Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Extreme Gradient Boosting Model
3. Results
3.1. Seroprevalence of Leptospirosis
3.2. Urban Slum Community
3.3. Semi-Rural Community
3.4. Farm Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Number of Participants | MAT Positive | Seroprevalence (%) | 95% CI |
---|---|---|---|---|
Sex of the person | ||||
Male | 387 | 25 | 6.46 | 4.22–9.39 |
Female | 520 | 29 | 5.57 | 3.77–7.91 |
Person swim | ||||
Yes | 629 | 43 | 6.84 | 4.99–9.09 |
No | 278 | 11 | 3.96 | 1.99–6.97 |
Positive rodents in the household | ||||
Yes | 407 | 29 | 7.13 | 4.82–10.07 |
No | 500 | 25 | 5.00 | 3.26–7.29 |
Positive dogs in the household | ||||
Yes | 128 | 10 | 7.81 | 4.13–7.51 |
No | 779 | 44 | 5.64 | 3.81–13.90 |
Positive cattles in the household | ||||
Yes | 299 | 16 | 5.35 | 3.09–8.54 |
No | 608 | 38 | 6.25 | 4.46–8.48 |
Positive sheep in the household | ||||
Yes | 282 | 13 | 4.61 | 2.48–7.75 |
No | 625 | 41 | 6.56 | 4.75–8.79 |
Work in garden | ||||
Yes | 269 | 11 | 4.09 | 2.06–7.20 |
No | 638 | 43 | 6.73 | 4.92–8.97 |
Clean barn | ||||
Yes | 337 | 23 | 6.82 | 4.37–10.06 |
No | 570 | 31 | 5.44 | 3.73–7.63 |
Clean sewage drains | ||||
Yes | 46 | 1 | 2.27 | 0.05–11.53 |
No | 861 | 53 | 6.15 | 4.64–7.97 |
Person slaughters animals | ||||
Yes | 123 | 9 | 7.31 | 3.40–13.43 |
No | 784 | 45 | 5.74 | 4.22–7.60 |
Person milks animals | ||||
Yes | 48 | 4 | 8.33 | 2.32–19.98 |
No | 859 | 50 | 5.82 | 4.35–7.60 |
Clean animal at birth | ||||
Yes | 96 | 5 | 5.21 | 1.71–11.73 |
No | 811 | 49 | 6.04 | 4.50–7.91 |
References
- Crecelius, E.M.; Burnett, M.W. Leptospirosis. J. Spec. Oper. Med. 2020, 20, 121. [Google Scholar] [CrossRef]
- Haake, D.A.; Levett, P.N. Leptospirosis in Humans. In Leptospira and Leptospirosis. Current Topics in Microbiology and Immunology; Adler, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 387. [Google Scholar]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [PubMed]
- Luna, J.; Salgado, M.; Tejeda, C.; Moroni, M.; Monti, G. Assessment of Risk Factors in Synanthropic and Wild Rodents Infected by Pathogenic Leptospira spp. Captured in Southern Chile. Animals 2020, 10, 2133. [Google Scholar] [CrossRef] [PubMed]
- Guerra, M.A. Leptospirosis: Public health perspectives. Biologicals 2013, 41, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Ellis, W.A. Animal leptospirosis. Curr. Top. Microbiol. Immunol. 2015, 387, 99–137. [Google Scholar]
- Bradley, E.A.; Lockaby, G. Leptospirosis and the Environment: A Review and Future Directions. Pathogens 2023, 12, 1167. [Google Scholar] [CrossRef]
- Montes, V.; Monti, G. Pathogenic Leptospira spp. Seroprevalence and Herd-Level Risk Factors Associated with Chilean Dairy Cattle. Animals 2021, 11, 3148. [Google Scholar] [CrossRef] [PubMed]
- Harrison, N.A.; Fitzgerald, W.R. Leptospirosis—Can it be a sexually transmitted disease? Postgrad. Med. J. 1988, 64, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Bolin, C.A.; Koellner, P. Human-to-Human Transmission of Leptospira interrogans by Milk. J. Infect. Dis. 1988, 158, 246–247. [Google Scholar] [CrossRef]
- Muñoz-Zanzi, C.; Mason, M.R.; Encina, C.; Astroza, A.; Romero, A. Leptospira Contamination in Household and Environmental Water in Rural Communities in Southern Chile. Int. J. Environ. Res. Public Health 2014, 11, 6666–6680. [Google Scholar] [CrossRef]
- Pappas, G.; Papadimitriou, P.; Siozopoulou, V.; Christou, L.; Akritidis, N. The globalization of leptospirosis: Worldwide incidence trends. Int. J. Infect. Dis. 2008, 12, 351–357. [Google Scholar] [CrossRef]
- Miller, D.A.; Wilson, M.A.; Beran, G.W. Relationships between prevalence of Leptospira interrogans in cattle, and regional, climatic, and seasonal factors. Am. J. Vet. Res. 1991, 52, 1766–1768. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.C.; Bernardo, C.C.; Yasuda, P.H. Human leptospirosis: A twenty-nine-year serological study in São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 2003, 45, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Mwachui, M.A.; Crump, L.; Hartskeerl, R.; Zinsstag, J.; Hattendorf, J. Environmental and Behavioural Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003843. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.Z.; Senthil, R.; Ramalingam, V.; Gopal, R. Predicting Infectious Disease Outbreaks with Machine Learning and Epidemiological Data. J. Adv. Zool. 2023, 44, 110–121. [Google Scholar] [CrossRef]
- Bi, Q.; E Goodman, K.; Kaminsky, J.; Lessler, J. What is machine learning? A primer for the epidemiologist. Am. J. Epidemiol. 2019, 188, 2222–2239. [Google Scholar] [CrossRef] [PubMed]
- Al Meslamani, A.Z.; Sobrino, I.; de la Fuente, J. Machine learning in infectious diseases: Potential applications and limitations. Ann. Med. 2024, 56, 2362869. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Leake, J.; Naranjo-Torres, J.; Valero, N.; Cabrera, J.C.; Rodríguez-Morales, A.J. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop. Med. Infect. Dis. 2022, 7, 322. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Gupta, R.; Ambasta, R.K.; Kumar, P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog. Mol. Biol. Transl. Sci. 2022, 190, 57–100. [Google Scholar] [PubMed]
- Pandit, N.; Vanak, A.T. Artificial Intelligence and One Health: Knowledge Bases for Causal Modeling. J. Indian Inst. Sci. 2020, 100, 717–723. [Google Scholar] [CrossRef]
- Muñoz-Zanzi, C.; Mason, M.; Encina, C.; Gonzalez, M.; Berg, S. Household characteristics associated with rodent presence and Leptospira infection in rural and urban communities from Southern Chile. Am. J. Trop. Med. Hyg. 2014, 90, 497–506. [Google Scholar] [CrossRef]
- Alexander, A.D. The distribution of leptospirosis in Latin America. Bull. World Health Organ. 1960, 23, 113–125. [Google Scholar] [PubMed]
- Zamora, J.; Riedemann, S.; I Montecinos, M.; Cabezas, X. Serological survey of human leptospirosis in a high risk population in Chile. Rev. Med. Chil. 1990, 118, 247–252. [Google Scholar] [PubMed]
- Lelu, M.; Muñoz-Zanzi, C.; Higgins, B.; Galloway, R. Seroepidemiology of leptospirosis in dogs from rural and slum communities of Los Rios Region, Chile. BMC Vet. Res. 2015, 11, 31. [Google Scholar] [CrossRef]
- Mason, M.R.; Encina, C.; Sreevatsan, S.; Muñoz-Zanzi, C. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile. PLoS Negl. Trop. Dis. 2016, 10, e0004895. [Google Scholar] [CrossRef]
- Munoz-Zanzi, C.; Campbell, C.; Berg, S. Seroepidemiology of toxoplasmosis in rural and urban communities from Los Rios Region, Chile. Infect. Ecol. Epidemiol. 2016, 6, 30597. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ogunleye, A.A.; Wang, Q.-G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 2131–2140. [Google Scholar] [CrossRef]
- Shaheed, K.; Abbas, Q.; Hussain, A.; Qureshi, I. Optimized Xception Learning Model and XgBoost Classifier for Detection of Multiclass Chest Disease from X-ray Images. Diagnostics 2023, 13, 2583. [Google Scholar] [CrossRef]
- Ali, Z.A.; Abduljabbar, Z.H.; Taher, H.A.; Sallow, A.B.; Almufti, S.M. Exploring the power of eXtreme gradient boosting algorithm in machine learning: A review. Acad. J. Nawroz Univ. 2023, 12, 320–334. [Google Scholar]
- Aydin, Z.E.; Ozturk, Z.K. Performance analysis of XGboost classifier with missing data. In Proceedings of the 1st International Conference on Computing and Machine Intelligence, Istanbul, Turkey, 19–20 February 2021; Volume 2. [Google Scholar]
- Putatunda, S.; Rama, K. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost. In Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 28–30 November 2018; pp. 6–10. [Google Scholar]
- Davagdorj, K.; Pham, V.H.; Theera-Umpon, N.; Ryu, K.H. XGBoost-Based Framework for Smoking-Induced Noncommunicable Disease Prediction. Int. J. Environ. Res. Public Health 2020, 17, 6513. [Google Scholar] [CrossRef]
- Srinivas, P.; Katarya, R. hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomed. Signal Process. Control 2022, 73, 103456. [Google Scholar] [CrossRef]
- Farooq, Z.; Rocklöv, J.; Wallin, J.; Abiri, N.; Sewe, M.O.; Sjödin, H.; Semenza, J.C. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg. Health Eur. 2022, 17, 100370. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. XGboost: Extreme Gradient Boosting; University of Melbourne: Parkville, Australia, 2023. [Google Scholar]
- Karpagam, K.B.; Ganesh, B. Leptospirosis: A neglected tropical zoonotic infection of public health importance—an updated review. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Notobroto, H.B.; Mirasa, Y.A.; Rahman, F.S. Sociodemographic, behavioral, and environmental factors associated with the incidence of leptospirosis in highlands of Ponorogo Regency, Province of East Java, Indonesia. Clin. Epidemiol. Glob. Health 2021, 12, 100911. [Google Scholar] [CrossRef]
- Romero, M.H.; A Sánchez, J.; Hayek, L.C. Prevalencia de anticuerpos contra Leptospira en población urbana humana y canina del Departamento del Tolima. Rev. Salud Pública 2010, 12, 268–275. [Google Scholar] [CrossRef]
- Alvarado-Esquivel, C.; Hernandez-Tinoco, J.; Sanchez-Anguiano, L.F.; Ramos-Nevarez, A.; Cerrillo-Soto, S.M.; Guido-Arreola, C.A. Leptospira Exposure and Gardeners: A Case-Control Seroprevalence Study. J. Clin. Med. Res. 2016, 8, 25–28. [Google Scholar] [CrossRef]
- Benschop, J.; Heuer, C.; Jaros, P.; Collins-Emerson, J.; Midwinter, A.; Wilson, P. Sero-prevalence of leptospirosis in workers at a New Zealand slaughterhouse. N. Z. Med. J. 2009, 122, 39–47. [Google Scholar]
- Carrero, S.H.S.; Montoya, D.P.H.; Bolaños, Y.M.; Medellín, M.O.P. Seroprevalencia de infección por Leptospira y factores de riesgo en estudiantes de una universidad de Colombia. Nova 2017, 15, 131–138. [Google Scholar] [CrossRef]
- Dias, J.P.; Teixeira, M.G.; Costa, M.C.N.; Mendes, C.M.C.; Guimarães, P.; Reis, M.G.; Ko, A.; Barreto, M.L. Factors associated with Leptospira sp infection in a large urban center in northeastern Brazil. Rev. Soc. Bras. Med. Trop. 2007, 40, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Wynwood, S.J.; Graham, G.C.; Weier, S.L.; Collet, T.A.; McKay, D.B.; Craig, S.B. Leptospirosis from water sources. Pathog. Glob. Health 2014, 108, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Goarant, C. Leptospirosis: Risk factors and management challenges in developing countries. Res. Rep. Trop. Med. 2016, 7, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Davignon, G.; Cagliero, J.; Guentas, L.; Bierque, E.; Genthon, P.; Gunkel-Grillon, P.; Juillot, F.; Kainiu, M.; Laporte-Magoni, C.; Picardeau, M.; et al. Leptospirosis: Toward a better understanding of the environmental lifestyle of Leptospira. Front. Water 2023, 5, 1195094. [Google Scholar] [CrossRef]
- Moseley, M.; Rahelinirina, S.; Rajerison, M.; Garin, B.; Piertney, S.; Telfer, S. Mixed Leptospira Infections in a Diverse Reservoir Host Community, Madagascar, 2013–2015. Emerg. Infect. Dis. 2018, 24, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, K.; Liu, R.; Collender, P.A.; Cheng, Q.; Li, C.; Hoover, C.M.; Chang, H.H.; Liang, S.; Yang, C.; Remais, J.V. Hydroclimatic drivers of highly seasonal leptospirosis incidence suggest prominent soil reservoir of pathogenic Leptospira spp. in rural western China. PLoS Negl. Trop. Dis. 2019, 13, e0007968. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.; Costa, F.; Ribeiro, G.S.; Carvalho, M.S.; Reis, R.B.; Nery, N., Jr.; Pischel, L.; Gouveia, E.L.; Santos, A.C.; Queiroz, A.; et al. Rainfall and other meteorological factors as drivers of urban transmission of leptospirosis. PLoS Negl. Trop. Dis. 2022, 16, e0007507. [Google Scholar] [CrossRef] [PubMed]
- Kocher, A.; Cornuault, J.; Gantier, J.; Manzi, S.; Chavy, A.; Girod, R.; Dusfour, I.; Forget, P.; Ginouves, M.; Prévot, G.; et al. Biodiversity and vector-borne diseases: Host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Mol. Ecol. 2023, 32, 1817–1831. [Google Scholar] [CrossRef] [PubMed]
- Chiani, Y.T.; Jacob, P.; Mayora, G.; Aquino, D.S.; Quintana, R.D.; Mesa, L. Presence of Leptospira spp. in a Mosaic of Wetlands Used for Livestock Raising under Differing Hydroclimatic Conditions. Appl. Environ. Microbiol. 2023, 89, e0197122. [Google Scholar] [CrossRef]
- Caley, P.; Ramsey, D. Estimating disease transmission in wildlife, with emphasis on leptospirosis and bovine tuberculosis in possums, and effects of fertility control. J. Appl. Ecol. 2001, 38, 1362–1370. [Google Scholar] [CrossRef]
- Bacallao, J.; Schneider, M.C.; Najera, P.; Aldighieri, S.; Soto, A.; Marquiño, W.; Sáenz, C.; Jiménez, E.; Moreno, G.; Chávez, O.; et al. Socioeconomic factors and vulnerability to outbreaks of leptospirosis in Nicaragua. Int. J. Environ. Res. Public Health 2014, 11, 8301–8318. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, O.I.; Korennoy, F.I.; Iashin, I.V.; Toropova, N.N.; Gogin, A.E.; Kolbasov, D.V.; Surkova, G.V.; Malkhazova, S.M.; Blokhin, A.A. Ecological and Socio-Economic Determinants of Livestock Animal Leptospirosis in the Russian Arctic. Front. Vet. Sci. 2021, 8, 658675. [Google Scholar] [CrossRef] [PubMed]
- Baquero, O.S.; Machado, G. Spatiotemporal dynamics and risk factors for human Leptospirosis in Brazil. Sci. Rep. 2018, 8, 15170. [Google Scholar] [CrossRef]
- Hagan, J.E.; Moraga, P.; Costa, F.; Capian, N.; Ribeiro, G.S.; Wunder, E.A.; Felzemburgh, R.D.M.; Reis, R.B.; Nery, N.; Santana, F.S.; et al. Spatiotemporal Determinants of Urban Leptospirosis Transmission: Four-Year Prospective Cohort Study of Slum Residents in Brazil. PLoS Negl. Trop. Dis. 2016, 10, e0004275. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.B.; Ribeiro, G.S.; Felzemburgh, R.D.M.; Santana, F.S.; Mohr, S.; Melendez, A.X.T.O.; Queiroz, A.; Santos, A.C.; Ravines, R.R.; Tassinari, W.S.; et al. Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl. Trop. Dis. 2008, 2, e228. [Google Scholar] [CrossRef] [PubMed]
- Kembhavi, R.S.; Velhal, G.D.; Shah, A.K. Epidemiological determinants of leptospirosis in rural and urban districts of Maharashtra, India. J. Fam. Med. Prim. Care 2021, 10, 3361–3367. [Google Scholar]
- Sluydts, V.; Sarathchandra, S.R.; Piscitelli, A.P.; Van Houtte, N.; Gryseels, S.; Mayer-Scholl, A.; Bier, N.S.; Htwe, N.M.; Jacob, J. Ecology and distribution of Leptospira spp., reservoir hosts and environmental interaction in Sri Lanka, with identification of a new strain. PLoS Negl. Trop. Dis. 2022, 16, e0010757. [Google Scholar]
- Daniels, M.E.; Pradhan, A.; Odagiri, M.; Jenkins, M.W. Waterborne exposure during non-consumptive domestic use of surface water: A population study across WASH service levels in rural India. J. Water Health 2023, 21, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Galan, D.I.; Roess, A.A.; Pereira, S.V.C.; Schneider, M.C. Epidemiology of human leptospirosis in urban and rural areas of Brazil, 2000–2015. PLoS ONE 2021, 16, e0247763. [Google Scholar] [CrossRef]
- Awoniyi, A.M.; Venegas-Vargas, C.; Souza, F.N.; Zeppelini, C.G.; Hacker, K.P.; Carvalho-Pereira, T.; Marins, C.L.; de Santana, M.C.; Pertile, A.C.; Begon, M.; et al. Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community. Sci. Rep. 2022, 12, 10109. [Google Scholar] [CrossRef]
- Céspedes, M.; Ormaeche, M.; Condori, P.; Balda, L.; Glenny, M. Prevalencia de Leptospirosis y factores de riesgo en personas con antecedentes de fiebre en la Provincia de Manu, Madre de Dios, Perú. Rev. Peru. Med. Exp. Salud Pública 2003, 20, 80–185. [Google Scholar]
- Maze, M.J.; Cash-Goldwasser, S.; Rubach, M.P.; Biggs, H.M.; Galloway, R.L.; Sharples, K.J.; Allan, K.J.; Halliday, J.E.B.; Cleaveland, S.; Shand, M.C.; et al. Risk factors for human acute leptospirosis in northern Tanzania. PLoS Negl. Trop. Dis. 2018, 12, e0006372. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, S.O.; Ulrich, L.; Piechotowski, I.; Wagner-Wiening, C.; Nöckler, K.; Mayer-Scholl, A.; Eichner, M. Risk factors for human Leptospira seropositivity in South Germany. SpringerPlus 2016, 5, 1796. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.; Hamond, C.; Haluch, A.; Toot, K.; Nally, J.E.; LeCount, K.; Schlater, L.K. Animals Exposed to Leptospira Serogroups Not Included in Bacterins in the United States and Puerto Rico. Trop. Med. Infect. Dis. 2023, 8, 183. [Google Scholar] [CrossRef]
- Harran, E.; Pinot, A.; Kodjo, A.; Djelouadji, Z.; Le Gudayer, M.; Sionfoungo Daouda, S.; Groud, K.; Lattard, V.; Ayral, F. Identification of Pathogenic Leptospira kirschneri Serogroup Grippotyphosa in Water Voles (Arvicola terrestris) from Ruminant Pastures in Puy-de-Dôme, Central France. Pathogens 2023, 12, 260. [Google Scholar] [CrossRef]
Type | Variable Name | Description | Source |
---|---|---|---|
Socio-demographic and household characteristics | sex | Sex of the person | Questionnaire |
age | Age of the person (in years) | ||
clean_barn | Person cleans barns | ||
clean_drain | Person cleans drains in the field | ||
slaughter | Person butchers meat | ||
milking | Person milks cows | ||
clean_birth | Person cleans cow birth products | ||
clean_water_drain | Person cleans water drains | ||
clean_field | Person cleans fields | ||
swim | Person swims | ||
season | Sampling season | ||
house | Number of houses within 100-m radius | Derived from worldview-2 satellite imagery | |
buildings | Number buildings within 100-m radius | ||
Environmental | elev | Altitude of sampled household | Derived from worldview-2 satellite imagery |
FlowAcc | Difference in altitude compared with surroundings (higher numbers mean greater slope downward) | ||
tree | Square meters of tree-dominated terrain within 100-m radius | ||
lowveg | Square meters of lower-vegetation terrain within 100-m radius (e.g., bushes and other short plants) | ||
shrub | Square meters of shrub-dominated terrain within 100-m radius | ||
wetland | Square meters of wetland terrain within 100-m radius | ||
field | Square meters of field terrain within 250-m radius | ||
bio1 | Annual mean temperature | worldclim.org, accessed on 23 October 2023 | |
bio2 | Mean Diurnal Range (mean of monthly (max temp–min temp)) | ||
bio12 | Annual Precipitation | ||
bio15 | Precipitation Seasonality (Coefficient of Variation) | ||
puddle_pos_com | Proportion of Leptospira-positive puddles in the community | Laboratory testing | |
water_prev_com | Proportion of Leptospira-positive water samples in the community (all water source types) | ||
distance_pos_water | Number of households within 100 m with Leptospira-positive water samples weighted inversely by distance from house | Derived from worldview-2 satellite imagery | |
Animal | rodent_count | Number of rodents trapped in the household | Questionnaire |
rod_pos | Presence of Leptospira positive rodents in the household | Derived | |
rodent_count_com | Number of rodents trapped in the community | Questionnaire | |
RodHHPrev | Leptospira prevalence in rodents at household level | Derived | |
rodent_prev_com | Leptospira prevalence in rodents in the community | Derived | |
distance_pos_rod | Number of households within 100 m with Leptospira-positive rodents weighted inversely by distance from house | Derived from worldview-2 satellite imagery | |
spdiv | Number of different domestic animal species in the household | Derived | |
bov_count | Number of bovines in the household | Questionnaire | |
bov_pos | Presence of seropositive bovines in the household | Derived | |
BovHHPrev | Leptospira seroprevalence in bovines at household level | ||
bov_com_pos | Number of seropositive bovines in the community | ||
bov_com_prev | Leptospira seroprevalence in bovines at community level | ||
ovi_count | Number of ovines in the household | Questionnaire | |
ovi_pos | Presence of seropositive ovines in the household | Derived | |
OviHHPrev | Leptospira seroprevalence in ovines at household level | ||
ovi_pos_com | Number of seropositive ovines in the community | ||
OviComPrev | Leptospira seroprevalence in ovines at community level | ||
dog_count | Number of dogs in the household | Questionnaire | |
dog_pos | Presence of seropositive dogs in the household | Derived | |
DogHHPrev | Leptospira seroprevalence in dogs at household level | ||
dog_com_pos | Number of seropositive dogs in the community | ||
DogComPrev | Leptospira seroprevalence in dogs at community level | ||
Anim_pos | Presence of seropositive animals in the household | ||
AnimalHHPrev | Leptospira seroprevalence in farm animals at household level | ||
animal_pos_com | Number of overall seropositive farm animals in the community | ||
AnimCommPrev | Leptospira seroprevalence in farm animals at community level |
Parameter | Description | Range | Interval |
---|---|---|---|
scale_pos_weight | Weight of positive class to address class imbalance | Neg/pos | Fixed |
nrounds | Number of boosting rounds or iterations during the training process. | 100–600 | 50 |
learning_rate | Learning rate for gradient boosting | 0–1 | 0.01 |
max_depth | Maximum depth of the decision tree | 0–10 | 1 |
min_child_weight | Minimum sum of instance weight (Hessian) needed in a child | 0–10 | 1 |
gamma | Minimum loss reduction required to make a further partition on a leaf node | 0–5 | 0.1 |
subsample | Fraction of training data to randomly sample during training | 0–1 | 0.1 |
colsample_bytree | Fraction of features to be randomly sampled for each tree | 0–1 | 0.1 |
objective | Learning task and objective function (binary classification in this case) | Binary:logistic | |
Max_delta_step | Introduce an ‘absolute’ regularization, capping the weight before applying ETA correction. | 1–10 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukder, H.; Muñoz-Zanzi, C.; Salgado, M.; Berg, S.; Yang, A. Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective. Pathogens 2024, 13, 687. https://doi.org/10.3390/pathogens13080687
Talukder H, Muñoz-Zanzi C, Salgado M, Berg S, Yang A. Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective. Pathogens. 2024; 13(8):687. https://doi.org/10.3390/pathogens13080687
Chicago/Turabian StyleTalukder, Himel, Claudia Muñoz-Zanzi, Miguel Salgado, Sergey Berg, and Anni Yang. 2024. "Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective" Pathogens 13, no. 8: 687. https://doi.org/10.3390/pathogens13080687
APA StyleTalukder, H., Muñoz-Zanzi, C., Salgado, M., Berg, S., & Yang, A. (2024). Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective. Pathogens, 13(8), 687. https://doi.org/10.3390/pathogens13080687