Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Consent to Participate
2.2. Sample Collection
2.3. Isolation of S. aureus
2.4. Molecular Characterization of S. aureus
2.4.1. DNA Extraction
2.4.2. Identification of S. aureus Isolates by PCR Amplification of 23S rRNA Gene
2.4.3. Detection of Virulence-Encoding Genes
2.4.4. Genetic Characterization of Isolated Strains
2.5. Antimicrobial Susceptibility of S. aureus Isolates and Detection of mecA/mecC Genes
2.6. Biofilm Formation Ability In Vitro
2.6.1. Congo Red Agar Method (CRA)
2.6.2. Microtiter Plate Assay (MPA)
3. Results
3.1. Prevalence of S. aureus
3.2. Detection of Virulence Factors in S. aureus Isolates
3.3. Molecular Characterization of S. aureus Isolates
3.4. Antibiotic Susceptibility of S. aureus Isolates
3.5. Biofilm Formation Ability In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement One Health approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef] [PubMed]
- WHOA. Annual Report on Antimicrobial Agents Intended for Use in Animals, 6th ed.; World Organization for Animal Health: Paris, France, 2022. [Google Scholar]
- Tollefson, L.; Karp, B.E. Human health impact from antimicrobial use in food animals. Med. Mal. Infect. 2004, 34, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Rodrigues, I.d.A.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Antimicrobial resistance genes in bacteria from animal-based foods. Adv. Appl. Microbiol. 2020, 112, 143–183. [Google Scholar] [CrossRef]
- Despotovic, M.; de Nies, L.; Busi, S.B.; Wilmes, P. Reservoirs of antimicrobial resistance in the context of One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvarez, S.; Sanz, S.; Olarte, C.; Hidalgo-Sanz, R.; Carvalho, I.; Fernández-Fernández, R.; Campaña-Burguet, A.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Antimicrobial Resistance in Escherichia coli from the Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics 2022, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Simon, C.; Latorre-Fernandez, J.; Zarazaga, M.; Torres, C. Nasal staphylococci community of healthy pigs and pig-farmers in Aragon (Spain). Predominance and within-host resistome diversity in MRSA-CC398 and MSSA-CC9 lineages. One Health 2023, 16, 100505. [Google Scholar] [CrossRef] [PubMed]
- Verkade, E.; Kluytmans, J. Livestock-associated Staphylococcus aureus CC398: Animal reservoirs and human infections. Infect. Genet. Evol. 2004, 21, 523–530. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Fitzgerald, J.R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends Microbiol. 2012, 20, 192–198. [Google Scholar] [CrossRef]
- Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014, 21, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Piazuelo, D.; Lawlor, P.G. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in human in close contact with animals and measures to reduce on-farm colonization. Ir. Vet. J. 2021, 74, 21. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Köck, R.; Witte, W. Livestock-associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int. J. Med. Microbiol. 2013, 303, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Saidenberg, A.B.S.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. Infect. Genet. Evol. 2023, 109, 105408. [Google Scholar] [CrossRef] [PubMed]
- Hartman, B.J.; Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 1984, 158, 513–516. [Google Scholar] [CrossRef]
- Schmidt, T.; Kock, M.M.; Ehlers, M.M. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J. Dairy Sci. 2015, 98, 6256–6269. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef]
- Graveland, H.; Duim, B.; van Duijkeren, E.; Heederik, D.; Wagenaar, J.A. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int. J. Med. Microbiol. 2011, 301, 630–634. [Google Scholar] [CrossRef]
- Catry, B.; Van Duijkeren, E.; Pomba, M.C.; Greko, C.; Moreno, M.A.; Pyörälä, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Ungemach, F.; et al. Reflection paper on MRSA in food-producing and companion animals: Epidemiology and control options for human and animal health. Epidemiol. Infect. 2010, 138, 626–644. [Google Scholar] [CrossRef]
- Spoor, L.E.; McAdam, P.R.; Weinert, L.A.; Rambaut, A.; Hasman, H.; Aarestrup, F.M.; Kearns, A.M.; Larsen, A.R.; Skov, R.L.; Fitzgerald, J.R. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 2013, 4, e00356-13. [Google Scholar] [CrossRef]
- Cuny, C.; Wieler, L.H.; Witte, W. Livestock-associated MRSA: The impact on Humans. Antibiotics 2015, 4, 521–543. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Lozano, C.; Ruiz-Ripa, L.; Fernández-Fernández, R.; Zarazaga, M.; Torres, C. Ecology and genetic lineages of nasal Staphylococcus aureus and MRSA carriage in healthy persons with or without animal-related occupational risks of colonization: A review of global reports. Pathogens 2021, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Correira, S.; Pereira, J.E.; Igrejas, G.; Poeta, P. Surveillance and environmental risk assessment of antibiotics and AMR/ARGs related with MRSA: One health perspective. In Antibiotics and Antimicrobial Resistance Genes: Environmental Occurrence and Treatment Technologies; Hashmi, M.Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 271–295. [Google Scholar] [CrossRef]
- Straub, J.; Hertel, C.; Hammes, W.P. A 23S rDNAtargeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. J. Food Prot. 1999, 62, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Roussel, S.; Felix, B.; Vingadassalon, N.; Grout, J.; Hennekinne, J.A.; Guillier, L.; Brisabois, A.; Auvray, F. Staphylococcus aureus strains associated with food poisoning outbreaks in France: Comparison of different molecular typing methods, including MLVA. Front. Microbiol. 2015, 6, 882. [Google Scholar] [CrossRef]
- Benito, D.; Gomez, P.; Lozano, C.; Estepa, V.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Genetic lineages, antimicrobial resistance, and virulence in Staphylococcus aureus of meat samples in Spain: Analysis of immune evasion cluster (IEC) genes. Foodborne Pathog. Dis. 2014, 11, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Stegger, M.; Lindsay, J.A.; Moodley, A.; Skov, R.; Broens, E.M.; Guardabassi, L. Rapid PCR detection of Staphylococcus aureus clonal complex 398 by targeting the restriction-modification system carrying sau1-hsdS1. J. Clin. Microbiol. 2011, 49, 732–734. [Google Scholar] [CrossRef]
- Lozano, C.; Porres-Osante, N.; Crettaz, J.; Torres, C.; Porres-Osante, N.; Rojo-Bezares, B.; Sáenz, Y.; Torres, C.; Crettaz, J.; Olarte, I. Changes in genetic lineages, resistance, and virulence in clinical methicillin-resistant Staphylococcus aureus in a Spanish hospitals. J. Infect. Chemother. 2012, 19, 233–242. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI Supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA (LGA251). Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Mairi, A.; Touati, A.; Pantel, A.; Zenati, K.; Martinez, A.Y.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.P. Distribution of toxinogenic methicillin-resistant and methicillin-susceptible Staphylococcus aureus from different ecological niches in Algeria. Toxins 2019, 11, 500. [Google Scholar] [CrossRef]
- Gharsa, H.; Ben Slama, K.; Gomez-Sanz, E.; Lozano, C.; Zarazaga, M.; Messadi, L.; Boudabous, A.; Torres, C. Molecular characterization of Staphylococcus aureus from nasal samples of healthy farm animals and pets in Tunisia. Vector-Borne Zoonotic Dis. 2015, 15, 109–115. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, W.; Fayez, M.; Elmoslemany, A.; Kandeel, M.; Zidan, K. Methicillin-resistant Staphylococcus aureus among goat farms in Eastern province, Saudi Arabia: Prevalence and risk factors. Prev. Vet. Med. 2018, 156, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.; Espinosa-Gongora, C.E.; Stamphøj, I.; Larsen, A.R.; Guardabassi, L. Carriage frequency, diversity and methicillin-resistance of Staphylococcus aureus in Danish small ruminants. Vet. Microbiol. 2013, 163, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, M.; Li, H.; Yang, H.; Li, X.; Song, X.; Wang, Z. Prevalence and molecular characterization of Staphylococcus aureus isolated from goats in Chongping, China. BMC Vet. Res. 2017, 13, 352. [Google Scholar] [CrossRef] [PubMed]
- Mechesso, A.F.; Moon, D.C.; Ryoo, G.S.; Song, H.J.; Chung, H.Y.; Kim, S.U.; Choi, J.H.; Kim, S.J.; Kang, H.Y.; Na, S.H.; et al. Resistance profiling and molecular characterization of Staphylococcus aureus isolated from goats in Korea. Int. J. Food Microbiol. 2021, 336, 108901. [Google Scholar] [CrossRef]
- El-Ashker, M.; Monecke, S.; Gwida, M.; Saad, T.; El-Gohary, A.; Mohamed, A.; Reißig, A.; Frankenfeld, K.; Gary, D.; Müller, E.; et al. Molecular characterization of methicillin-resistant and methicillin-susceptible Staphylococcus aureus clones isolated from healthy dairy animals and their caretakers in Egypt. Vet. Microbiol. 2022, 267, 109374. [Google Scholar] [CrossRef] [PubMed]
- Normano, G.; Corrente, M.; La Salandra, G.; Dambrosio, A.; Quaglia, N.C.; Parisi, A.; Greco, G.; Bellacicco, A.L.; Virgilio, S.; Celano, G.V. Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int. J. Food. Microbiol. 2007, 117, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Merz, A.; Stephan, R.; Johler, S. Staphylococcus aureus from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front. Microbiol. 2016, 7, 319. [Google Scholar] [CrossRef]
- Shittu, A.O.; Taiwo, F.F.; Froböse, N.J.; Schwartbeck, B.; Niemann, S.; Mellmann, A.; Schaumburg, F. Genomic analysis of Staphylococcus aureus from the West African Swarf (WAD) goat in Nigeria. Antimicrob. Resist. Infect. Control 2021, 10, 122. [Google Scholar] [CrossRef]
- Mama, O.M.; Gomez-Sanz, E.; Ruiz-Ripa, L.; Gómez, P.; Torres, C. Diversity of staphylococcal species in food producing animals in Spain, with detection of PVL-positive MRSA ST8 (USA300). Vet. Microbiol. 2019, 233, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Porrero, M.C.; Hasman, H.; Vela, A.I.; Fernández-Garayzábal, J.F.; Domínguez, L.; Aarestrup, F.M. Clonal diversity of Staphylococcus aureus originating from the small ruminants goats and sheep. Vet. Microbiol. 2012, 156, 157–161. [Google Scholar] [CrossRef]
- Saei, H.D.; Panahi, M. Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from dairy ruminants: Differences in the distribution of clonal types between cattle and small ruminants. Arch. Microbiol. 2020, 202, 115–125. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Gómez, P.; Ruiz-Ripa, L.; Fernández-Fernández, R.; Gharsa, H.; Ben Slama, K.; Höfle, U.; Zarazaga, M.; Holmes, M.A.; Torres, C. Genomic analysis of Staphylococcus aureus of the lineage CC130, including mecC-carrying MRSA and MSSA isolates recovered of animal, Human, and environmental origins. Front. Microbiol. 2021, 25, 655994. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Needs, P.F.; Manley, G.; Green, L.E. Global distribution and diversity of ovine-associated Staphylococcus aureus. Infect. Genet. Evol. 2014, 22, 2018–2215. [Google Scholar] [CrossRef] [PubMed]
- Azara, E.; Piras, M.G.; Parisi, A.; Tola, S. Antimicrobial susceptibility and genotyping of Staphylococcus aureus isolates collected between 1986 and 2015 from ovine mastitis. Vet. Microbiol. 2017, 205, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Gharsa, H.; Ben Slama, K.; Lozano, C.; Gómez-Sanz, E.; Klibi, N.; Ben Sallem, R.; Gómez, M.; Zarazaga, P.; Boudabous, A.; Torres, C. Prevalence, antibiotic resistance, virulence traits and genetic lineages of Staphylococcus aureus in healthy sheep in Tunisia. Vet. Microbiol. 2012, 156, 367–373. [Google Scholar] [CrossRef]
- Feßler, A.T.; Thomas, P.; Mühldorfer, K.; Grobbel, M.; Brombach, J.; Eichhorn, I.; Monecke, S.; Ehricht, R.; Schwarz, S. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from zoo and wild animals. Vet. Microbiol. 2018, 218, 98–103. [Google Scholar] [CrossRef]
- Luzzago, C.; Locatelli, C.; Franco, A.; Scaccabarozzi, L.; Gualdi, V.; Viganò, R.; Sironi, G.; Besozzi, M.; Castiglioni, B.; Lanfranchi, P.; et al. Clonal diversity, virulence-associated genes and antimicrobial resistance profile of Staphylococcus aureus isolates from nasal cavities and soft tissue infections in wild ruminants in Italian Alps. Vet. Microbiol. 2014, 170, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Zarazaga, M.; Gomez, P.; Ceballos, S.; Torres, C. Molecular epidemiology of Staphylococcus aureus lineages in the animal-human interface. In Staphylococcus aureus; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 189–214. [Google Scholar] [CrossRef]
- Egyir, B.; Guardabassi, L.; Nielsen, S.S.; Larsen, J.; Addo, K.K.; Newman, M.J.; Larsen, A.R. Prevalence of nasal carriage and diversity of Staphylococcus aureus among inpatients and hospital staff at Korle Bu teaching hospital, Ghana. J. Glob. Antimicrob. Resist. 2013, 1, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Aspiroz, C.; Lozano, C.; Ruiz-Ripa, L.; Azcona, J.M.; Seral, C.; Cercenado, E.; López-Cerero, L.; Palacian, P.; Belles-Belles, A.; et al. Penicillin susceptibility among invasive MSSA infections: A multicentre study in 16 Spanish hospitals. J. Antimicrob. Chemother. 2021, 76, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
- González-Candelas, F.; Comas, I.; Martínez, J.L.; Galán, J.C.; Baquero, F. The evolution of antibiotic resistance. In Genetics and Evolution of Infectious Diseases; Tibayrenc, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 305–337. [Google Scholar] [CrossRef]
- Abreu, R.; Rodríguez-Álvarez, C.; Lecuona, M.; Castro-Hernández, B.; González, J.C.; Aguirre-Jaime, A.; Arias, Á. Prevalence and characteristics of methicillin-resistant staphylococci in goats on the island of Tenerife, Spain. Acta. Vet. Hung. 2019, 67, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C.; Cremonesi, P.; Caprioli, A.; Carfora, V.; Ianzano, A.; Barberio, A.; Morandi, S.; Casula, A.; Castiglioni, B.; Bronzo, V.; et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J. Dairy Sci. 2017, 100, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Krukowski, H.; Bakula, Z.; Iskra, M.; Olender, A.; Bis-Wencel, H.; Jagielski, T. The first outbreak of methicillin-resistant Staphylococcus aureus in dairy cattle in Poland with evidence of on-farm and intrahousehold transmission. J. Dairy Sci. 2020, 103, 10577–10584. [Google Scholar] [CrossRef]
- Titouche, Y.; Houali, K.; Ruiz-Ripa, L.; Vingadassalon, N.; Nia, Y.; Fatihi, A.; Cauquil, A.; Bouchez, P.; Bouhier, L.; Torres, C.; et al. Enterotoxin genes and antimicrobial resistance of Staphylococcus aureus isolated from food products in Algeria. J. Appl. Microbiol. 2020, 129, 1043–1052. [Google Scholar] [CrossRef]
- Pantosti, A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to Human health. Front. Microbiol. 2012, 3, 127. [Google Scholar] [CrossRef] [PubMed]
- Larsen, A.R.; Fitzgerald, J.R.; Larsen, J. Methicillin-resistant Staphylococcus aureus in food animals: Host-adaptive evolution, epidemiology, and public health threat. In Zoonoses: Infections Affecting Humans and Animals; Sing, A., Ed.; Springer: Cham, Switzerland, 2023; pp. 1–15. [Google Scholar] [CrossRef]
- Azara, E.; Longheu, C.; Sanna, G.; Tola, S. Biofilm formation and virulence factor analysis of Staphylococcus aureus isolates collected from ovine mastitis. J. Appl. Microbiol. 2017, 123, 372–379. [Google Scholar] [CrossRef]
- Sivaraman, G.K.; Muneeb, K.H.; Sudha, S.; Shome, B.; Cole, J.; Holmes, M. Prevalence of virulent and biofilm forming ST88-IV-t2526 methicillin-resistant Staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control 2021, 127, 108098. [Google Scholar] [CrossRef]
- García, A.B.; Percival, S.L. Zoonotic infections: The role of biofilms. In Biofilms and Veterinary Medicine; Percival, S., Knottenbelt, D., Cochrane, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 69–110. [Google Scholar] [CrossRef]
- Silva, V.; Correia, E.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Biofilm formation of Staphylococcus aureus from pets, livestock, and wild animals: Relationship with clonal lineages and antimicrobial resistance. Antibiotics 2022, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, R.R.; Krömker, V.; Bjarnsholt, T.; Dahl-Pedersen, K.; Buhl, R.; Jørgensen, E. Biofilm research in bovine mastitis. Front. Vet. Sci. 2021, 8, 656810. [Google Scholar] [CrossRef] [PubMed]
- Lira, M.C.; Givisiez, P.E.N.; de Sousa, F.G.C.; Magnani, M.; De Souza, E.L.; Spricigo, D.A.; Gebreyes, W.A.; De Oliveira, C.J.B. Biofilm-forming and antimicrobial resistance traits of staphylococci isolated from goat dairy plants. J. Infect. Dev. Ctries. 2016, 10, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Agarwal, A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J. Microbiol. Methods 2009, 76, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Ballah, F.M.; Islam, S.; Rana, L.; Ferdous, F.B.; Ahmed, R.; Pramanik, P.K.; Karmoker, J.; Ievy, S.; Sobur, A.; Siddique, M.P.; et al. Phenotypic and Genotypic detection of biofilm-forming Staphylococcus aureus from different food sources in Bangladesh. Biology 2022, 11, 949. [Google Scholar] [CrossRef]
- Lee, J.S.; Bae, Y.M.; Han, A.; Lee, S.Y. Development of congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. LWT 2016, 73, 707–714. [Google Scholar] [CrossRef]
- Giaouris, E.E.; Simões, M.V. Pathogenic biofilm formation in the food industry and alternative control strategies. In Food Diseases; Holban, A.M., Mihai, A., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 309–377. [Google Scholar] [CrossRef]
Provinces | Regions | Number of Herds | Number of Collected Samples | Number and % of Samples Carrying S. aureus Isolates |
---|---|---|---|---|
Tizi Ouzou | Benni Yenni | 1 | 36 | 3 (8.3) |
Ain El Hammam | 1 | 15 | 2 (13.3) | |
Azeffoun | 9 | 168 | 29 (17.3) | |
Bouira | Sor El Ghozlane | 2 | 13 | 2 (15.4) |
Total | 13 | 232 | 36 (15.5) |
Enterotoxin Gene Profile | Number and % of S. aureus Isolates |
---|---|
sea | 6 (9.7) |
sec | 12 (19.3) |
sep | 1 (1.6) |
sea + ser | 1 (1.6) |
sea + sec | 1 (1.6) |
sea + sei | 1 (1.6) |
sec + ser | 1 (1.6) |
sea + seb + ser | 2 (3.2) |
sea + seb + sec + ser | 1 (1.6) |
sec + sed + ser + sej | 1 (1.6) |
sed + ser + seg + sei + sej | 2 (3.2) |
sea + seb + serd+ ser + sej + sep | 1 (1.6) |
Total | 30 (48.4%) |
Spa-Type | ST/CC | Number of Isolates | Area of Farm a | Virulence Genes Detected b | Phenotype of Resistance b,c | mecA/mecC Genes |
---|---|---|---|---|---|---|
t1773 | ST700/CC130-CC700 | 23 | F1, F3, F4, F5, F7, F9, F10, F13 | tst(9), sea(5), seb(2), sec(12), sed(1), ser(4), sei(1), sej(1) | PEN(11), TET(1), ERY(1), OFL(1) | |
t11363 | ST6/CC5 | 15 | F3, F4, F5, F6, F9 | tst(1), sea(4), seb(1), ser(1) | PEN(9), ERY(1), SXT(1) | |
t701 | ST5/CC5 | 7 | F7 | tst(2), sea(2) | PEN(4), GEN(1) | |
t21230 | ST6/CC5 | 4 | F12, F13 | tst(1), sec(1) | ||
t2802 | NT d | 1 | F7 | PEN(1), ERY(1), SXT(1) | ||
t450 | ST5/CC5 | 1 | F7 | sed(1), ser(1), seg(1), sei(1), sej(1) | PEN(1), CEF(1), TET(1), ERY(1), GEN(1), CHL(1) | mecA |
t688 | ST5/CC5 | 1 | F7 | tst(1), sed(1), ser(1), seg(1), sei(1), sej(1) | PEN(1), CEF(1), TET(1), ERY(1), CHL(1) | mecA |
t1534 | NT d | 1 | F9 | sea(1), sec(1) | ||
t2649 | ST88/CC88 | 3 | F13 | tst(1), sea(1), seb(1), sec(1), sed(1), ser(1), sej(1), sep(2) | PEN(3) | |
Non-typable | Non-typable | 6 | F2, F3, F5, F7, F9, F12 | sec(2), ser(1) | PEN(3), CHL(1), GEN(1) |
Antibiotics | No (%) of S. aureus | ||
---|---|---|---|
Resistant | Intermediate | Susceptible | |
Penicillin G | 32 (51.6) | 0 (0) | 30(48.4) |
Cefoxitin | 2 (3.2) | 0 (0) | 60 (96.8) |
Chloramphenicol | 3 (4.8) | 0 (0) | 59 (95.2) |
Erythromycin | 5 (8) | 3 (3.2) | 54 (87.1) |
Gentamicin | 3 (4.8) | 0 (0) | 59 (95.2) |
Tetracycline | 3 (4.8) | 10 (16.1) | 49 (79) |
Sulfamethoxazole/trimethoprim | 2 (3.2) | 0 (0) | 60 (96.8) |
Ofloxacin | 1 (1.6) | 0 (0) | 61 (98.4) |
Antimicrobial MDR Resistance Phenotype 1 | No. of Isolates with Phenotype (% with Respect to S. aureus) | mecA Gene |
---|---|---|
PEN-CEF-TET-ERY-GEN-CHL | 1 (1.6) | + |
PEN-CEF-TET-ERY-CHL | 1 (1.6) | + |
PEN-ERY-SXT | 2 (3.2) | − |
PEN-ERY-OFL | 1(1.6) | − |
Total | 5 (8.1) |
Criteria | Number and % of Isolates | ||
---|---|---|---|
Slime-producing (CRA performance) | Positive | 27 (43.5) | |
Negative | 35 (56.4) | ||
Biofilm-producing (MPA performance) | Positive | Weak formation | 13 (21) |
Moderate formation | 16 (25.8) | ||
Strong formation | 33 (53.2) | ||
Total | 62 (100) | ||
Negative | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titouche, Y.; Akkou, M.; Campaña-Burguet, A.; González-Azcona, C.; Djaoui, Y.; Mechoub, D.; Fatihi, A.; Bouchez, P.; Bouhier, L.; Houali, K.; et al. Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens 2024, 13, 408. https://doi.org/10.3390/pathogens13050408
Titouche Y, Akkou M, Campaña-Burguet A, González-Azcona C, Djaoui Y, Mechoub D, Fatihi A, Bouchez P, Bouhier L, Houali K, et al. Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens. 2024; 13(5):408. https://doi.org/10.3390/pathogens13050408
Chicago/Turabian StyleTitouche, Yacine, Madjid Akkou, Allelen Campaña-Burguet, Carmen González-Azcona, Yasmina Djaoui, Donia Mechoub, Abdelhak Fatihi, Pascal Bouchez, Laurence Bouhier, Karim Houali, and et al. 2024. "Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria" Pathogens 13, no. 5: 408. https://doi.org/10.3390/pathogens13050408
APA StyleTitouche, Y., Akkou, M., Campaña-Burguet, A., González-Azcona, C., Djaoui, Y., Mechoub, D., Fatihi, A., Bouchez, P., Bouhier, L., Houali, K., Nia, Y., Torres, C., & Hennekinne, J.-A. (2024). Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens, 13(5), 408. https://doi.org/10.3390/pathogens13050408