The Associated Decision and Management Factors on Cattle Tick Level of Infestation in Two Tropical Areas of Ecuador
Abstract
:1. Introduction
2. Results
2.1. Tick Species
2.2. Characteristics of Farming and Tick Control
2.3. Tick-Infestation Associated Factors at Farm Level
2.4. Overall Weighted Score at Farm Level and Area under the Receiver Operating Characteristic Curve
OWS = [(Presence_a = 1) × (OR_a)] + [(Presence_b2 = 1) × (OR_b2)] + |
[(Presence_b3 = 1) × (OR_b3)] + [(Presence_c = 1) × (OR_c)] + [(Presence_d = 1) × (OR_d)] |
+ [(Absence_e = 1) × (1/OR_e)] + [(Presence_f = 1) × (OR_f)] |
2.5. Tick-Infestation Associated Factors at Animal Level
2.6. Overall Weighted Score (OWS) at Animal Level and Area under the Receiver Operating Characteristic Curve
OWS = [(Absence_g1 = 1) × (1/OR_g2)] + [(Absence_g1 = 1) × (1/OR_g3)] + |
[(Presence_h = 1) × (OR_h2)] + [(Presence_h3 = 1) × (OR_h3)] + [(Presence_i = 1) × (OR_i)] + |
[(Presence_j2 = 1) × (OR_j2)] + [(Presence_j3 = 1) × (OR_j3)] |
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling Design
4.2. Investigation of Risk Factors Socio-Eco-Epidemiological Survey
4.3. Farms Selected
4.4. Animals Sampled
4.5. Level of Infestation
4.6. Morphological Identification of Ticks
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franco Crespo, C.; Morales Carrasco, L.; Lascano Aimacaña, N.; Cuesta Chávez, A. Dinámica de los pequeños productores de leche en la Sierra centro de Ecuador. La. Granja. 2019, 30, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Banco Central del Ecuador, B. Boletín Estadístico 4.3.2. Producto Interno Bruto Por Industria; Banco Central del Ecuador: Quito, Ecuador, 2018. [Google Scholar]
- Agrocalidad. Categorías de Población de Ganado Bovino de Ecuador; Ministerio de Agricultura y Ganadería: Quito, Ecuador, 2018; p. 1.
- Pourrut, P.; Róvere, O.; Romo, I.; Villacrés, H. Los Climas del Ecuador-Fundamentos Explicativos; Ministerio de Agricultura y Ganadería: Quito, Ecuador, 1983; p. 3.
- Torres, Y.; Rivas, J.; Pablos, C.; Perea, J.; Toro, P.; Angón, E.; García, A. Identificación e implementación de paquetes tecnológicos en ganadería vacuna de doble propósito. Caso Manabí-Ecuador. Rev. Mex. Cienc. Pecu. 2014, 5, 393–407. [Google Scholar] [CrossRef]
- Gioia, G.V.; Vinueza, R.L.; Marsot, M.; Devillers, E.; Cruz, M.; Petit, E.; Boulouis, H.J.; Moutailler, S.; Monroy, F.; Coello, M.A.; et al. Bovine anaplasmosis and tick-borne pathogens in cattle of the Galapagos Islands. Transbound. Emerg. Dis. 2018, 65, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Rymaszewska, A.; Grenda, S. Bacteria of the genus Anaplasma–characteristics of Anaplasma and their vectors: A review. Veterinární Med. 2008, 53, 573–584. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, K.; Tahseen, M.; Davidson, A. Beware of Babesiosis: A rare and severe case causing death. Am. J. Emerg. Med. 2018, 36, 2337.e1–2337.e2. [Google Scholar] [CrossRef]
- Minjauw, B.; Mcleod, A. Tick-Borne Diseases and Poverty. The Impact of Ticks and Tick-Borne Diseases on the Livelihood of Small-Scale and Marginal Livestock Owners in India and Eastern and Southern Africa; DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh: Edinburgh, UK, 2003; p. 116. [Google Scholar]
- Namgyal, J.; Tenzin, T.; Checkley, S.; Lysyk, T.J.; Rinchen, S.; Gurung, R.B.; Dorjee, S.; Couloigner, I.; Cork, S.C. A knowledge, attitudes, and practices study on ticks and tick-borne diseases in cattle among farmers in a selected area of eastern Bhutan. PLoS ONE 2021, 16, e0247302. [Google Scholar] [CrossRef]
- Rodríguez-Hidalgo, R.; Pérez-Otáñez, X.; Garcés-Carrera, S.; Vanwambeke, S.O.; Madder, M.; Benítez-Ortiz, W. The current status of resistance to alpha-cypermethrin, ivermectin, and amitraz of the cattle tick (Rhipicephalus microplus) in Ecuador. PLoS ONE 2017, 12, e0174652. [Google Scholar] [CrossRef]
- Torres, Y. Caracterización Socioeconómica de Pequeñas Explotaciones Ganaderas en la Provincia de Manabí; Universidad de Córdoba: Córdoba, Spain, 2012; p. 67. [Google Scholar]
- Ferrari, M. Garrapata, La resistencia del huédped como forma de control. Marca Líquida 2002, 12, 17–20. [Google Scholar]
- Bolaños, D. Distribución Geográfica y Caracterización Taxonómica de las Especies de Garrapatas Que Afectan al Ganado Bovino en la Provincia de Los Ríos; Universidad Central del Ecuador: Quito, Ecuador, 2016; p. 77. [Google Scholar]
- Canevari, J.T.; Mangold, A.J.; Guglielmone, A.A.; Nava, S. Population dynamics of the cattle tick Rhipicephalus (Boophilus) microplus in a subtropical subhumid region of Argentina for use in the design of control strategies. Med. Vet. Entomol. 2017, 31, 6–14. [Google Scholar] [CrossRef]
- Nava, S.; Mastropaolo, M.; Guglielmone, A.A.; Mangold, A.J. Effect of deforestation and introduction of exotic grasses as livestock forage on the population dynamics of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in northern Argentina. Res. Vet. Sci. 2013, 95, 1046–1054. [Google Scholar] [CrossRef]
- Broughan, J.M.; Judge, J.; Ely, E.; Delahay, R.J.; Wilson, G.; Clifton-Hadley, R.S.; Goodchild, A.V.; Bishop, H.; Parry, J.E.; Downs, S.H. A Review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol. Infect. 2016, 144, 2899–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, A.; Cevallos, O.; Villarreal, P.; Carranza, M.; Carranza, H.; Pinargote, E. Prevalencia y detección por PCR anidada de Anaplasma marginale en bovinos y garrapatas en la zona central del Litoral Ecuatoriano. Cienc. Tecnol. 2015, 8, 11–17. [Google Scholar] [CrossRef]
- Vasco, K. Standardization of Melting Curve Analysis for the Detection of Babesia in Ticks using Nucleotide Polymorphisms; Universidad Central del Ecuador: Quito, Ecuador, 2014; p. 83. [Google Scholar]
- Guillén, N.; Muñoz, L. Estudio Taxonómico a Nivel de Género de Garrapatas en Ganado Bovino de la Parroquia Alluriquín-Santo Domingo de los Tsáchilas; Universidad de las Fuerzas Armadas de Ecuador: Sangolquí, Ecuador, 2013; p. 71. [Google Scholar]
- Pérez, X. Resistencia a Alfa-Cipermetrina, Ivermectina y Amitraz en Garrapatas Rhipicephalus Microplus (Canestrini, 1887) Colectadas en Cuatro Localidades; Universidad Central del Ecuador: Quito, Ecuador, 2016; p. 56. [Google Scholar]
- Maya-Delgado, A.; Madder, M.; Benítez-Ortíz, W.; Saegerman, C.; Berkvens, D.; Ron-Garrido, L. Molecular screening of cattle ticks, tick-borne pathogens and amitraz resistance in ticks of Santo Domingo de Los Tsáchilas province in Ecuador. Ticks Tick-Borne Dis. 2020, 11, 101492. [Google Scholar] [CrossRef] [PubMed]
- Jacho, M. Dinámica Poblacional de la Garrapata Rhipicephalus (Boophilus) Microplus en Ganado Bovino Lechero en el Cantón San Miguel de los Bancos; Universidad Central del Ecuador: Quito, Ecuador, 2015. [Google Scholar]
- Orozco, G. Distribución Espacial de Garrapatas que Afectan a las Ganaderías Ecuatorianas de las Tres Regiones, Usando Como Referencia la Línea Equinoccial; Universidad Central del Ecuador: Quito, Ecuador, 2018. [Google Scholar]
- Nava, S.; Beati, L.; Labruna, M.B.; Cáceres, A.G.; Mangold, A.J.; Guglielmone, A.A. Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma tonelliae n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks Tick-Borne Dis. 2014, 5, 252–276. [Google Scholar] [CrossRef]
- Aguilar-Domínguez, M.; Moo-Llanes, D.A.; Sánchez-Montes, S.; Becker, I.; Feria-Arroyo, T.P.; de León, A.P.; Romero-Salas, D. Potential distribution of Amblyomma Mixtum (Koch, 1844) in climate change scenarios in the Americas. Ticks Tick-Borne Dis. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Pesquera, C.; Portillo, A.; Palomar, A.M.; Oteo, J.A. Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador. Parasit. Vectors 2015, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Sistema de Información Aracnológica Registros de Ixodidae: Ixodes Montoyanus. Available online: http://entomologia.ec/arachnida/especie.php?especie=Ixodesmontoyanus&familia=Ixodidae (accessed on 13 January 2022).
- Enríquez, S.; Guerrero, R.; Arrivillaga-Henríquez, J.; Araujo, P.; Villacrés, E.; Enríquez, A.; Benítez-Ortíz, W. New Records of Ticks of Genus Amblyomma Koch, 1844 (Acari: Ixodidae) for Ecuador. Acta Parasitol. 2020, 65, 430–440. [Google Scholar] [CrossRef]
- Voltzit, O. A review of neotropical Amblyomma species (Acari: Ixodidae). Acarina 2007, 1, 3–134. [Google Scholar]
- Duchi, T.; Guevara, V. Análisis de Factores que Determinan la Sotenibilidad y Sustentabilidad de la Economía Socialy Solidaria Para la Industrialización y Comercialización de la Leche y sus Derivados en los Cantones Los Bancos, Pedro Vicente Maldonado y Puerto Quito; Universidad Politécnica Salesiana: Quito, Ecuador, 2013; p. 208. [Google Scholar]
- Jacome, E.; Morales, D. Diagnóstico Situacional de la Comercialización y Calidad del Ganado Bovino de Carne en Pacto, Gualea, Nanegal y Nanegalito Parroquias del Cantón Quito-Pichincha; Escuela Politécnica del Ejercito: Sangolquí, Ecuador, 2005; p. 98. [Google Scholar]
- Vizcarra, R. La Leche del Ecuador; Universidad Central del Ecuador: Quito, Ecuador, 2015; p. 183. [Google Scholar]
- Proaño, J.; Miño, R. Evaluación del Proyecto de Ganadería en el Cantón Quijos, Provincia de Napo (2007–2011), Ejecutado Por el Programa Regional Ecobona; Universidad Central del Ecuador: Quito, Ecuador, 2013; pp. 1–13. [Google Scholar]
- Grijalva, J.; Arévalo, V.; Wood, C. Expansión y trayectorias de la ganadería en la Amazonía: Estudio en el Valle de los Quijos y Piedemonte, en la selva alta del Ecuador. Publ. Miscelánea INIAP 2004, 125, 201. [Google Scholar]
- Leiva, T.; Barrionuevo, M. Relaciones de Género en los Sistemas Agropecuarios del Cantón Quijos; Escuela Politécnica del Ejercito: Sangolquí, Ecuador, 2010; pp. 1–63. [Google Scholar]
- Arévalo, V.; Andino, M.; Grijalva, J. Geopolítica y transformaciones agrarias: El valle de Los Quijos en la amazonia Ecuatoriana. Publ. Miscelánea INIAP 2008, 142, 102. [Google Scholar]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Jonsson, N.N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2018, 117, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Calligaris, I.; Oliveira, P.; Gislaine, C.; Gervasio, H.; Camargo, M. Action of the insect growth regulator fluazuron, the active ingredient of the acaricide acatak, in Rhipicephalus Sanguineus Nymphs (Latreille, 1806) (Acari: Ixodidae). Microsc. Res. Tech. 2013, 76, 1177–1185. [Google Scholar] [CrossRef]
- Frazzoli, C.; Mantovani, A. The environment-animal-human web: A “one health” view of toxicological risk. Frontiers in Public Health and Frontiers in Environmental Science. 2019, 5, 99–108. [Google Scholar] [CrossRef]
- Pérez, X. Distribución de la Resistencia a Los Acaricidas Amitraz, Ivermectina y Alfacipermetrina en Garrapatas Boophilus Microplus y Posibles Factores de Riesgo Asociados, en la Zona ±0.5 Grados de Latitud de la Línea Equinoccial de Ecuador; Universidad Central del Ecuador: Quito, Ecuador, 2019. [Google Scholar]
- Betancur, J.; Giraldo, C. Economic and health impact ofthe ticks in production animals. IntechOpen. 2019, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef]
- Bianchi, M.W.; Barré, N.; Messad, S. Factors related to cattle infestation level and resistance to acaricides in Boophilus microplus tick populations in New Caledonia. Vet. Parasitol. 2003, 112, 75–89. [Google Scholar] [CrossRef]
- Agrocalidad. Manual Para el Registro de Empresas y Productos de Uso Veterinario; Ministerio de Agricultura y Ganadería: Quito, Ecuador, 2021; pp. 1–246.
- Bejarano, F. Los plaguicidas altamente peligrosos en México. Red Acción Sobre Plaguicidas Altern. En México C 2017, 17, 1–351. [Google Scholar]
- Maryam, J.; Babar, M.E.; Nadeem, A.; Hussain, T. Genetic variants in interferon gamma (IFN-γ) gene are associated with resistance against ticks in Bos taurus and Bos indicus. Mol. Biol. Rep. 2012, 39, 4565–4570. [Google Scholar] [CrossRef]
- Piper, E.K.; Jackson, L.A.; Bielefeldt-Ohmann, H.; Gondro, C.; Lew-Tabor, A.E.; Jonsson, N.N. Tick-susceptible Bos taurus cattle display an increased cellular response at the site of larval Rhipicephalus (Boophilus) microplus attachment, compared with tick-resistant Bos indicus cattle. Int. J. Parasitol. 2010, 40, 431–441. [Google Scholar] [CrossRef]
- de Castro, J.J. Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef]
- Burrow, H.M.; Mans, B.J.; Cardoso, F.F.; Birkett, M.A.; Kotze, A.C.; Hayes, B.J.; Mapholi, N.; Dzama, K.; Marufu, M.C.; Githaka, N.W.; et al. Towards a new phenotype for tick resistance in beef and dairy cattle: A review. Anim. Prod. Sci. 2019, 59, 1401. [Google Scholar] [CrossRef] [Green Version]
- Condori, R.; Ibáñez, T.; Hernández, R.; Ochoa, R.; Loza-Murguia, M.G. Frecuencia relativa de Boophilus microplus (Canestrini 1888) & Amblyomma cajennense (Fabricius 1787) (Acari: Ixodida) en ganado bovino, en la zona de colonización de Yucumo, Provincia Gral. José Ballivián Departamento Del Beni, Bolivia. J. Selva Andina Res. Soc. 2010, 1, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Shyma, K.P.; Gupta, J.P.; Singh, V. Breeding strategies for tick resistance in tropical cattle: A sustainable approach for tick control. J. Parasit. Dis. 2015, 39, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, S.; Kelly, P. Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol. 2006, 28, 577–588. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Kerr, J.D.; Maywald, G.F.; Stegeman, D.A.; Tolleson, D.R.; Carstens, G.E.; Welsh, T.H.; Teel, P.D.; Strey, O.F.; Longnecker, M.T.; et al. The effect of season and nutrition on the resistance of cattle to the tick Boophilus microplus. Aust. J. Agric. Res. 1983, 90, 3442–3450. [Google Scholar] [CrossRef]
- Tolleson, D.R.; Carstens, G.E.; Welsh, T.H.; Teel, P.D.; Strey, O.F.; Longnecker, M.T.; Prince, S.D.; Banik, K.K. Plane of nutrition by tick-burden interaction in cattle: Effect on growth and metabolism. J. Anim. Sci. 2012, 90, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Frisch, J.E.; O’Neill, C.J.; Kelly, M.J. Using genetics to control cattle parasites—the Rockhampton experience. Int. J. Parasitol. 2000, 30, 253–264. [Google Scholar] [CrossRef]
- Manjunathachar, H.V.; Saravanan, B.C.; Kesavan, M.; Karthik, K.; Rathod, P.; Gopi, M.; Tamilmahan, P.; Balaraju, B.L. Economic importance of ticks and their effective control strategies. Asian Pac. J. Trop. Dis. 2014, 4, S770–S779. [Google Scholar] [CrossRef]
- Bilkis, M.; Mondal, M.; Rony, S.; Islam, M.; Begum, N. Host determinant based prevalence of ticks and lice in cattle (Bos indicus) at Bogra district of Bangladesh. Prog. Agric 2011, 22, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Taye, D.R.; Assefa, K.; Hika, W. Prevalence of major ectoparasites of calves and associated risk factors in and around Bishoftu town. Afr. J. Agric. Res. 2015, 10, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Nijhof, A.M.; Sauter-Louis, C.; Schauer, B.; Staubach, C.; Conraths, F.J. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan. Parasit. Vectors 2017, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.B.; Rangel, C.P.; De Azevedo Baêta, B.; Da Fonseca, A.H. Influence of the physiological state on infestation by Rhipicephalus microplus in dairy cows. Ticks Tick-Borne Dis. 2013, 4, 52–56. [Google Scholar] [CrossRef]
- Swai, E.S.; Mbise, A.N.; Kessy, V.; Kaaya, E.; Sanka, P.; Loomu, P.M. Farm constraints, cattle disease perception and tick management practices in Pastoral Maasai community-Ngorongoro, Tanzania. Livest. Res. Rural Dev. 2005, 7, 599–610. [Google Scholar]
- González, F.; Becerril, C.; Torres, G.; Díaz, P.; Santellano, E.; Rosendo, A. Infestación natural por Amblyomma cajennense y Boophilus microplus en bovinos criollo lechero tropical durante la epoca de lluvias. Agrociencia 2009, 43, 577–584. [Google Scholar]
- Utech, K.B.W.; Wharton, R.H. Breeding for resistance to Boophilus microplus in Australian Illawarra Shorthorn and Brahman X Australian Illawarra Shorthorn cattle. Aust. Vet. J. 1982, 58, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.N.; Mayer, D.G.; Green, P.E. Possible risk factors on queensland dairy farms for acaricide resistance in cattle tick (Boophilus microplus). Vet. Parasitol. 2000, 88, 79–92. [Google Scholar] [CrossRef]
- Miyama, T.; Byaruhanga, J.; Okamura, I.; Uchida, L.; Muramatsu, Y.; Mwebembezi, W.; Vudriko, P.; Makita, K. Effect of chemical tick control effect of chemical tick control practices on tick infestation and Theileria parva infection in an intensive dairy production region of Uganda. Ticks Tick-Borne Dis. 2020, 11, 101438. [Google Scholar] [CrossRef]
- Heath, A.C.G. Biology, Ecology and distribution of the tick, Haemaphysalis longicornis Neumann (Acari: Ixodidae) in New Zealand. N. Z. Vet. J. ISSN 2016, 64, 10–20. [Google Scholar] [CrossRef]
- Zannou, O.M.; Ouedraogo, A.S.; Biguezoton, A.S.; Lempereur, L.; Patrick, K.; Emmanuel, Y.; Sébastien, A.; Lenaert, M.; Toe, P.; Farougou, S.; et al. First digital characterization of the transhumance corridors through benin used by cattle herds from Burkina Faso and associated risk scoring regarding the invasion of Rhipicephalus (Boophilus) microplus. Transbound. Emerg. Dis. 2021, 68, 2079–2093. [Google Scholar] [CrossRef]
- Kamran, K.; Ali, A.; Villagra, C.A.; Bazai, Z.A.; Iqbal, A.; Sajid, M.S. Hyalomma Anatolicum resistance against ivermectin and fipronil is associated with indiscriminate use of acaricides in southwestern Balochistan, Pakistan. Parasitol. Res. 2021, 120, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Vayas, T.; Mayorga, F.; Freire, C. Sector Ganadero: Análisis 2014–2019; Universidad Técnica de Ambato: Ambato, Ecuador, 2019; p. 5. [Google Scholar]
- Banco Central del Ecuador, Reporte de coyuntura sector agropecuario. Dir. Nac. Sínt. Macroeconómica Gest. Coyunt. Previs. Económicas Diseño 2020, 93, 12.
- Ruiz, F.Á.; Gz-Janica, H.L. Efectos Ambientales y Socio-Económicos del Sistema de Producción Ganadero con Enfoque Ambientalmente Sostenible y El Sistema Tradicional, Implementados en las Fincas Escocia y Alejandría, Respectivamente en el Municipio de Montería, Departamento de Córdob; Pontificia Universidad Javeriana: Bogotá, Colombia, 2012; p. 107. [Google Scholar]
- Cingolani, A.M.; Noy-Meir, I.; Renison, D.D.; Cabido, M. La ganadería extensiva, ¿es compatible con la conservación de la biodiversidad y de los suelos? Ecol. Austral 2008, 18, 253–271. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reserva de Biósfera Chocó Andino de Pichincha. Available online: https://www.chocoandinopichincha.com (accessed on 23 September 2021).
- Consejo Municial PVM. Caracterización Cantonal y Parroquial: Cantón Pedro Vicente Maldonado; Gobierno Provincial de Pichincha: Quito, Ecuador, 2011; pp. 165–182.
- Echeverría, J. Conociendo Quito: El Noroccidente del DMQ, un territorio de alta biodiversidad, cultura y empredimientos sostenibles. Inst. Ciudad 2017, 1, 1–8. [Google Scholar]
- HCPP. Proyecto de Desarrollo Rural Integral del Occidente de Pichincha-Fase II; Unidad de Desarrollo Integral: León, Mexico, 2000.
- Cárdenas, J. Informe de educación ambiental EcoFondo-Napo. EcoFondo 2010, 7, 1–7. [Google Scholar]
- Guamán, S.; Gonzáles, R.; Carrasco, R.; Guamán, F. Caracterización de los sistemas ganaderos de aptitud lechera en El Valle del Quijos, provincia del Napo, Ecuador. Eur. Sci. J. 2019, 15, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Epicollect, Epicollect 5. Imp. Coll. 2021. Available online: https://five.epicollect.net (accessed on 24 September 2021).
- Wondatir Workie, Z.; Gibson, J.P.; van der Werf, J.H.J. Analysis of culling reasons and age at culling in australian dairy cattle. Anim. Prod. Sci. 2021, 61, 680. [Google Scholar] [CrossRef]
- Zijlstra, J.; Jiayang, M.; Zhijun, C.; Van der Fels, B. Longevity and culling rate: How to improve? Available online: https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-353135313130 (accessed on 19 March 2022).
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal descriptors of body condition score in holstein cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Hüe, T.; Fontfreyde, C. Development of a new approach of pasture management to control infestation. Trop. Anim. Health Prod. 2019, 51, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R. Las garrapatas de Venezuela (Acarina: Ixodoidea): Listado de especies y claves para su identificación. Bol Dir Malariol Saneam Ambient 1996, 36, 1–24. [Google Scholar]
- Barros-Battesti, D.; Arzua, M.; Bechara, H. Carrapatos de Importância Médico-Veterinária da Região Neotropical: Um Guia Ilustrado Para Identificação de Espécies; University of São Paulo: São Paulo, Brazil, 2006; p. 223. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 17 June 2021).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Petrie, A. Regclass: Tools for an Introductory Class in Regression and Modeling; Wiley-Black Well: Hoboken, NJ, USA, 2020. [Google Scholar]
- Daoud, J.I. Multicollinearity and regression analysis. J. Phys. Conf. Ser. 2018, 949, 012009. [Google Scholar] [CrossRef]
- Mandeville, P.B.; Concato, J. ¿Por qué se deben centrar las covariables en regresión lineal? Cienc. UANL 2008, XI, 300–305. [Google Scholar]
- StataCorp. Stata statistical software: Release 14.2. College Station. 2015; Available online: https://www.stata.com/ (accessed on 8 February 2022).
Tick Species | Northwest of Pichincha (Number of Farms) | Quijos River Valley (Number of Farms) | Total of Farms |
---|---|---|---|
R. microplus | 63 * | 67 ** | 130 |
Ixodes boliviensis | 1 * | 2 ** | 3 |
Ixodes montoyanus | 1 * | 1 ** | 2 |
Amblyomma mixtum | 1 * | 0 | 1 |
Parameter | Quijos River Valley | Northwest of Pichincha | p-Value of the Fisher’s Exact Test | ||
---|---|---|---|---|---|
Number of Farms | Percentage of Farms | Number of Farms | Percentage of Farms | ||
Tick infestation | 1.00 | ||||
Low | 42 | 58.30 | 40 | 59.70 | |
High | 30 | 41.67 | 27 | 40.29 | |
Level of education | 0.01 * | ||||
Without formal education | 3 | 4.17 | 1 | 1.49 | |
Primary school | 27 | 37.50 | 20 | 29.85 | |
High school a | 35 | 48.61 | 26 | 38.81 | |
University concluded | 7 | 9.72 | 20 | 29.85 | |
Animal husbandry as principal activity | 64 | 88.89 | 59 | 88.06 | 1.00 |
Who is the cowherd | 0.07 | ||||
Employee | 7 | 9.72 | 6 | 8.96 | |
Owner | 41 | 56.94 | 26 | 38.81 | |
Owner and Employees | 24 | 33.33 | 35 | 52.24 | |
Herd size | <0.01 * | ||||
Small | 28 | 38.89 | 8 | 11.94 | |
Medium | 39 | 54.17 | 43 | 64.18 | |
Large | 5 | 6.94 | 16 | 23.88 | |
Type of production | 0.64 | ||||
Beef cattle | 0 | 0.00 | 1 | 1.49 | |
Dual purpose cattle | 21 | 29.17 | 17 | 25.37 | |
Dairy cattle | 51 | 70.83 | 49 | 73.13 | |
Level of mechanization | 0.37 | ||||
Non-mechanized | 47 | 65.28 | 38 | 56.72 | |
Semi-mechanized | 18 | 18.06 | 17 | 7.46 | |
Mechanized | 7 | 16.67 | 12 | 35.82 | |
Veterinary support | <0.01 * | ||||
No | 9 | 12.50 | 37 | 55.22 | |
Yes | 63 | 87.50 | 30 | 44.78 | |
Acaricide | |||||
Amide | 45 | 62.50 | 58 | 86.57 | 0.08 |
Organophosphate | 52 | 72.22 | 34 | 50.75 | 0.01 * |
Pyrethroid | 43 | 59.72 | 18 | 26.87 | <0.01 * |
Macrocyclic lactone | 56 | 77.78 | 58 | 86.57 | 0.19 |
Phenylpyrazolone | 1 | 1.39 | 2 | 2.99 | 0.61 |
Benzoylphenyl urea | 8 | 11.11 | 22 | 32.84 | <0.01 * |
Pyrethroid + Organophosphate | 48 | 66.67 | 32 | 47.76 | <0.01 * |
Pyrethroid + Organophosphate+ Phenylpyrazolone | 22 | 30.56 | 12 | 17.91 | 0.11 |
Benzoylphenyl urea + Macrocyclic lactone | 1 | 1.39 | 5 | 7.46 | 0.10 |
Benzoylphenyl urea + Phenylpyrazolone | 20 | 27.78 | 16 | 23.88 | 0.70 |
Frequency of acaricide treatment application | 0.13 | ||||
Less than 1 month | 44 | 61.11 | 43 | 64.18 | |
Every 1 to 2 months | 21 | 29.17 | 11 | 16.42 | |
Every 3 to 6 months | 6 | 8.33 | 12 | 17.91 | |
More of 6 months | 1 | 1.39 | 1 | 1.49 |
Explanatory Variable | Number of Farms | Positive Farms | Proportion | OR (95% CI) | p-Value of the Fisher’s Exact Test | |
---|---|---|---|---|---|---|
Level of education a | High School | 61 | 26 | 42.62 | Reference | - |
Primary School | 51 | 19 | 37.25 | 0.80 (0.35–1.83) | 0.70 | |
University, concluded | 27 | 12 | 44.44 | 1.08 (0.39–2.95) | 1.00 | |
Range of experience | 1–5 years | 15 | 9 | 60.00 | Reference | - |
6–10 years | 21 | 8 | 38.10 | 0.42 (0.08- 1.93) | 0.31 | |
11–20 years | 25 | 9 | 36.00 | 0.85 (0.29–2.36) | 0.82 | |
≥21 years | 78 | 31 | 39.74 | 0.44 (0.12–1.56) | 0.17 | |
Who is the cowherd | Employees | 13 | 7 | 53.85 | Reference | - |
Owner | 67 | 26 | 38.81 | 0.55 (0.14–2.14) | 0.37 | |
Owner and Employees | 59 | 24 | 40.68 | 0.59 (0.14–2.35) | 0.54 | |
Cattle husbandry as the principal activity | No | 16 | 4 | 25.00 | Reference | - |
Yes | 123 | 53 | 43.09 | 2.26 (0.64–10.16) | 0.19 | |
Herd size | Large | 21 | 8 | 38.10 | Reference | - |
Medium | 82 | 34 | 41.46 | 1.15 (0.39–3.57) | 0.81 | |
Small | 36 | 15 | 41.67 | 1.16 (0.34–4.10) | 1.00 | |
Level of mechanization | Mechanized | 19 | 5 | 26.32 | Reference | |
Semi-mechanized | 35 | 15 | 42.86 | 2.07 (0.54–9.04) | 0.26 | |
Non-mechanized | 85 | 37 | 43.53 | 2.29 (0.71–8.82) | 0.20 | |
Cut and carry pasture | No | 92 | 36 | 39.13 | Reference | - |
Yes | 47 | 21 | 44.68 | 1.25 (0.58–2.71) | 0.58 | |
Paddock maintenance | No | 24 | 9 | 37.50 | Reference | - |
Yes | 115 | 48 | 41.74 | 1.19 (0.44–3.36) | 0.82 | |
Pasture rotation | No | 32 | 15 | 46.88 | Reference | - |
Yes | 107 | 42 | 39.25 | 0.73 (0.31–1.76) | 0.54 | |
External paddocks | No | 86 | 29 | 33.72 | Reference | - |
Yes | 53 | 28 | 52.83 | 2.19 (1.03–4.70) | 0.03 * | |
Paddocks with dallis grass (Paspalum dilatatum) | No | 41 | 17 | 41.46 | Reference | - |
Yes | 98 | 40 | 40.82 | 0.97 (0.44–2.20) | 1.00 | |
Knowledge of the life cycle of ticks | No | 14 | 4 | 28.57 | Reference | - |
Yes | 125 | 53 | 42.40 | 1.83 (0.49–8.45) | 0.4 | |
Correct knowledge of the location of ticks in the grass | No | 48 | 17 | 35.42 | Reference | - |
Yes | 91 | 40 | 43.96 | 1.43 (0.66–3.16) | 0.37 | |
Veterinary support | No | 46 | 15 | 32.61 | Reference | - |
Yes | 93 | 42 | 45.16 | 1.70 (0.77–3.86) | 0.2 | |
Prescription by a veterinarian | No | 37 | 13 | 35.14 | Reference | - |
Yes | 102 | 44 | 43.14 | 1.40 (0.60–3.35) | 0.44 | |
Who prepares the acaricide solution | Employed | 31 | 16 | 51.61 | Reference | - |
Owner | 108 | 41 | 37.96 | 0.58 (0.24–1.39) | 0.21 | |
Person who applies acaricide treatment | Employed | 48 | 20 | 41.67 | Reference | - |
Owner | 82 | 33 | 40.24 | 0.55 (0.14–2.14) | 0.37 | |
Owner and Employees | 9 | 4 | 44.44 | 1.12 (0.20–5.94) | 1.00 | |
Has storage area | No | 83 | 39 | 46.99 | Reference | - |
Yes | 56 | 18 | 32.14 | 0.54 (0.25–1.14) | 0.11 | |
Use of amitraz | No | 36 | 11 | 30.56 | Reference | - |
Yes | 103 | 46 | 44.66 | 1.83 (0.77–4.57) | 0.17 | |
Dose of acaricide | Correct | 44 | 18 | 40.91 | Reference | - |
Incorrect | 95 | 39 | 41.05 | 1.00 (0.46–2.23) | 1.00 | |
Frequency of acaricide treatment application | <1 month | 87 | 41 | 47.13 | Reference | - |
1–2 months | 32 | 10 | 31.25 | 0.51 (0.19–1.29) | 0.15 | |
3–6 months | 20 | 6 | 30.00 | 0.48 (0.14–1.50) | 0.21 | |
Perception: predisposition for a breed | No | 51 | 15 | 29.41 | Reference | - |
Yes | 88 | 42 | 47.73 | 2.17 (1.00–4.93) | 0.05 * | |
Perception: predisposition for a color | No | 78 | 30 | 38.46 | Reference | - |
Yes | 61 | 27 | 44.26 | 1.27 (0.61–2.65) | 0.6 | |
Perception: predisposition for a category | No | 46 | 18 | 39.13 | Reference | - |
Yes | 93 | 39 | 41.94 | 1.12 (0.52–2.48) | 0.86 | |
Perception: ticks can affect the cattle | No | 11 | 1 | 9.09 | Reference | - |
Yes | 128 | 56 | 43.75 | 7.70 (1.04–342.91) | 0.03 * | |
Perception: economic loss | No | 6 | 1 | 16.67 | Reference | - |
Yes | 133 | 56 | 42.11 | 3.61 (0.39–174.87) | 0.4 |
Explanatory Variables | Final Model | ||
---|---|---|---|
OR (95% CI) | p-Value of the Fisher’s Exact Test | ||
Cattle husbandry as the principal activity | No | Reference | - |
Yes | 3.96 (0.97–16.10) | 0.053 *** | |
Level of mechanization | Mechanized | Reference | - |
Semi-mechanized | 4.48 (1.02–19.53) | 0.05 * | |
Non-mechanized | 5.11 (1.14–22.86) | 0.03 * | |
External paddocks | No | Reference | - |
Yes | 2.08 (0.94–4.60) | 0.07 | |
Veterinary support | No | Reference | - |
Yes | 2.09 (0.86–5.07) | 0.10 | |
Who prepared the acaricide solution | Employee | Reference | - |
Owner | 0.19 (0.06–0.61) | <0.01 ** | |
Has storage area | No | Reference | - |
Yes | 0.52 (0.23–1.20) | 0.12 | |
Use of amitraz | No | Reference | - |
Yes | 2.58 (0.92–7.20) | 0.07 | |
Perception: predisposition for a breed | No | Reference | - |
Yes | 1.87 (0.83–4.20) | 0.13 |
Level of Tick Infestation (Number of Farms) | Total Farms | Probability of a Level of Tick Infestation | |||
---|---|---|---|---|---|
OWS | Low | High | Low | High | |
5–7 | 4 | 1 | 5 | 0.80 | 0.20 |
7–9 | 7 | 0 | 7 | 1.00 | 0.00 |
9–11 | 13 | 0 | 13 | 1.00 | 0.00 |
11–13 | 18 | 11 | 29 | 0.62 | 0.38 |
13–15 | 24 | 19 | 43 | 0.56 | 0.44 |
15–17 | 14 | 23 | 37 | 0.38 | 0.62 |
17–21 | 2 | 3 | 5 | 0.40 | 0.60 |
Total | 82 | 57 | 139 |
Risk Factor | Total Animals | Positive Animals | Proportion | OR (95% CI) | p-Value Fisher Test | |
---|---|---|---|---|---|---|
Breed | B. p. taurus | 769 | 283 | 0.37 | Reference | - |
Crossbreed: B. p. taurus × B. p. indicus | 47 | 18 | 0.38 | 1.07 (0.55–2.03) | 0.88 | |
B. p. indicus | 10 | 3 | 0.30 | 0.74 (0.12–3.26) | 0.75 | |
Color a | Black-White | 313 | 122 | 0.39 | Reference | - |
Black | 142 | 53 | 0.37 | 0.93 (0.61–1.43) | 0.76 | |
Brown | 266 | 92 | 0.35 | 0.83 (0.58–1.18) | 0.30 | |
Red | 84 | 28 | 0.33 | 0.78 (0.45–1.33) | 0.38 | |
White | 21 | 9 | 0.43 | 1.17 (0.42–3.14) | 0.82 | |
Sex | Female | 799 | 296 | 0.37 | Reference | - |
Male | 27 | 8 | 0.30 | 0.72 (0.27–1.74) | 0.54 | |
Age b | Young | 40 | 11 | 0.28 | Reference | - |
Young adult | 600 | 216 | 0.36 | 1.48 (0.70–3.36) | 0.31 | |
Adults over 7 years old | 186 | 77 | 0.41 | 1.86 (0.84–4.83) | 0.11 | |
Cows in lactating status | No | 157 | 40 | 0.25 | Reference | - |
Yes | 669 | 264 | 0.39 | 1.91 (1.27–2.90) | <0.01 * | |
Body condition status | Fat | 40 | 17 | 0.43 | Reference | |
Good | 551 | 191 | 0.35 | 0.72 (0.36–1.47) | 0.31 | |
Thin | 235 | 96 | 0.41 | 0.93 (0.45–1.97) | 0.86 |
Risk Factor | OR (95% CI) | p-Value Fisher test | |
---|---|---|---|
Breed | B. p. taurus | Reference | - |
Crossbreed: B. p. taurus × B. p. indicus | 0.547 (0.546–0.548) | <0.01 ** | |
B. p. indicus | 0.539 (0.538–0.540) | <0.01 ** | |
Age | Young | Reference | - |
Young adult | 1.050 (1.048–1.051) | <0.01 * | |
Adults over 7 years old | 1.480 (1.478–1.482) | <0.01 * | |
Lactating dairy cows | No | Reference | - |
Yes | 2.287 (2.283–2.900) | <0.01 * | |
Body condition status | Fat | Reference | - |
Good | 1.212 (1.210–1.214) | <0.01 * | |
Thin | 1.992 (1.990–1.995) | <0.01 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar, V.; Pérez-Otáñez, X.; Rodríguez-Hidalgo, R.; Perez, C.; Cepeda-Bastidas, D.; Grijalva, J.; Enríquez, S.; Arciniegas-Ortega, S.; Vanwambeke, S.O.; Ron-Garrido, L.; et al. The Associated Decision and Management Factors on Cattle Tick Level of Infestation in Two Tropical Areas of Ecuador. Pathogens 2022, 11, 403. https://doi.org/10.3390/pathogens11040403
Paucar V, Pérez-Otáñez X, Rodríguez-Hidalgo R, Perez C, Cepeda-Bastidas D, Grijalva J, Enríquez S, Arciniegas-Ortega S, Vanwambeke SO, Ron-Garrido L, et al. The Associated Decision and Management Factors on Cattle Tick Level of Infestation in Two Tropical Areas of Ecuador. Pathogens. 2022; 11(4):403. https://doi.org/10.3390/pathogens11040403
Chicago/Turabian StylePaucar, Valeria, Ximena Pérez-Otáñez, Richar Rodríguez-Hidalgo, Cecilia Perez, Darío Cepeda-Bastidas, Jorge Grijalva, Sandra Enríquez, Susana Arciniegas-Ortega, Sophie O. Vanwambeke, Lenin Ron-Garrido, and et al. 2022. "The Associated Decision and Management Factors on Cattle Tick Level of Infestation in Two Tropical Areas of Ecuador" Pathogens 11, no. 4: 403. https://doi.org/10.3390/pathogens11040403
APA StylePaucar, V., Pérez-Otáñez, X., Rodríguez-Hidalgo, R., Perez, C., Cepeda-Bastidas, D., Grijalva, J., Enríquez, S., Arciniegas-Ortega, S., Vanwambeke, S. O., Ron-Garrido, L., & Saegerman, C. (2022). The Associated Decision and Management Factors on Cattle Tick Level of Infestation in Two Tropical Areas of Ecuador. Pathogens, 11(4), 403. https://doi.org/10.3390/pathogens11040403