Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory
Abstract
:Funding
Acknowledgments
Conflicts of Interest
References
- Ujvari, B.; Gatenby, R.A.; Thomas, F. The evolutionary ecology of transmissible cancers. Infect. Genet. Evol. 2016, 39, 293–303. [Google Scholar] [CrossRef]
- Welsh, J.S. Contagious Cancer. Oncologist 2011, 16, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Dingli, D.; Nowak, M.A. Cancer biology: Infectious tumour cells. Nature 2006, 443, 35–36. [Google Scholar] [CrossRef]
- Tolar, J.; Neglia, J.P. Transplacental and other routes of cancer transmission between individuals. J. Pediatr. Hematol. Oncol. 2003, 25, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Muehlenbachs, A.; Bhatnagar, J.; Agudelo, C.A.; Hidron, A.; Eberhard, M.L.; Mathison, B.A.; Frace, M.A.; Ito, A.; Metcalfe, M.G.; Rollin, D.C.; et al. Malignant Transformation of Hymenolepis nana in a Human Host. N. Engl. J. Med. 2015, 373, 1845–1852. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brindley, D.C.; Banfield, W.G. A contagious tumor of the hamster. J. Natl. Cancer Inst. 1961, 26, 949–957. [Google Scholar] [CrossRef]
- Manzotti, C.; Audisio, R.A.; Pratesi, G. Importance of orthotopic implantation for human tumors as model systems: Relevance to metastasis and invasion. Clin. Exp. Metastasis 1993, 11, 5–14. [Google Scholar] [CrossRef]
- Kreiss, A.; Tovar, C.; Obendorf, D.L.; Dun, K.; Woods, G.M. A murine xenograft model for a transmissible cancer in tasmanian devils. Vet. Pathol. 2011, 48, 475–481. [Google Scholar] [CrossRef][Green Version]
- Hoffman, R.M. Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 2015, 15, 451–452. [Google Scholar] [CrossRef]
- Baez-Ortega, A.; Gori, K.; Strakova, A.; Allen, J.L.; Allum, K.M.; Bansse-Issa, L.; Bhutia, T.N.; Bisson, J.L.; Briceño, C.; Murchison, E.P.; et al. Somatic evolution and global expansion of an ancient transmissible cancer lineage. Science 2019, 365, eaau9923. [Google Scholar] [CrossRef][Green Version]
- Pearse, A.M.; Swift, K. Allograft theory: Transmission of devil facial-tumour disease. Nature 2006, 439, 549. [Google Scholar] [CrossRef]
- Pye, R.J.; Pemberton, D.; Tovar, C.; Tubio, J.M.C.; Dun, K.A.; Fox, S.; Darby, J.; Hayes, D.; Knowles, G.W.; Kreiss, A.; et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 2016, 113, 374–379. [Google Scholar] [CrossRef][Green Version]
- Metzger, M.J.; Villalba, A.; Carballal, M.J.; Iglesias, D.; Sherry, J.; Reinisch, C.; Muttray, A.F.; Baldwin, S.A.; Goff, S.P. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 2016, 534, 705–709. [Google Scholar] [CrossRef][Green Version]
- Yonemitsu, M.A.; Giersch, R.M.; Polo-Prieto, M.; Hammel, M.; Simon, A.; Cremonte, F.; Avilés, F.T.; Merino-Véliz, N.; Burioli, E.A.V.; Muttray, A.F.; et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. eLife 2019, 8, e47788. [Google Scholar] [CrossRef]
- Domazet-Lošo, T.; Klimovich, A.; Anokhin, B.; Anton-Erxleben, F.; Hamm, M.J.; Lange, C.; Bosch, T.C.G. Naturally occurring tumours in the basal metazoan Hydra. Nat. Commun. 2014, 5, 4222. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rathje, K.; Mortzfeld, B.; Hoeppner, M.P.; Taubenheim, J.; Bosch, T.C.G.; Klimovich, A. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLoS Pathog. 2020, 16, e1008375. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cunningham, C.X.; Comte, S.; McCallum, H.; Hamilton, D.G.; Hamede, R.; Storfer, A.; Hollings, T.; Ruiz-Aravena, M.; Kerlin, D.H.; Brook, B.W.; et al. Quantifying 25 Years of Disease-Caused Declines in Tasmanian Devil Populations: Host Density Drives Spatial Pathogen Spread. Ecol. Lett. 2021, 24, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Lazenby, B.T.; Tobler, M.W.; Brown, W.E.; Hawkins, C.E.; Hocking, G.J.; Hume, F.; Huxtable, S.; Iles, P.; Jones, M.E.; Lawrence, C.; et al. Density Trends and Demographic Signals Uncover the Long-Term Impact of Transmissible Cancer in Tasmanian Devils. J. Appl. Ecol. 2018, 55, 1368–1379. [Google Scholar] [CrossRef]
- Carballal, M.J.; Barber, B.J.; Iglesias, D.; Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. 2015, 131, 83–106. [Google Scholar] [CrossRef]
- Dujon, A.M.; Brown, J.S.; Destoumieux-Garzón, D.; Vittecoq, M.; Hamede, R.; Tasiemski, A.; Boutry, J.; Tissot, S.; Alix-Panabieres, C.; Pujol, P.; et al. On the need for integrating cancer into the One Health perspective. Evol. Appl. 2021, 14, 2571–2575. [Google Scholar] [CrossRef]
- Bramwell, G.; Schultz, A.G.; Sherman, C.D.H.; Giraudeau, M.; Thomas, F.; Ujvari, B.; Dujon, A.M. A review of the potential effects of climate change on disseminated neoplasia with an emphasis on efficient detection in marine bivalve populations. Sci. Total Environ. 2021, 775, 145134. [Google Scholar] [CrossRef]
- Skazina, M.; Odintsova, N.; Maiorova, M.; Ivanova, A.; Väinölä, R.; Strelkov, P. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci. Rep. 2021, 11, 5809. [Google Scholar] [CrossRef] [PubMed]
- Dujon, A.M.; Gatenby, R.A.; Bramwell, G.; MacDonald, N.; Dorhmann, E.; Raven, N.; Schultz, A.; Hamede, R.; Gérard, A.-L.; Giraudeau, M.; et al. Transmissible cancers in an evolutionary perspective. iScience 2020, 23, 101269. [Google Scholar] [CrossRef]
- Dujon, A.M.; Bramwell, G.; Roche, B.; Thomas, F.; Ujvari, B. Transmissible cancers in mammals and bivalves: How many examples are there? BioEssays 2020, 43, 2000222. [Google Scholar] [CrossRef]
- Aktipis, C.A.; Boddy, A.M.; Jansen, G.; Hibner, U.; Hochberg, M.E.; Maley, C.C.; Wilkinson, G.S. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140219. [Google Scholar] [CrossRef][Green Version]
- Vincze, O.; Colchero, F.; Lemaître, J.-F.; Conde, D.A.; Pavard, S.; Bieuville, M.; Urrutia, A.O.; Ujvari, B.; Boddy, A.M.; Maley, C.C.; et al. Cancer risk across mammals. Nature 2021, 601, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Ujvari, B.; Gatenby, R.; Thomas, F. Transmissible Cancer: The Evolution of Interindividual Metastasis. In Ecology and Evolution of Cancer; Ujvari, B., Roche, B., Thomas, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 167–179. [Google Scholar]
- Knauss, S.; Klein, A. From aneuploidy to cancer: The evolution of a new species? J. Biosci. 2012, 37, 211–220. [Google Scholar] [CrossRef]
- Ujvari, B.; Papenfuss, A.T.; Belov, K. Transmissible cancers in an evolutionary context. BioEssays 2016, 38, S14–S23. [Google Scholar] [CrossRef]
- Ujvari, B.; Klaassen, M.; Raven, N.; Russell, T.; Vittecoq, M.; Hamede, R.; Thomas, F.; Madsen, T. Genetic diversity, inbreeding and cancer. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172589. [Google Scholar] [CrossRef][Green Version]
- Dujon, A.M.; Ujvari, B.; Thomas, F. Cancer risk landscapes: A framework to study cancer in ecosystems. Sci. Total Environ. 2020, 763, 142955. [Google Scholar] [CrossRef]
- Russell, T.; Madsen, T.; Thomas, F.; Raven, N.; Hamede, R.; Ujvari, B. Oncogenesis as a Selective Force: Adaptive Evolution in the Face of a Transmissible Cancer. BioEssays 2018, 40, 1700146. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.T.J.; Dobson, A.; Lafferty, K.D.; Marcogliese, D.J.; Memmott, J.; Orlofske, S.A.; Poulin, R.; Thieltges, D.W. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 2010, 25, 362–371. [Google Scholar] [CrossRef]
- Boutry, J.; Mistral, J.; Berlioz, L.; Klimovich, A.; Tökölyi, J.; Fontenille, L.; Ujvari, B.; Dujon, A.M.; Giraudeau, M.; Thomas, F. Tumors (re)shape biotic interactions within ecosystems: Experimental evidence from the freshwater cnidarian Hydra. Sci. Total Environ. 2022, 803, 149923. [Google Scholar] [CrossRef]
- Piscart, C.; Webb, D.; Beisel, J.N. An acanthocephalan parasite increases the salinity tolerance of the freshwater amphipod Gammarus roeseli (Crustacea: Gammaridae). Naturwissenschaften 2007, 94, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Hoang, A. Immune response to parasitism reduces resistance of Drosophila melanogaster to desiccation and starvation. Evolution 2001, 55, 2353–2358. [Google Scholar] [CrossRef]
- Ujvari, B.; Beckmann, C.; Biro, P.A.; Arnal, A.; Tasiemski, A.; Massol, F.; Salzet, M.; Mery, F.; Boidin-Wichlacz, C.; Misse, D.; et al. Cancer and life-history traits: Lessons from host-parasite interactions. Parasitology 2016, 143, 533–541. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Strong, D.R.; Frank, K.T. Human involvement in food webs. Annu. Rev. Environ. Resour. 2010, 35, 1–23. [Google Scholar] [CrossRef][Green Version]
- Pihl, L. Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can. J. Fish Aquat. Sci. 1994, 51, 321–336. [Google Scholar] [CrossRef]
- Oro, D.; Genovart, M.; Tavecchia, G.; Fowler, M.S.; Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 2013, 16, 1501–1514. [Google Scholar] [CrossRef]
- Giraudeau, M.; Sepp, T.; Ujvari, B.; Ewald, P.W.; Thomas, F. Human activities might influence oncogenic processes in wild animal populations. Nat. Ecol. Evol. 2018, 2, 1065–1070. [Google Scholar] [CrossRef]
- Lande, R.; Barrowclough, G.F. Effective population size, genetic variation, and their use in population management. In Viable Populations for Conservation; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- King, K.C.; Lively, C.M. Does genetic diversity limit disease spread in natural host populations. Heredity 2012, 109, 199–203. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lowder, B.V.; Guinane, C.M.; Zakour, N.L.B.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2009, 106, 19545–19550. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Becker, D.J.; Streicker, D.G.; Altizer, S. Linking anthropogenic resources to wildlife-pathogen dynamics: A review and meta-analysis. Ecol. Lett. 2015, 18, 483–495. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tissot, S.; Gérard, A.-L.; Boutry, J.; Dujon, A.M.; Russel, T.; Siddle, H.; Tasiemski, A.; Meliani, J.; Hamede, R.; Roche, B.; et al. Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory. Pathogens 2022, 11, 241. https://doi.org/10.3390/pathogens11020241
Tissot S, Gérard A-L, Boutry J, Dujon AM, Russel T, Siddle H, Tasiemski A, Meliani J, Hamede R, Roche B, et al. Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory. Pathogens. 2022; 11(2):241. https://doi.org/10.3390/pathogens11020241
Chicago/Turabian StyleTissot, Sophie, Anne-Lise Gérard, Justine Boutry, Antoine M. Dujon, Tracey Russel, Hannah Siddle, Aurélie Tasiemski, Jordan Meliani, Rodrigo Hamede, Benjamin Roche, and et al. 2022. "Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory" Pathogens 11, no. 2: 241. https://doi.org/10.3390/pathogens11020241