey, J.P.; Kwok, O.C.; Shoben, A.B.; Robison, T.L.; Kraft, T.J.; Dennis, P.M. Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) and Free-Roaming Cats (Felis catus) Across a Suburban to Urban Gradient in Northeastern Ohio. Ecohealth 2015, 12, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, H.J.; LaBonte, A.M.; Stafford, K.C. The relationship between deer density, tick abundance, and human cases of Lyme disease in a residential community. J. Med. Entomol. 2014, 51, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Storm, D.J.; Samuel, M.D.; Rolley, R.E.; Shelton, P.; Keuler, N.S.; Richards, B.J.; Van Deelen, T.R. Deer density and disease prevalence influence transmission of chronic wasting disease in white-tailed deer. Ecosphere 2013, 4, 1. [Google Scholar] [CrossRef]
- Pickering, B.; Lung, O.; Maguire, F.; Kruczkiewicz, P.; Kotwa, J.D.; Buchanan, T.; Gagnier, M.; Guthrie, J.L.; Jardine, C.M.; Marchand-Austin, A.; et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat. Microbiol. 2022, 7, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Dennis, P.M.; Verma, S.K.; Choudhary, S.; Ferreira, L.R.; Oliveira, S.; Kwok, O.C.; Butler, E.; Carstensen, M.; Su, C. Epidemiology of toxoplasmosis in white tailed deer (Odocoileus virginianus): Occurrence, congenital transmission, correlates of infection, isolation, and genetic characterization of Toxoplasma gondii. Vet. Parasitol. 2014, 202, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Cerqueira-Cezar, C.K.; Murata, F.H.A.; Verma, S.K.; Kwok, O.C.H.; Pedersen, K.; Rosenthal, B.M.; Su, C. White-tailed deer (Odocoileus virginianus) are a reservoir of a diversity of Toxoplasma gondii strains in the USA and pose a risk to consumers of undercooked venison. Parasitology 2020, 147, 775–781. [Google Scholar] [CrossRef] [PubMed]
- New York State Department of Environmental Conservation. Deer Management in Urban and Suburban New York; New York State Department of Environmental Conservation: Albany, NY, USA, 2018. [Google Scholar]
- Crist, S.C.; Stewart, R.L., Jr.; Rinehart, J.P.; Needham, G.R. Surveillance for Toxoplasma gondii in the white-tailed deer (Odocoileus virginianus) in Ohio. Ohio J. Sci. 1999, 99, 34–37. [Google Scholar]
- New York State Department of Environmental Conservation. Management Plan for White-tailed Deer in New York State, 2021–2030; New York State Department of Environmental Conservation: Albany, NY, USA, 2021. [Google Scholar]
- Hanmer, H.J.; Thomas, R.L.; Fellowes, M.D.E. Urbanisation influences range size of the domestic cat (Felis catus): Consequences for conservation. J. Urban Ecol. 2017, 3, jux014. [Google Scholar] [CrossRef]
- New York State Department of Environmental Conservation. White-Tailed Deer Harvest Summary 2023; New York State Department of Environmental Conservation: Albany, NY, USA, 2023. [Google Scholar]
- Bryce, S.A.G.G.; Omernik, J.M.; Edinger, G.; Indrick, S.; Vargas, O.; Carlson, D. Ecoregions of New York; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- New York State Department of Environmental Conservation. Management Plan for Bobcat in New York State: 2024–2033; New York State Department of Environmental Conservation: Albany, NY, USA, 2024. [Google Scholar]
- Desmonts, G.; Remington, J.S. Direct agglutination test for diagnosis of Toxoplasma infection: Method for increasing sensitivity and specificity. J. Clin. Microbiol. 1980, 11, 562–568. [Google Scholar] [CrossRef]
- Dubey, J.P.; Desmonts, G. Serological responses of equids fed Toxoplasma gondii oocysts. Equine Vet. J. 1987, 19, 337–339. [Google Scholar] [CrossRef]
- Dubey, J.P.; Jenkins, M.C.; Kwok, O.C.; Zink, R.L.; Michalski, M.L.; Ulrich, V.; Gill, J.; Carstensen, M.; Thulliez, P. Seroprevalence of Neospora caninum and Toxoplasma gondii antibodies in white-tailed deer (Odocoileus virginianus) from Iowa and Minnesota using four serologic tests. Vet. Parasitol. 2009, 161, 330–334. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Bureau, U.S.C. American Community Survey 5-Year Estimates. 2022. Available online: http://censusreporter.org/profiles/31000US45060-syracuse-nh-metro-area/ (accessed on 15 December 2024).
- QGIS.org. QGIS Geographic Information System. 2024. Available online: http://www.qgis.org (accessed on 15 December 2024).
- Vanek, J.A.; Dubey, J.P.; Thulliez, P.; Riggs, M.R.; Stromberg, B.E. Prevalence of Toxoplasma gondii antibodies in hunter-killed white-tailed deer (Odocoileus virginianus) in four regions of Minnesota. J. Parasitol. 1996, 82, 41–44. [Google Scholar] [CrossRef]
- Zeng, A.; Gong, Q.L.; Wang, Q.; Wang, C.R.; Zhang, X.X. The global seroprevalence of Toxoplasma gondii in deer from 1978 to 2019: A systematic review and meta-analysis. Acta Trop 2020, 208, 105529. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, J.G.; Stewart, R.L.; Dubey, J.P. Prevalence of Toxoplasma gondii antibodies in sera of hunter-killed white-tailed deer in Pennsylvania. Am. J. Vet. Res. 1995, 56, 172–173. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Lappin, M.R.; Thulliez, P. Long-term antibody responses of cats fed Toxoplasma gondii tissue cysts. J. Parasitol. 1995, 81, 887–893. [Google Scholar] [CrossRef]
- Kurth, K.; Jiang, T.; Muller, L.; Su, C.; Gerhold, R.W. Toxoplasma gondii contamination at an animal agriculture facility: Environmental, agricultural animal, and wildlife contamination indicator evaluation. Int. J. Parasitol. Parasites Wildl. 2021, 16, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.L.; Svoboda, W.K.; Chryssafidis, A.L.; de Souza Malanski, L.; Shiozawa, M.M.; de Moraes Aguiar, L.; Teixeira, G.M.; Ludwig, G.; da Silva, L.R.; Hilst, C.; et al. Sero-epidemiological survey for toxoplasmosis in wild New World monkeys (Cebus spp.; Alouatta caraya) at the Parana river basin, Parana State, Brazil. Vet. Parasitol. 2005, 133, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Fornazari, F.; Teixeira, C.R.; da Silva, R.C.; Leiva, M.; de Almeida, S.C.; Langoni, H. Prevalence of antibodies against Toxoplasma gondii among Brazilian white-eared opossums (Didelphis albiventris). Vet. Parasitol. 2011, 179, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, A.; Flint, M.; Stent, P.M.; Schwantje, H.M.; Wittum, T.E. Comparative health assessment of urban and non-urban free-ranging mule deer (Odocoileus hemionus) in southeastern British Columbia, Canada. PeerJ 2018, 6, e4968. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, E.W.; Fredebaugh, S.L.; Schooley, R.L.; Mateus-Pinilla, N.E. Prevalence of antibodies to Toxoplasma gondii in woodchucks across an urban-rural gradient. J. Wildl. Dis. 2010, 46, 977–980. [Google Scholar] [CrossRef]
- Vanwormer, E.; Conrad, P.A.; Miller, M.A.; Melli, A.C.; Carpenter, T.E.; Mazet, J.A. Toxoplasma gondii, source to sea: Higher contribution of domestic felids to terrestrial parasite loading despite lower infection prevalence. Ecohealth 2013, 10, 277–289. [Google Scholar] [CrossRef]
- CDC. Food Safety. 2024. Available online: https://www.cdc.gov/food-safety/about/index.html (accessed on 6 November 2024).
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cezar, C.K.; Kwok, O.C.H. Epidemiologic and Public Health Significance of Toxoplasma gondii Infections in Venison: 2009–2020. J. Parasitol. 2021, 107, 309–319. [Google Scholar] [CrossRef]
- Adams, K.; Ross, M. An Annual Report on the Status of White-Tailed Deer—The Foundation of the Hunting Industry in North America. In QDMA’s Whitetail Report 2020; National Deer Association: Bogart, GA, USA, 2020; pp. 1–66. [Google Scholar]
- New York State Department of Environmental Conservation. Tick and Deer Management Update: Report to Syracuse Common Council on 2022 Deer Management. 2022. Available online: https://www.syr.gov/files/sharedassets/public/v/2/2-departments/parks-recreation/documents/initiatives/tick-and-deer/2022-06-08-tick-and-deer-council-update.pdf (accessed on 15 December 2024).
- Almeria, S.; Dubey, J.P. Foodborne transmission of Toxoplasma gondii infection in the last decade. An overview. Res. Vet. Sci. 2021, 135, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Lindsay, D.S.; Speer, C.A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin. Microbiol. Rev. 1998, 11, 267–299. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Dubey, J.P. Foodborne toxoplasmosis. Clin. Infect. Dis. 2012, 55, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Warnekulasuriya, M.R.; Johnson, J.D.; Holliman, R.E. Detection of Toxoplasma gondii in cured meats. Int. J. Food Microbiol. 1998, 45, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Kijlstra, A.; Jongert, E. Control of the risk of human toxoplasmosis transmitted by meat. Int. J. Parasitol. 2008, 38, 1359–1370. [Google Scholar] [CrossRef]
- Conrady, C.D.; Besirli, C.G.; Baumal, C.R.; Kovach, J.L.; Etzel, J.D.; Tsui, J.C.; Elner, S.G.; Johnson, M.W. Ocular Toxoplasmosis after Exposure to Wild Game. Ocul. Immunol. Inflamm. 2022, 30, 527–532. [Google Scholar] [CrossRef]
- Gaulin, C.; Ramsay, D.; Thivierge, K.; Tataryn, J.; Courville, A.; Martin, C.; Cunningham, P.; Desilets, J.; Morin, D.; Dion, R. Acute Toxoplasmosis among Canadian Deer Hunters Associated with Consumption of Undercooked Deer Meat Hunted in the United States. Emerg. Infect. Dis. 2020, 26, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.D.; Stec, L.A.; Werner, J.C.; Blumenkranz, M.S.; Glazer, L.; Williams, G.A. Presumed acquired ocular toxoplasmosis in deer hunters. Retina 2001, 21, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Sacks, J.J.; Delgado, D.G.; Lobel, H.O.; Parker, R.L. Toxoplasmosis infection associated with eating undercooked venison. Am. J. Epidemiol. 1983, 118, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.J.; Gilbert, R.E.; Buffolano, W.; Zufferey, J.; Petersen, E.; Jenum, P.A.; Foulon, W.; Semprini, A.E.; Dunn, D.T. Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ 2000, 321, 142–147. [Google Scholar] [CrossRef]
- de Barros, R.A.M.; Torrecilhas, A.C.; Marciano, M.A.M.; Mazuz, M.L.; Pereira-Chioccola, V.L.; Fux, B. Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Trop. 2022, 231, 106432. [Google Scholar] [CrossRef]
- Westling, K. Deer Hunters: Beware of Toxoplasmosis! Clin. Infect. Dis. 2021, 72, 1566–1567. [Google Scholar] [CrossRef]
- Siemer, W.F.S.R.; Lauber, T.B. Local residents’ deer population preferences: Results from a 2020 survey of 8 Wildlife Management Unit Aggregates. In Center for Conservation Social Sciences Publication Series 20-6; Cornell University: Ithaca, NY, USA, 2020; Available online: https://ecommons.cornell.edu/handle/1813/71225 (accessed on 15 December 2024).
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. Ecohealth 2019, 16, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Inci, A.; Sohel, M.H.; Babur, C.; Uslu, S.; Karademir, G.K.; Yuruk, M.; Duzlu, O.; Kizgin, A.D.; Yildirim, A. An Overview of One Health Concept Focusing on Toxoplasmosis. Turkiye Parazitol. Derg. 2023, 47, 256–274. [Google Scholar] [CrossRef]
- Crozier, G.; Schulte-Hostedde, A.I. The ethical dimensions of wildlife disease management in an evolutionary context. Evol. Appl. 2014, 7, 788–798. [Google Scholar] [CrossRef]
- Dubey, J.P. Outbreaks of clinical toxoplasmosis in humans: Five decades of personal experience, perspectives and lessons learned. Parasit. Vectors 2021, 14, 263. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, S.; Basso, W.; Benavides Silvan, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 15, e00037. [Google Scholar] [CrossRef]
- Opsteegh, M.; Kortbeek, T.M.; Havelaar, A.H.; van der Giessen, J.W. Intervention strategies to reduce human Toxoplasma gondii disease burden. Clin. Infect. Dis. 2015, 60, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Pearce, B.D.; Kruszon-Moran, D.; Jones, J.L. The association of Toxoplasma gondii infection with neurocognitive deficits in a population-based analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Desmettre, T. Toxoplasmosis and behavioural changes. J. Fr. Ophtalmol. 2020, 43, e89–e93. [Google Scholar] [CrossRef] [PubMed]
- Eells, J.B.; Varela-Stokes, A.; Guo-Ross, S.X.; Kummari, E.; Smith, H.M.; Cox, A.D.; Lindsay, D.S. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity. PLoS ONE 2015, 10, e0119280. [Google Scholar] [CrossRef]
- Meyer, C.J.; Cassidy, K.A.; Stahler, E.E.; Brandell, E.E.; Anton, C.B.; Stahler, D.R.; Smith, D.W. Parasitic infection increases risk-taking in a social, intermediate host carnivore. Commun. Biol. 2022, 5, 1180. [Google Scholar] [CrossRef] [PubMed]
- Gering, E.; Laubach, Z.M.; Weber, P.S.D.; Soboll Hussey, G.; Lehmann, K.D.S.; Montgomery, T.M.; Turner, J.W.; Perng, W.; Pioon, M.O.; Holekamp, K.E.; et al. Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host. Nat. Commun. 2021, 12, 3842. [Google Scholar] [CrossRef]
- Hollings, T.; Jones, M.; Mooney, N.; McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2013, 2, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Bier, N.S.; Stollberg, K.; Mayer-Scholl, A.; Johne, A.; Nockler, K.; Richter, M. Seroprevalence of Toxoplasma gondii in wild boar and deer in Brandenburg, Germany. Zoonoses Public Health 2020, 67, 601–606. [Google Scholar] [CrossRef]
Years | Category | No. Positive/No. Tested | % Seroprevalence (95% CI) | p-Value |
---|---|---|---|---|
2019–2023 | Total | 44/69 | 63.77 (51.31–75.00) | 0.76 |
Age | ||||
Juvenile | 11/20 | 55.00 (31.53–76.94) | 0.43 | |
Adult | 33/49 | 67.35 (52.46–80.05) | 0.76 | |
Sex | ||||
Female | 23/40 | 57.50 (40.89–72.96) | 0.72 | |
Male | 19/28 | 67.86 (47.65–84.12) | 0.78 | |
2019 | Total | 13/18 | 72.22 (46.52–90.31) | |
Age | ||||
Juvenile | 6/9 | 66.67 (29.93–92.52) | 1 | |
Adult | 7/9 | 77.78 (39.99–97.19) | ||
Sex * | ||||
Female | 4/6 | 66.67 (22.28–95.68) | 1 | |
Male | 8/11 | 72.73 (39.03–93.98) | ||
2020 | Total | 15/26 | 61.54 (38.67–78.88) | |
Age | ||||
Juvenile | 2/6 | 33.33 (4.33–77.72) | 0.35 | |
Adult | 13/20 | 65.00 (40.78–84.61) | ||
Sex | ||||
Female | 8/16 | 50.00 (24.65–75.35) | 0.43 | |
Male | 7/10 | 70.00 (34.76–93.33) | ||
2023 | Total | 16/25 | 64.00 (42.52–82.03) | |
Age | ||||
Juvenile | 3/5 | 60.00 (14.66–94.73) | 1 | |
Adult | 13/20 | 65.00 (40.78–84.61) | ||
Sex | ||||
Female | 12/18 | 61.11 (86.66–40.99) | 1 | |
Male | 4/7 | 57.14 (18.41–90.10) |
Years | Category | No. Positive/ No. Tested | % Seroprevalence (95% CI) | p-Value |
---|---|---|---|---|
2020–2023 | Total | 27/75 | 36 (25.23–47.91) | 0.47 |
Age | ||||
Juvenile | 1/16 | 6.25 (30.23–0.16) | 1 | |
Adult | 26/59 | 44.07 (31.16–57.60) | 0.69 | |
Sex | ||||
Female | 18/52 | 34.62 (21.97–49.09) | 1 | |
Male | 9/23 | 39.13 (19.71–61.46) | 0.13 | |
2020 | Total | 2/9 | 22.22 (2.82–60.01) | |
Age | ||||
Juvenile | 0/3 | 0.00 (0.00–70.76) | 0.5 | |
Adult | 2/6 | 33.33 (4.327–77.72) | ||
Sex | ||||
Female | 2/5 | 40.00 (5.27–85.34) | 0.44 | |
Male | 0/4 | 0.00 (0.00–60.24) | ||
2023 | Total | 25/66 | 37.88 (26.22–50.67) | |
Age | ||||
Juvenile | 1/13 | 7.69 (0.20–26.03) | 0.0124 * | |
Adult | 24/53 | 45.28 (31.56–59.55) | ||
Sex | ||||
Female Male | 16/47 9/19 | 34.04 (20.86–49.31) 47.37 (24.45–71.14) | 0.403 |
Deer | No. Positive/ | No. with MAT Titers | |||
---|---|---|---|---|---|
No. Tested | 25 | 50 | 100 | 200 | |
Onondaga | |||||
Total | 44/69 | 11 (25%) | 9 (20.5%) | 5 (11.4%) | 19 (43.2%) |
Adult | 33/49 | 9 (27.3%) | 8 (24.2%) | 3 (9.1%) | 13 (39.4%) |
Juvenile | 11/20 | 2 (18.2%) | 1 (9.1%) | 2 (18.2%) | 6 (54.5%) |
Male | 19/28 | 5 (26.3%) | 1 (5.3%) | 4 (21.1%) | 9 (47.4) |
Female | 24/40 | 6 (25%) | 8 (33.3%) | 1 (4.2%) | 9 (37.5%) |
Suffolk | |||||
Total | 27/75 | 16 (59.3%) | 7 (25.9%) | 2 (7.4%) | 2 (7.4%) |
Adult | 26/59 | 15 (57.7%) | 7 (26.9%) | 2 (7.7%) | 2 (7.7%) |
Juvenile | 1/16 | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) |
Male | 9/23 | 5 (55.6%) | 2 (22.2%) | 1 (11.1%) | 1 (11.1%) |
Female | 18/52 | 11 (61.1%) | 5 (28.8%) | 1 (5.6%) | 1 (5.6%) |
Location | Population Within 10 km Radius | Residents per km2 | No. Location/No. Total | No. Positive/No. Tested | Seroprevalence in % (95% CI) | % MAT 1:200 |
---|---|---|---|---|---|---|
Onondaga | ||||||
Camillus | 60,498 | 374 | 14/69 | 9/14 | 64.29 (35.14–87.24) | 29% |
Dewitt | 185,776 | 389 | 19/69 | 12/19 | 63.16 (38.36–83.71) | 21% |
Fayetteville Solvay Syracuse | 68,205 240,184 272,663 | 959 1355 3237 | 14/69 5/69 17/69 | 8/14 2/5 13/17 | 57.14 (28.86–82.34) 40.00 (05.27–85.34) 76.47 (50.1–93.19) | 29% 0% 41% |
Suffolk | ||||||
Islip | 214,674 | 765 | 75/75 | 27/75 | 36.00 (25.23–47.91) | 7% |
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledgerwood, E.D.; Luscier, J.D. Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) in New York State. Pathogens 2025, 14, 30. https://doi.org/10.3390/pathogens14010030
Ledgerwood ED, Luscier JD. Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) in New York State. Pathogens. 2025; 14(1):30. https://doi.org/10.3390/pathogens14010030
Chicago/Turabian StyleLedgerwood, Emily D., and Jason D. Luscier. 2025. "Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) in New York State" Pathogens 14, no. 1: 30. https://doi.org/10.3390/pathogens14010030
APA StyleLedgerwood, E. D., & Luscier, J. D. (2025). Seroprevalence of Toxoplasma gondii in White-Tailed Deer (Odocoileus virginianus) in New York State. Pathogens, 14(1), 30. https://doi.org/10.3390/pathogens14010030