Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme
Abstract
:1. Introduction
2. Production of Recombinant Dispersin B
3. Dispersin B’s Structure and Mechanism of Action
4. Dispersin B as a Tool for Studying Biofilms
5. Modifications to Dispersin B
6. Antibiofilm Activities of Dispersin B against Bacteria
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penesyan, A.; Paulsen, I.T.; Kjelleberg, S.; Gillings, M.R. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes 2021, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Penesyan, A.; Gillings, M.; Paulsen, I.T. Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules 2015, 20, 5286–5298. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.G.; Yousef, A.E. Combating bacterial biofilms: Current and emerging antibiofilm strategies for treating persistent infections. Antibiotics 2023, 12, 1005. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Geng, M.; Bai, L. Targeting biofilms therapy: Current research strategies and development hurdles. Microorganisms 2020, 8, 1222. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B. Therapeutic potential of biofilm-dispersing enzymes. Int. J. Artif. Organs 2009, 32, 545–554. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Singh, A.K.; Singh, S.; Chakravortty, D.; Das, D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J. Biol. Chem. 2022, 298, 102352. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Breslawec, A.P.; Liang, T.; Deng, Z.; Kuperman, L.L.; Yu, Q. Strategy to combat biofilms: A focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.H.; Furgang, D.; Kaplan, J.; Charlesworth, J.; Figurski, D.H. Tenacious adhesion of Actinobacillus actinomycetemcomitans strain CU1000 to salivary-coated hydroxyapatite. Arch. Oral Biol. 1999, 44, 1063–1076. [Google Scholar] [CrossRef]
- Kaplan, J.B.; Meyenhofer, M.F.; Fine, D.H. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J. Bacteriol. 2003, 185, 1399–1404. [Google Scholar] [CrossRef]
- Kaplan, J.B.; Ragunath, C.; Ramasubbu, N.; Fine, D.H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J. Bacteriol. 2003, 185, 4693–4698. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 2010, 89, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Stacy, A.; Everett, J.; Jorth, P.; Trivedi, U.; Rumbaugh, K.P.; Whiteley, M. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc. Natl. Acad. Sci. USA 2014, 111, 7819–7824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Peng, L.; Han, W.; Chen, H.; Tang, H.; Chen, X.; Langford, P.R.; Huang, Q.; Zhou, R.; Li, L. The morphology and metabolic changes of Actinobacillus pleuropneumoniae during its growth as a biofilm. Vet. Res. 2023, 54, 42. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Velliyagounder, K.; Ragunath, C.; Rohde, H.; Mack, D.; Knobloch, J.K.; Ramasubbu, N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol. 2004, 186, 8213–8220. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.B.; Bossé, J.T.; Schwartz, S. Antimicrobial resistance in Pasteurellaceae of veterinary origin. Microbiol. Spectr. 2018, 6, ARBA-0022-2017. [Google Scholar] [CrossRef]
- Ono, R.; Kitagawa, I.; Kobayashi, Y. Cardiobacterium hominis infective endocarditis: A literature review. Am. Heart J. Plus 2023, 26, 100248. [Google Scholar] [CrossRef]
- Stacy, A.; Abraham, N.; Jorth, P.; Whiteley, M. Microbial community composition impacts pathogen iron availability during polymicrobial infection. PLoS Pathog. 2016, 12, e1006084. [Google Scholar] [CrossRef]
- Ishikawa, K.H.; Bueno, M.R.; Kawamoto, D.; Simionato, M.R.L.; Mayer, M.P.A. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans. Mol. Oral. Microbiol. 2021, 36, 92–102. [Google Scholar] [CrossRef]
- Shakya, S.; Danshiitsoodol, N.; Noda, M.; Inoue, Y.; Sugiyama, M. 3-Phenyllactic acid generated in medicinal plant extracts fermented with plant-derived lactic acid bacteria inhibits the biofilm synthesis of Aggregatibacter actinomycetemcomitans. Front. Microbiol. 2022, 13, 991144. [Google Scholar] [CrossRef]
- Ramasubbu, N.; Thomas, L.M.; Ragunath, C.; Kaplan, J.B. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J. Mol. Biol. 2005, 349, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Yakandawala, N.; Gawande, P.V.; LoVetri, K.; Romeo, T.; Kaplan, J.B.; Madhyastha, S. Enhanced expression of engineered ACA-less beta-1, 6-N-acetylglucosaminidase (dispersin B) in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2009, 36, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Gökçen, A.; Vilcinskas, A.; Wiesner, J. Methods to identify enzymes that degrade the main extracellular polysaccharide component of Staphylococcus epidermidis biofilms. Virulence 2013, 4, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Sun, E.J.; Liu, Z.W.; Guo, J.; Yuan, C.; Yang, Y.; Xie, H. Synthesis of magnetic nanoparticles with an IDA or TED modified surface for purification and immobilization of poly-histidine tagged proteins. RSC Adv. 2020, 10, 11524–11534. [Google Scholar] [CrossRef] [PubMed]
- Opdensteinen, P. Assessment of a Novel High-Throughput Process Development Platform for Biopharmaceutical Protein Production. Ph.D. Thesis, Aachen University, Aachen, Germany, 2023. [Google Scholar]
- Prag, G.; Papanikolau, Y.; Tavlas, G.; Vorgias, C.E.; Petratos, K.; Oppenheim, A.B. Structures of chitobiase mutants complexed with the substrate di-N-acetyl-d-glucosamine: The catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J. Mol. Biol. 2000, 300, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Manuel, S.G.; Ragunath, C.; Sait, H.B.; Izano, E.A.; Kaplan, J.B.; Ramasubbu, N. Role of active-site residues of Dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. FEBS J. 2007, 274, 5987–5999. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.J.; Mark, B.L.; Vocadlo, D.J.; James, M.N.; Withers, S.G. Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J. Biol. Chem. 2002, 277, 40055–40065. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Chibba, A.; Dasgupta, S.; Yakandawala, N.; Madhyastha, S.; Nitz, M. Chromogenic carbamate and acetal substrates for glycosaminidases. J. Carbohydr. Chem. 2011, 30, 549–558. [Google Scholar] [CrossRef]
- Fazekas, E.; Kandra, L.; Gyemant, G. Model for beta-1,6-N-acetylglucosamine oligomer hydrolysis catalysed by DispersinB, a biofilm degrading enzyme. Carbohydr. Res. 2012, 363, 7–13. [Google Scholar] [CrossRef]
- Fekete, A.; Borbas, A.; Gyemant, G.; Kandra, L.; Fazekas, E.; Ramasubbu, N.; Antus, S. Synthesis of beta-(1→6)-linked N-acetyl-D-glucosamine oligosaccharide substrates and their hydrolysis by Dispersin B. Carbohydr. Res. 2011, 346, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, J.E.; Ragunath, C.; Kandra, L.; Gyemant, G.; Liptak, A.; Janossy, L.; Kaplan, J.B.; Ramasubbu, N. Modeling and biochemical analysis of the activity of antibiofilm agent Dispersin B. Acta Biol. Hung. 2008, 59, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Breslawec, A.P.; Poulin, M.B. Multifunctional fluorescent probes for high-throughput characterization of hexosaminidase enzyme activity. Bioorg. Chem. 2022, 119, 105532. [Google Scholar] [CrossRef]
- Wang, S.; Breslawec, A.P.; Alvarez, E.; Tyrlik, M.; Li, C.; Poulin, M.B. Differential recognition of deacetylated PNAG oligosaccharides by a biofilm degrading glycosidase. ACS Chem. Biol. 2019, 14, 1998–2005. [Google Scholar] [CrossRef]
- Breslawec, A.P.; Wang, S.; Monahan, K.N.; Barry, L.L.; Poulin, M.B. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly-beta-(1→6)-N-acetylglucosamine. FEBS J. 2023, 290, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Breslawec, A.P.; Wang, S.; Li, C.; Poulin, M.B. Anionic amino acids support hydrolysis of poly-beta-(1,6)-N-acetylglucosamine exopolysaccharides by the biofilm dispersing glycosidase Dispersin B. J. Biol. Chem. 2021, 296, 100203. [Google Scholar] [CrossRef]
- Cywes-Bentley, C.; Skurnik, D.; Zaidi, T.; Roux, D.; Deoliveira, R.B.; Garrett, W.S.; Lu, X.; O’Malley, J.; Kinzel, K.; Zaidi, T.; et al. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc. Natl. Acad. Sci. USA 2013, 110, E2209–E2218. [Google Scholar] [CrossRef]
- Gening, M.L.; Pier, G.B.; Nifantiev, N.E. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-(1→6)-N-acetyl-D-glucosamine exopolysaccharide. Drug Discov. Today Technol. 2020, 35–36, 13–21. [Google Scholar] [CrossRef]
- Yoong, P.; Cywes-Bentley, C.; Pier, G.B. Poly-N-acetylglucosamine expression by wild-type Yersinia pestis is maximal at mammalian, not flea, temperatures. mBio 2012, 3, e00217-12. [Google Scholar] [CrossRef]
- Roux, D.; Cywes-Bentley, C.; Zhang, Y.F.; Pons, S.; Konkol, M.; Kearns, D.B.; Little, D.J.; Howell, P.L.; Skurnik, D.; Pier, G.B. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J. Biol. Chem. 2015, 290, 19261–19272. [Google Scholar] [CrossRef] [PubMed]
- Spiliopoulou, A.I.; Krevvata, M.I.; Kolonitsiou, F.; Harris, L.G.; Wilkinson, T.S.; Davies, A.P.; Dimitracopoulos, G.O.; Karamanos, N.K.; Mack, D.; Anastassiou, E.D. An extracellular Staphylococcus epidermidis polysaccharide: Relation to polysaccharide intercellular adhesin and its implication in phagocytosis. BMC Microbiol. 2012, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Yakandawala, N.; Gawande, P.V.; LoVetri, K.; Cardona, S.T.; Romeo, T.; Nitz, M.; Madhyastha, S. Characterization of the poly-beta-1,6-N-acetylglucosamine polysaccharide component of Burkholderia biofilms. Appl. Environ. Microbiol. 2011, 77, 8303–8309. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, S.; Iwamoto, T.; Takada, K.; Okuda, K.; Tajima, A.; Iwase, T.; Mizunoe, Y. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 2013, 195, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Chiba, A.; Sugimoto, S.; Sato, F.; Hori, S.; Mizunoe, Y. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb. Biotechnol. 2015, 8, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Eddenden, A.; Kitova, E.N.; Klassen, J.S.; Nitz, M. An Inactive dispersin B probe for monitoring PNAG production in biofilm formation. ACS Chem. Biol. 2020, 15, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Eddenden, A.; Nitz, M. Applications of an inactive dispersin B probe to monitor biofilm polysaccharide production. Methods Enzymol. 2022, 665, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Al Laham, N.; Rohde, H.; Sander, G.; Fischer, A.; Hussain, M.; Heilmann, C.; Mack, D.; Proctor, R.; Peters, G.; Becker, K.; et al. Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J. Bacteriol. 2007, 189, 4494–4501. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Goodarzi, H.; Tavazoie, S. Genetic dissection of an exogenously induced biofilm in laboratory and clinical isolates of E. coli. PLoS Pathog. 2009, 5, e1000432. [Google Scholar] [CrossRef]
- Ganeshnarayan, K.; Shah, S.M.; Libera, M.R.; Santostefano, A.; Kaplan, J.B. Poly-N-acetylglucosamine matrix polysaccharide impedes fluid convection and transport of the cationic surfactant cetylpyridinium chloride through bacterial biofilms. Appl. Environ. Microbiol. 2009, 75, 1308–1314. [Google Scholar] [CrossRef]
- Lin, M.H.; Shu, J.C.; Lin, L.P.; Chong, K.Y.; Cheng, Y.W.; Du, J.F.; Liu, S.-T. Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis. PLoS ONE 2015, 10, e0124216. [Google Scholar] [CrossRef]
- Mlynek, K.D.; Bulock, L.L.; Stone, C.J.; Curran, L.J.; Sadykov, M.R.; Bayles, K.W.; Brinsmade, S.R. Genetic and biochemical Analysis of CodY-mediated cell aggregation in Staphylococcus aureus reveals an interaction between extracellular DNA and polysaccharide in the extracellular matrix. J. Bacteriol. 2020, 202, e00593-19. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xi, C. Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl. Environ. Microbiol. 2009, 75, 5390–5395. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xi, C. Enzymatic method for extracting extracellular DNA in biofilm matrix. Cold Spring Harb. Protoc. 2010, 7, pdb-prot5456. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, J.; Alelyani, M.; Alashban, Y.; Alghamdi, S.A.; Bakkour, Y. Modification of dispersin B with cyclodextrin-ciprofloxacin derivatives for treating staphylococcal. Molecules 2023, 28, 5311. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, Z.; Zeng, K.; Xia, Y.; Xu, W.; Wang, R.; Guo, J.; Xie, H. Functional immobilization of a biofilm-releasing glycoside hydrolase dispersin B on magnetic nanoparticles. Appl. Biochem. Biotechnol. 2022, 194, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.J.; Lee, C.K. Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication. Int. J. Biol. Macromol. 2018, 118, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Hagen, C.R.M.; Singh, A.; Weese, J.S.; Marshall, Q.; Zur Linden, A.; Gibson, T.W.G. In vitro elution of amikacin and dispersin B from a polymer hydrogel. Vet. Surg. 2020, 49, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Ragunath, C.; Velliyagounder, K.; Fine, D.H.; Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2004, 48, 2633–2636. [Google Scholar] [CrossRef] [PubMed]
- Donelli, G.; Francolini, I.; Romoli, D.; Guaglianone, E.; Piozzi, A.; Ragunath, C.; Kaplan, J.B. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob. Agents Chemother. 2007, 51, 2733–2740. [Google Scholar] [CrossRef]
- Darouiche, R.O.; Mansouri, M.D.; Gawande, P.V.; Madhyastha, S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J. Antimicrob. Chemother. 2009, 64, 88–93. [Google Scholar] [CrossRef]
- Marcano, A.; Ba, O.; Thebault, P.; Cretois, R.; Marais, S.; Duncan, A.C. Elucidation of innovative antibiofilm materials. Colloids Surf. B Biointerfaces 2015, 136, 56–63. [Google Scholar] [CrossRef]
- Marcano, A.; Bou Haidar, N.; Marais, S.; Valleton, J.M.; Duncan, A.C. Designing biodegradable PHA-based 3D scaffolds with antibiofilm properties for wound dressings: Optimization of the microstructure/nanostructure. ACS Biomater. Sci. Eng. 2017, 3, 3654–3661. [Google Scholar] [CrossRef]
- Bou Haidar, N.; Marais, S.; De, E.; Schaumann, A.; Barreau, M.; Feuilloley, M.G.J.; Duncan, A.C. Chronic wound healing: A specific antibiofilm protein-asymmetric release system. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110130. [Google Scholar] [CrossRef]
- Pavlukhina, S.V.; Kaplan, J.B.; Xu, L.; Chang, W.; Yu, X.; Madhyastha, S.; Yakandawala, N.; Mentbayeva, A.; Khan, B.; Sukhishvili, S.A. Noneluting enzymatic antibiofilm coatings. ACS Appl. Mater. Interfaces 2012, 4, 4708–4716. [Google Scholar] [CrossRef] [PubMed]
- Czuba, U.; Quintana, R.; De Pauw-Gillet, M.C.; Bourguignon, M.; Moreno-Couranjou, M.; Alexandre, M.; Detrembleur, C.; Choquet, P. Atmospheric plasma deposition of methacrylate layers containing catechol/quinone groups: An alternative to polydopamine bioconjugation for biomedical applications. Adv. Healthc. Mater. 2018, 7, e1701059. [Google Scholar] [CrossRef] [PubMed]
- Piarali, S.; Marlinghaus, L.; Viebahn, R.; Lewis, H.; Ryadnov, M.G.; Groll, J.; Salber, J.; Roy, I. Activated polyhydroxyalkanoate meshes prevent bacterial adhesion and biofilm development in regenerative medicine applications. Front. Bioeng. Biotechnol. 2020, 8, 442. [Google Scholar] [CrossRef]
- Camporeale, G.; Moreno-Couranjou, M.; Bonot, S.; Mauchauffé, R.; Boscher, N.D.; Bebrone, C.; Van de Weerdt, C.; Cauchie, H.-M.; Favia, P.; Choquet, P. Atmospheric-pressure plasma deposited epoxy-rich thin films as platforms for biomolecule immobilization—Application for anti-biofouling and xenobiotic-degrading surfaces. Plasma Process. Polym. 2015, 12, 1208–1219. [Google Scholar] [CrossRef]
- Faure, E.; Falentin-Daudré, C.; Svaldo Lanero, T.; Vreuls, C.; Zocchi, G.; Van De Weerdt, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Christophe Detrembleur, C. Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv. Funct. Mater. 2012, 22, 5271–5282. [Google Scholar] [CrossRef]
- Nileback, L.; Widhe, M.; Seijsing, J.; Bysell, H.; Sharma, P.K.; Hedhammar, M. Bioactive silk coatings reduce the adhesion of Staphylococcus aureus while supporting growth of osteoblast-like cells. ACS Appl. Mater. Interfaces 2019, 11, 24999–25007. [Google Scholar] [CrossRef]
- Seijsing, F.; Nileback, L.; Ohman, O.; Pasupuleti, R.; Stahl, C.; Seijsing, J.; Hedhammar, M. Recombinant spider silk coatings functionalized with enzymes targeting bacteria and biofilms. Microbiologyopen 2020, 9, e993. [Google Scholar] [CrossRef]
- Garrido, V.; Pinero-Lambea, C.; Rodriguez-Arce, I.; Paetzold, B.; Ferrar, T.; Weber, M.; Garcia-Ramallo, E.; Gallo, C.; Collantes, M.; Penuelas, I.; et al. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol. Syst. Biol. 2021, 17, e10145. [Google Scholar] [CrossRef] [PubMed]
- Ghalsasi, V.V.; Sourjik, V. Engineering Escherichia coli to disrupt poly-N-acetylglucosamine containing bacterial biofilms. Curr. Synth. Syst. Biol. 2016, 4, 1. [Google Scholar] [CrossRef]
- Ragunath, C.; DiFranco, K.; Shanmugam, M.; Gopal, P.; Vyas, V.; Fine, D.H.; Cugini, C.; Ramasubbu, N. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and Dispersin B hybrid act as antibiofilm agents. Mol. Oral Microbiol. 2016, 31, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.K.; Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 2007, 104, 11197–11202. [Google Scholar] [CrossRef] [PubMed]
- Schmerer, M.; Molineux, I.J.; Ally, D.; Tyerman, J.; Cecchini, N.; Bull, J.J. Challenges in predicting the evolutionary maintenance of a phage transgene. J. Biol. Eng. 2014, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Wang, Z.; Du, X.; Liu, R.; Wang, J. Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Poilvache, H.; Ruiz-Sorribas, A.; Cornu, O.; Van Bambeke, F. In vitro study of the synergistic effect of an enzyme cocktail and antibiotics against biofilms in a prosthetic joint infection model. Antimicrob. Agents Chemother. 2021, 65, e01699-20. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sorribas, A.; Poilvache, H.; Kamarudin, N.H.N.; Braem, A.; Van Bambeke, F. Hydrolytic enzymes as potentiators of antimicrobials against an inter-kingdom biofilm model. Microbiol. Spectr. 2022, 10, e0258921. [Google Scholar] [CrossRef] [PubMed]
- Waryah, C.B.; Wells, K.; Ulluwishewa, D.; Chen-Tan, N.; Gogoi-Tiwari, J.; Ravensdale, J.; Costantino, P.; Gökçen, A.; Vilcinskas, A.; Wiesner, J.; et al. In vitro antimicrobial efficacy of tobramycin against Staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: A preliminary investigation. Microb. Drug Resist. 2017, 23, 384–390. [Google Scholar] [CrossRef]
- Chiba, A.; Seki, M.; Suzuki, Y.; Kinjo, Y.; Mizunoe, Y.; Sugimoto, S. Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. NPJ Biofilms Microbiomes 2022, 8, 17. [Google Scholar] [CrossRef]
- Dobrynina, O.Y.; Bolshakova, T.N.; Umyarov, A.M.; Boksha, I.S.; Lavrova, N.V.; Grishin, A.V.; Lyashchuk, A.M.; Galushkina, Z.M.; Avetisian, L.R.; Chernukha, M.Y.; et al. Disruption of bacterial biofilms using recombinant dispersin B. Microbiology 2015, 84, 498–501. [Google Scholar] [CrossRef]
- Gawande, P.V.; Leung, K.P.; Madhyastha, S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr. Microbiol. 2014, 68, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Nait Chabane, Y.; Marti, S.; Rihouey, C.; Alexandre, S.; Hardouin, J.; Lesouhaitier, O.; Vila, J.; Kaplan, J.B.; Jouenne, T.; De, E. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PLoS ONE 2014, 9, e111660. [Google Scholar] [CrossRef] [PubMed]
- Bossé, J.T.; Sinha, S.; Li, M.S.; O’Dwyer, C.A.; Nash, J.H.; Rycroft, A.N.; Kroll, J.S.; Langford, P.R. Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J. Bacteriol. 2010, 192, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Grasteau, A.; Tremblay, Y.D.; Labrie, J.; Jacques, M. Novel genes associated with biofilm formation of Actinobacillus pleuropneumoniae. Vet. Microbiol. 2011, 153, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Izano, E.A.; Sadovskaya, I.; Vinogradov, E.; Mulks, M.H.; Velliyagounder, K.; Ragunath, C.; Kher, W.B.; Ramasubbu, N.; Jabbouri, S.; Perry, M.B.; et al. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb. Pathog. 2007, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Labrie, J.; Pelletier-Jacques, G.; Deslandes, V.; Ramjeet, M.; Auger, E.; Nash, J.H.; Jacques, M. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Vet. Res. 2010, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, S.; Zhang, L.; Yuan, J.; Lau, G.W.; Wen, Y.; Wu, R.; Zhao, Q.; Huang, X.; Yan, Q.; et al. Absence of TolC impairs biofilm formation in Actinobacillus pleuropneumoniae by reducing initial attachment. PLoS ONE 2016, 11, e0163364. [Google Scholar] [CrossRef]
- Tremblay, Y.D.; Levesque, C.; Segers, R.P.; Jacques, M. Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface. BMC Vet. Res. 2013, 9, 213. [Google Scholar] [CrossRef]
- Izano, E.A.; Wang, H.; Ragunath, C.; Ramasubbu, N.; Kaplan, J.B. Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by Dispersin B and SDS. J. Dent. Res. 2007, 86, 618–622. [Google Scholar] [CrossRef]
- Dashiff, A.; Kadouri, D.E. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol. Oral Microbiol. 2011, 26, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Izano, E.A.; Sadovskaya, I.; Wang, H.; Vinogradov, E.; Ragunath, C.; Ramasubbu, N.; Jabbouri, S.; Perry, M.B.; Kaplan, J.B. Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb. Pathog. 2008, 44, 52–60. [Google Scholar] [CrossRef]
- Venketaraman, V.; Lin, A.K.; Le, A.; Kachlany, S.C.; Connell, N.D.; Kaplan, J.B. Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microb. Pathog. 2008, 45, 173–180. [Google Scholar] [CrossRef]
- Fullen, A.R.; Gutierrez-Ferman, J.L.; Yount, K.S.; Love, C.F.; Choi, H.G.; Vargas, M.A.; Raju, D.; Corps, K.N.; Howell, P.L.; Dubey, P.; et al. Bps polysaccharide of Bordetella pertussis resists antimicrobial peptides by functioning as a dual surface shield and decoy and converts Escherichia coli into a respiratory pathogen. PLoS Pathog. 2022, 18, e1010764. [Google Scholar] [CrossRef] [PubMed]
- Parise, G.; Mishra, M.; Itoh, Y.; Romeo, T.; Deora, R. Role of a putative polysaccharide locus in Bordetella biofilm development. J. Bacteriol. 2007, 189, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Irie, Y.; Preston, A.; Yuk, M.H. Expression of the primary carbohydrate component of the Bordetella bronchiseptica biofilm matrix is dependent on growth phase but independent of Bvg regulation. J. Bacteriol. 2006, 188, 6680–6687. [Google Scholar] [CrossRef]
- Messiaen, A.S.; Nelis, H.; Coenye, T. Investigating the role of matrix components in protection of Burkholderia cepacia complex biofilms against tobramycin. J. Cyst. Fibros. 2014, 13, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Cywes-Bentley, C.; Pier, G.B.; Yakandawala, N.; Sailer, M.; Edwards, M.S.; Kridin, K. Poly-beta-(1→6)-N-acetyl-D-glucosamine mediates surface attachment, biofilm formation, and biocide resistance in Cutibacterium acnes. Front. Microbiol. 2024, 15, 1386017. [Google Scholar] [CrossRef]
- Burton, E.; Yakandawala, N.; LoVetri, K.; Madhyastha, M.S. A microplate spectrofluorometric assay for bacterial biofilms. J. Ind. Microbiol. Biotechnol. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Itoh, Y.; Wang, X.; Hinnebusch, B.J.; Preston, J.F., 3rd; Romeo, T. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol. 2005, 187, 382–387. [Google Scholar] [CrossRef]
- Siebert, C.; Villers, C.; Pavlou, G.; Touquet, B.; Yakandawala, N.; Tardieux, I.; Renesto, P. Francisella novicida and F. philomiragia biofilm features conditionning fitness in spring water and in presence of antibiotics. PLoS ONE 2020, 15, e0228591. [Google Scholar] [CrossRef]
- Gawande, P.V.; Clinton, A.P.; LoVetri, K.; Yakandawala, N.; Rumbaugh, K.P.; Madhyastha, S. Antibiofilm efficacy of DispersinB® wound spray used in combination with a silver wound dressing. Microbiol. Insights 2014, 7, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Ragunath, C.; Shanmugam, M.; Bendaoud, M.; Kaplan, J.B.; Ramasubbu, N. Effect of a biofilm-degrading enzyme from an oral pathogen in transgenic tobacco on the pathogenicity of Pectobacterium carotovorum subsp. carotovorum. Plant Pathol. 2012, 61, 346–354. [Google Scholar] [CrossRef]
- Perez-Mendoza, D.; Coulthurst, S.J.; Sanjuan, J.; Salmond, G.P.C. N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 2011, 157, 3340–3348. [Google Scholar] [CrossRef]
- LeBel, G.; Haas, B.; Adam, A.-A.; Veilleux, M.-P.; Ben Lagha, A.; Grenier, D. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch. Oral Biol. 2017, 83, 97–104. [Google Scholar] [CrossRef]
- Hogan, S.; Zapotoczna, M.; Stevens, N.T.; Humphreys, H.; O’Gara, J.P.; O’Neill, E. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J. Hosp. Infect. 2017, 96, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Izano, E.A.; Amarante, M.A.; Kher, W.B.; Kaplan, J.B. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 2008, 74, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Asai, K.; Yamada, K.; Yagi, T.; Baba, H.; Kawamura, I.; Ohta, M. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J. Infect. Chemother. 2015, 21, 55–61. [Google Scholar] [CrossRef]
- Sugimoto, S.; Sato, F.; Miyakawa, R.; Chiba, A.; Onodera, S.; Hori, S.; Mizunoe, Y. Broad impact of extracellular DNA on biofilm formation by clinically isolated methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci. Rep. 2018, 8, 2254. [Google Scholar] [CrossRef]
- Rohde, H.; Burandt, E.C.; Siemssen, N.; Frommelt, L.; Burdelski, C.; Wurster, S.; Scherpe, S.; Davies, A.P.; Harris, L.G.; Horstkotte, M.A.; et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28, 1711–1720. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Heir, E.; Mikkelsen, M.I.; Moretro, T. Biofilm matrix composition affects the susceptibility of food associated staphylococci to cleaning and disinfection agents. Front. Microbiol. 2016, 7, 856. [Google Scholar] [CrossRef]
- Brindle, E.R.; Miller, D.A.; Stewart, P.S. Hydrodynamic deformation and removal of Staphylococcus epidermidis biofilms treated with urea, chlorhexidine, iron chloride, or DispersinB. Biotechnol. Bioeng. 2011, 108, 2968–2977. [Google Scholar] [CrossRef]
- Chaignon, P.; Sadovskaya, I.; Ragunah, C.; Ramasubbu, N.; Kaplan, J.B.; Jabbouri, S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 2007, 75, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.L.; Patel, R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect. Immun. 2007, 75, 4728–4742. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Jabbouri, S.; Sadovskaya, I. Extracellular DNA-dependent biofilm formation by Staphylococcus epidermidis RP62A in response to subminimal inhibitory concentrations of antibiotics. Res. Microbiol. 2011, 162, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Loughran, A.J.; Atwood, D.N.; Anthony, A.C.; Harik, N.S.; Spencer, H.J.; Beenken, K.E.; Smeltzer, M.S. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 2014, 3, 897–909. [Google Scholar] [CrossRef]
- Lee, J.H.; Kaplan, J.B.; Lee, W.Y. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdevices 2008, 10, 489–498. [Google Scholar] [CrossRef]
- Turk, R.; Singh, A.; Rousseau, J.; Weese, J.S. In vitro evaluation of DispersinB on methicillin-resistant Staphylococcus pseudintermedius biofilm. Vet. Microbiol. 2013, 166, 576–579. [Google Scholar] [CrossRef]
- Rmaile, A.; Ward, M.T.; Aspiras, M.; Stoodley, P. Disruption of dental biofilms by matrix-degrading enzymes. In Proceedings of the British Sociey for Oral and Dental Research BSODR, Conference Paper, Bath, UK, 10 September 2013. [Google Scholar]
- van Dissel, D.; Willemse, J.; Zacchetti, B.; Claessen, D.; Pier, G.B.; van Wezel, G.P. Production of poly-beta-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microb. Cell 2018, 5, 269–279. [Google Scholar] [CrossRef]
- Atwood, D.N.; Loughran, A.J.; Courtney, A.P.; Anthony, A.C.; Meeker, D.G.; Spencer, H.J.; Gupta, R.K.; Lee, C.Y.; Beenken, K.E.; Smeltzer, M.S. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation. Microbiologyopen 2015, 4, 436–451. [Google Scholar] [CrossRef]
- Belfield, K.; Bayston, R.; Hajduk, N.; Levell, G.; Birchall, J.P.; Daniel, M. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2017, 72, 2531–2538. [Google Scholar] [CrossRef] [PubMed]
- Sadovskaya, I.; Chaignon, P.; Kogan, G.; Chokr, A.; Vinogradov, E.; Jabbouri, S. Carbohydrate-containing components of biofilms produced in vitro by some staphylococcal strains related to orthopaedic prosthesis infections. FEMS Immunol. Med. Microbiol. 2006, 47, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Mlynek, K.D.; Hettiarachchi, H.; Alamneh, Y.A.; Biggemann, L.; Zurawski, D.V.; Black, C.C.; Bane, C.E.; Kim, R.K.; Granick, M.S. Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS ONE 2018, 13, e0205526. [Google Scholar] [CrossRef] [PubMed]
- Serrera, A.; del Pozo, J.L.; Martinez, A.; Alonso, M.; Gonzalez, R.; Leiva, J.; Vergara, M.; Lasa, I. Dispersin B therapy of Staphylococcus aureus experimental port-related bloodstream infection. In Proceedings of the 17th European Congress of Clinical Microbiology and Infectious Disease, Munich, Germany, 31 March–3 April 2007. Poster P1786. [Google Scholar]
Species | Family | GenBank Accession No. | Amino Acids |
---|---|---|---|
Actinobacillus capsulatus | Pasteurellaceae | WP_018652103.1 | 378 |
Actinobacillus equuli | Pasteurellaceae | WP_039197353.1 | 378 |
Actinobacillus lignieresii | Pasteurellaceae | WP_126375001.1 | 377 |
Actinobacillus pleuropneumoniae | Pasteurellaceae | WP_005617581.1 | 377 |
Actinobacillus succinogenes | Pasteurellaceae | WP_012072607 | 508 |
Actinobacillus suis | Pasteurellaceae | WP_014991875.1 | 378 |
Actinobacillus ureae | Pasteurellaceae | WP_115607612.1 | 378 |
Actinobacillus vicugnae | Pasteurellaceae | WP_150540037.1 | 378 |
Aggregatibacter actinomycetemcomitans | Pasteurellaceae | WP_005566076 | 361 |
Aggregatibacter aphrophilus | Pasteurellaceae | OBY54997.1 | 403 |
Aggregatibacter kilianii | Pasteurellaceae | WP_275425143.1 | 339 |
Basfia succiniciproducens | Pasteurellaceae | WP_305367133 | 480 |
Cardiobacterium hominis | Cardiobacteriaceae | WP_281839854.1 | 528 |
Exercitatus varius | Pasteurellaceae | WP_317543108.1 | 508 |
Haemophilus pittmaniae | Pasteurellaceae | WP_269457014 | 381 |
Kingella oralis | Neisseriaceae | WP_315367803.1 | 405 |
Lonepinella koalarum | Pasteurellaceae | WP_228777406.1 | 363 |
Mannheimia succiniciproducens | Pasteurellaceae | AAU37718.1 | 501 |
Neisseria animaloris | Neisseriaceae | WP_199901419.1 | 517 |
Neisseria brasiliensis | Neisseriaceae | MRN37458.1 | 340 |
Neisseria canis | Neisseriaceae | WP_085415444.1 | 508 |
Neisseria chenwenguii | Neisseriaceae | WP_199720929.1 | 421 |
Neisseria dentiae | Neisseriaceae | WP_211276428.1 | 400 |
Neisseria dumasiana | Neisseriaceae | WP_085417823.1 | 395 |
Neisseria montereyensis | Neisseriaceae | WP_289623084.1 | 398 |
Neisseria musculi | Neisseriaceae | WP_187000616.1 | 388 |
Neisseria oralis | Neisseriaceae | WP_308022698.1 | 410 |
Neisseria shayeganii | Neisseriaceae | WP_220457298.1 | 770 |
Neisseria wadsworthii | Neisseriaceae | WP_009115775.1 | 468 |
Neisseria weixii | Neisseriaceae | WP_096294699.1 | 392 |
Neisseria zalophi | Neisseriaceae | WP_318527728.1 | 398 |
Neisseria zoodegmatis | Neisseriaceae | WP_085364538.1 | 395 |
Species | Antibiofilm Activity | References |
---|---|---|
Achromobacter xylosoxidans | Inhibits biofilm formation; detaches preformed biofilms. | [82] |
Acinetobacter baumannii | Inhibits “pellicle” formation at the air–liquid interface; inhibits biofilm formation; detaches preformed biofilms; sensitizes preformed biofilms to killing by antimicrobial peptide KSL-W. | [83,84] |
Actinobacillus pleuropneumoniae | Inhibits biofilm formation; detaches preformed biofilms; sensitizes preformed biofilms to killing by ampicillin. | [14,15,50,85,86,87,88,89,90] |
Aggregatibacter actinomycetemcomitans | Sensitizes planktonic cells to killing by human macrophages; sensitizes preformed biofilms to detachment by EDTA, SDS, proteinase K, and DNase; sensitizes preformed biofilms to killing by cetylpyridinium chloride and SDS; sensitizes preformed biofilms to killing by predatory Bdellovibrio bacteriovorus bacteria. | [91,92,93,94] |
Bordetella pertussis, B. parapertussis | Inhibits biofilm formation; detaches preformed biofilms; sensitizes preformed biofilms to killing by antimicrobial peptides polymyxin B and LL-37. | [82,95,96,97] |
Burkholderia cepacia complex | Inhibits biofilm formation; detaches preformed biofilms; sensitizes biofilms to killing by tobramycin. | [43,98] |
Corynebacterium striatum | Detaches preformed biofilms. | [77] |
Cutibacterium acnes | Inhibits surface attachment and biofilm formation; sensitizes biofilms to killing by benzoyl peroxide and tetracycline. | [99] |
Escherichia coli | Inhibits biofilm formation; detaches preformed biofilms; sensitizes biofilms to killing by triclosan and bacteriophages. | [61,73,75,78,100,101] |
Francisella novicida, F. philomiragia | Detaches preformed biofilms. | [102] |
Klebsiella pneumoniae | Inhibits biofilm formation; sensitizes preformed biofilms to killing by antimicrobial peptide KSL-W. | [83,103] |
Pectobacterium atrosepticum, P. carotovorum | Inhibits biofilm formation; detaches preformed biofilms. | [104,105] |
Pseudomonas fluorescens | Inhibits biofilm formation; detaches preformed biofilms; inhibits attachment of planktonic cells to tomato roots. | [101]; J. B. Kaplan, unpublished data |
Ralstonia solanacearum | Inhibits biofilm formation. | J. B. Kaplan, unpublished data |
Solobacterium moorei | Inhibits biofilm formation. | [106] |
Staphylococcus aureus | Inhibits biofilm formation; detaches preformed biofilms; sensitizes preformed biofilms to killing by triclosan, tobramycin, vancomycin, rifampicin, clindamycin, cefamandole nafate, and antimicrobial peptide KSL-W. | [60,61,83,103,107,108,109,110,111] |
Staphylococcus capitis | Detaches preformed biofilms. | [112] |
Staphylococcus epidermidis | Inhibits biofilm formation; detaches preformed biofilms; sensitizes preformed biofilms to killing by triclosan, cetylpyridinium chloride, ciprofloxacin, rifampicin, and antimicrobial peptide KSL-W. | [50,55,59,61,82,83,100,103,108,109,112,113,114,115,116,117,118] |
Staphylococcus pseudintermedius | Inhibits biofilm formation; detaches preformed biofilms. | [119] |
Streptococcus mutans | Detaches preformed biofilms; sensitizes preformed biofilms to detachment by oral irrigation. | [120] |
Streptomyces coelicolor, S. lividans | Inhibits surface attachment and hyphal aggregation. | [121] |
Xanthomonas citri | Disaggregates bacterial flocs (floating or suspended biofilms). | J. B. Kaplan, unpublished data |
Yersinia pestis | Inhibits biofilm formation. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, J.B.; Sukhishvili, S.A.; Sailer, M.; Kridin, K.; Ramasubbu, N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024, 13, 668. https://doi.org/10.3390/pathogens13080668
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens. 2024; 13(8):668. https://doi.org/10.3390/pathogens13080668
Chicago/Turabian StyleKaplan, Jeffrey B., Svetlana A. Sukhishvili, Miloslav Sailer, Khalaf Kridin, and Narayanan Ramasubbu. 2024. "Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme" Pathogens 13, no. 8: 668. https://doi.org/10.3390/pathogens13080668
APA StyleKaplan, J. B., Sukhishvili, S. A., Sailer, M., Kridin, K., & Ramasubbu, N. (2024). Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens, 13(8), 668. https://doi.org/10.3390/pathogens13080668