Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Sampling
2.2. Water Physicochemical Parameters
2.3. Microbiological Analysis
2.4. Identification Using MALDI-TOF MS
2.4.1. Isolation of Colonies
2.4.2. Sample Preparation for MALDI-TOF MS Analysis
2.4.3. MALDI-TOF MS Measurements
2.5. Antibiotic Resistance Testing
2.6. 16S Metabarcoding Analysis
2.6.1. Samples Preparation and DNA Extraction
2.6.2. Library Preparation, Sequencing and Bioinformatic Analysis
3. Results
3.1. Water Physicochemical Parameters
3.2. Microbiological Analysis
3.3. Identification of Isolated Bacteria
3.4. Characterization of Isolates Antibiotic Resistance
3.5. Bacterial Diversity of Fish Flesh
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and threats of contamination on aquatic ecosystems. Bioremediation Biotechnol. 2020, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Parlapani, F.F.; Boziaris, I.S.; Mireles DeWitt, C.A. Pathogens and their sources in freshwater fish, sea finfish, shellfish, and algae. Present Knowl. Food Saf. 2023, 471–492. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Antimicrobial Resistance 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 4 November 2022).
- Hart, P.J.; Wey, E.; McHugh, T.D.; Balakrishnan, I.; Belgacem, O. A method for the detection of antibiotic resistance markers in clinical strains of Escherichia coli using MALDI mass spectrometry. J. Microbiol. Methods 2015, 111, 1–8. [Google Scholar] [CrossRef]
- Böhme, K.; Fernández-No, I.C.; Barros-Velázquez, J.; Gallardo, J.M.; Cañas, B.; Calo-Mata, P. Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 2011, 32, 2951–2965. [Google Scholar] [CrossRef]
- Böhme, K.; Fernández-No, I.C.; Pazos, M.; Gallardo, J.M.; Barros-Velázquez, J.; Cañas, B.; Calo-Mata, P. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis 2013, 34, 877–887. [Google Scholar] [CrossRef]
- Economopoulou, A.; Chochlakis, D.; Almpan, M.A.; Sandalakis, V.; Maraki, S.; Tselentis, Y.; Psaroulaki, A. Environmental investigation for the presence of Vibrio species following a case of severe gastroenteritis in a touristic island. Environ. Sci. Pollut. Res. 2017, 24, 4835–4840. [Google Scholar] [CrossRef]
- Kyritsi, M.A.; Kristo, I.; Hadjichristodoulou, C. Serotyping and detection of pathogenecity loci of environmental isolates of Legionella pneumophila using MALDI-TOF MS. Int. J. Hyg. Environ. Health 2020, 224, 113441. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Kyritsi, M.; Sakka, M.; Chatzinikolaou, K.; Donos, S.; Boziaris, I.S.; Hadjichristodoulou, C.; Athanassiou, C.G. Matrix-assisted laser desorption ionization–time of flight mass spectrometry reveals Enterococcus and Enterobacter spp. in major insect species involved in food security with resistance to common antibiotics. J. Pest Sci. 2004 2020, 93, 159–170. [Google Scholar] [CrossRef]
- Regecová, I.; Pipová, M.; Jevinová, P.; Kmeť, V.; Výrostková, J.; Sopková, D. Antimicrobial resistance of Coagulase-Negative species of staphylococci isolated from the meat of wild pheasants (phasianus colchicus). Ital. J. Anim. Sci. 2014, 13, 627–630. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Parlapani, F.F.; Boziaris, I.S. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci. Technol. 2022, 120, 236–247. [Google Scholar] [CrossRef]
- Parlapani, F.F. Microbial diversity of seafood. Curr. Opin. Food Sci. 2021, 37, 45–51. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Cao, X.; Lin, H.; Wang, J. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact. Ecotoxicology 2017, 26, 831–840. [Google Scholar] [CrossRef]
- Syropoulou, F.; Parlapani, F.F.; Anagnostopoulos, D.A.; Stamatiou, A.; Mallouchos, A.; Boziaris, I.S. Spoilage Investigation of Chill Stored Meagre (Argyrosomus regius) Using Modern Microbiological and Analytical Techniques. Foods 2021, 10, 3109. [Google Scholar] [CrossRef]
- World Health Organization (WHO). One Health 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/one-health (accessed on 2 November 2022).
- Cui, Q.; Huang, Y.; Wang, H.; Fang, T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ. Pollut. 2019, 249, 24–35. [Google Scholar] [CrossRef]
- Vadde, K.K.; Feng, Q.; Wang, J.; McCarthy, A.J.; Sekar, R. Next-generation sequencing reveals fecal contamination and potentially pathogenic bacteria in a major inflow river of Taihu Lake. Environ. Pollut. 2019, 254, 113108. [Google Scholar] [CrossRef]
- Yadav, R.; Rajput, V.; Dharne, M. Metagenomic analysis of a mega-city river network reveals microbial compositional heterogeneity among urban and peri-urban river stretch. Sci. Total Environ. 2021, 783, 146960. [Google Scholar] [CrossRef]
- Loukas, A. Surface water quantity and quality assessment in Pinios River, Thessaly, Greece. Desalination 2010, 250, 266–273. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An overview of the control of bacterial pathogens in cattle manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.K.; Bera, A.K.; Paria, P.; Das, A.; Parida, P.K.; Kumari, S.; Bhowmick, S.; Das, B.K. Identification and pathogenicity of Plesiomonas shigelloides in Silver Carp. Aquaculture 2018, 493, 314–318. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Chen, K.; Wei, Y.; Luo, H.; Li, Y.; Liu, F.; Zhu, Z.; Hu, W.; Luo, D. Isolation, Identification, and Investigation of Pathogenic Bacteria From Common Carp (Cyprinus carpio) Naturally Infected With Plesiomonas shigelloides. Front. Immunol. 2022, 13, 872896. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Sánchez, A.D.J.; Espinosa-Chaurand, L.D.; Díaz-Ramirez, M.; Torres-Ochoa, E. Plesiomonas: A Review on Food Safety, Fish-Borne Diseases, and Tilapia. Sci. World J. 2021, 2021, 3119958. [Google Scholar] [CrossRef] [PubMed]
- Pȩkala-Safińska, A. Contemporary threats of bacterial infections in freshwater fish. J. Vet. Res. 2018, 62, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.M.; Faruque, A.S.G.; Hossain, M.S.; Sattar, S.; Fuchs, G.J.; Salam, M.A. Plesiomonas shigelloides-associated diarrhoea in Bangladeshi children: A hospital-based surveillance study. J. Trop. Pediatr. 2004, 50, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Adesiyan, I.M.; Bisi-Johnson, M.A.; Ogunfowokan, A.O.; Okoh, A.I. Incidence and antimicrobial susceptibility fingerprints of Plesiomonas shigelliodes isolates in water samples collected from some freshwater resources in Southwest Nigeria. Sci. Total Environ. 2019, 665, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Okoh, A.I. Antimicrobial resistance in freshwater Plesiomonas shigelloides isolates: Implications for environmental pollution and risk assessment. Environ. Pollut. 2020, 257, 113493. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Mudryk, Z.J.; Perliński, P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet. Res. Commun. 2020, 44, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenlees, K.J.; Machado, J.; Bell, T.; Sundlof, S.F. Food Borne Microbial Pathogens of Cultured Aquatic Species. Vet. Clin. N. Am. Food Anim. Pract. 1998, 14, 101–112. [Google Scholar] [CrossRef]
- Aljorayid, A.; Viau, R.; Castellino, L.; Jump, R.L.P. Serratia fonticola, pathogen or bystander? A case series and review of the literature. IDCases 2016, 5, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, M.; Popowska, M. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann. Microbiol. 2014, 64, 921–934. [Google Scholar] [CrossRef]
- Thomas, J.; Madan, N.; Nambi, K.S.N.; Abdul Majeed, S.; Nazeer Basha, A.; Sahul Hameed, A.S. Studies on ulcerative disease caused by Aeromonas caviae-like bacterium in Indian catfish, Clarias batrachus (Linn). Aquaculture 2013, 376–379, 146–150. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, X.R.; Li, J.; Li, G.Y.; Liu, Z.P.; Mo, Z.L. Identification and virulence properties of Aeromonas veronii bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. J. Fish Dis. 2016, 39, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Nielsen, T.K.; Leisner, J.J.; Hansen, L.H.; Shen, Z.X.; Zhang, Q.Q.; Li, A. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol. Lett. 2016, 363, fnw190. [Google Scholar] [CrossRef] [Green Version]
- Chandrarathna, H.P.S.U.; Nikapitiya, C.; Dananjaya, S.H.S.; Wijerathne, C.U.B.; Wimalasena, S.H.M.P.; Kwun, H.J.; Heo, G.J.; Lee, J.; De Zoysa, M. Outcome of co-infection with opportunistic and multidrug resistant Aeromonas hydrophila and A. veronii in zebrafish: Identification, characterization, pathogenicity and immune responses. Fish Shellfish Immunol. 2018, 80, 573–581. [Google Scholar] [CrossRef]
- Yao, D.; Bing, X.; Zhu, M.; Bi, K.; Chen, L.; Zhang, X. Molecular identification and drug resistance of pathogenic Aeromonas sobria isolated from Misgurnus anguillicaudatus. Oceanol. Limnol. Sin. Hai Yang Yu Hu Chao 2010, 41, 756–762. [Google Scholar]
- Esteve, C.; Alcaide, E. Influence of diseases on the wild eel stock: The case of Albufera Lake. Aquaculture 2009, 289, 143–149. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Kong, X.; Pei, C.; Zhao, X.; Li, L. Molecular characterization of polymeric immunoglobulin receptor and expression response to Aeromonas hydrophila challenge in Carassius auratus. Fish Shellfish Immunol. 2017, 70, 372–380. [Google Scholar] [CrossRef]
- Marinho-Neto, F.A.; Claudiano, G.S.; Yunis-Aguinaga, J.; Cueva-Quiroz, V.A.; Kobashigawa, K.K.; Cruz, N.R.N.; Moraes, F.R.; Moraes, J.R.E. Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus. PLoS ONE 2019, 14, e0222626. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Gacharna, N.; Black, T.A.; Miller, G.H.; Hooper, D.C. Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob. Agents Chemother. 2009, 53, 1665–1666. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Ramkumar, V.; Mukherjea, D. Ototoxicity of Non-aminoglycoside Antibiotics. Front. Neurol. 2021, 12, 652674. [Google Scholar] [CrossRef]
- Sandner-Miranda, L.; Vinuesa, P.; Cravioto, A.; Morales-Espinosa, R. The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Front. Microbiol. 2018, 9, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, D.; Yin, X.; Lu, Z.; Lv, F.; Zhao, H.; Bie, X. Occurrence, drug resistance, and virulence genes of Salmonella isolated from chicken and eggs. Food Control 2020, 113, 107109. [Google Scholar] [CrossRef]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Lages, M.A.; Balado, M.; Lemos, M.L. The expression of virulence factors in vibrio anguillarum is dually regulated by iron levels and temperature. Front. Microbiol. 2019, 10, 2335. [Google Scholar] [CrossRef] [Green Version]
- Parlapani, F.F.; Michailidou, S.; Pasentsis, K.; Argiriou, A.; Krey, G.; Boziaris, I.S. A meta-barcoding approach to assess and compare the storage temperature-dependent bacterial diversity of gilt-head sea bream (Sparus aurata) originating from fish farms from two geographically distinct areas of Greece. Int. J. Food Microbiol. 2018, 278, 36–43. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Verdos, G.I.; Haroutounian, S.A.; Boziaris, I.S. The dynamics of Pseudomonas and volatilome during the spoilage of gutted sea bream stored at 2 °C. Food Control 2015, 55, 257–265. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Meziti, A.; Kormas, K.A.; Boziaris, I.S. Indigenous and spoilage microbiota of farmed sea bream stored in ice identified by phenotypic and 16S rRNA gene analysis. Food Microbiol. 2013, 33, 85–89. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Boziaris, I.S. Monitoring of spoilage and determination of microbial communities based on 16S rRNA gene sequence analysis of whole sea bream stored at various temperatures. LWT 2016, 66, 553–559. [Google Scholar] [CrossRef]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 605, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSOs) in Fish. Microbiol. Qual. Food Foodborne Spoilers 2017, 61–98. [Google Scholar] [CrossRef]
- Hurst, C.J. Advances in Environmental Microbiology 3 the Rasputin Effect: When Commensals and Symbionts Become Parasitic; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319281681. [Google Scholar]
- López, J.R.; Diéguez, A.L.; Doce, A.; de la Roca, E.; de la Herran, R.; Navas, J.I.; Toranzo, A.E.; Romalde, J.L. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012, 62, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Jeney, Z.; Jeney, G. Recent achievements in studies on diseases of common carp (Cyprinus carpio L.). Aquaculture 1995, 129, 397–420. [Google Scholar] [CrossRef]
- Chen, S.W.; Liu, C.H.; Hu, S.Y. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019, 84, 695–703. [Google Scholar] [CrossRef]
- Oliveira, A.; Oliveira, L.C.; Aburjaile, F.; Benevides, L.; Tiwari, S.; Jamal, S.B.; Silva, A.; Figueiredo, H.C.P.; Ghosh, P.; Portela, R.W.; et al. Insight of genus Corynebacterium: Ascertaining the role of pathogenic and non-pathogenic species. Front. Microbiol. 2017, 8, 1937. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.S.J.; Seaward, L.M.; Ho, C.P.; Anderson, T.P.; Lau, E.O.C.; Amodeo, M.R.; Metcalf, S.C.L.; Pithie, A.D.; Murdoch, D.R. Corynebacterium accolens-associated pelvic osteomyelitis. J. Clin. Microbiol. 2010, 48, 654–655. [Google Scholar] [CrossRef] [Green Version]
- Burr, H.N.; Wolf, F.R.; Lipman, N.S. Corynebacterium bovis: Epizootiologic features and environmental contamination in an enzootically infected rodent room. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 189–198. [Google Scholar]
- Odeniyi, O.A.; Unuofin, J.O.; Adebayo-Tayo, B.C.; Wakil, S.M.; Onilude, A.A. Production characteristics, activity patterns and biodecolourisation applications of thermostable laccases from Corynebacterium efficiens and Enterobacter ludwigii. J. Sci. Ind. Res. 2017, 76, 562–569. [Google Scholar]
- Achermann, Y.; Goldstein, E.J.C.; Coenye, T.; Shirtliffa, M.E. Propionibacterium acnes: From Commensal to opportunistic biofilm-associated implant pathogen. Clin. Microbiol. Rev. 2014, 27, 419–440. [Google Scholar] [CrossRef] [Green Version]
- Green, T.J.; Smullen, R.; Barnes, A.C. Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet. Microbiol. 2013, 166, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, A.; Falkiner, F.R. Serratia marcescens. J. Med. Microbiol. 1997, 46, 903–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baya, A.M.; Toranzo, A.E.; Lupiani, B.; Santos, Y.; Hetrick, F.M. Serratia marcescens: A potential pathogen for fish. J. Fish Dis. 1992, 15, 15–26. [Google Scholar] [CrossRef]
- Moore, J.E.; Huang, J.; Yu, P.; Ma, C.; Moore, P.J.A.; Millar, B.C.; Goldsmith, C.E.; Xu, J. High diversity of bacterial pathogens and antibiotic resistance in salmonid fish farm pond water as determined by molecular identification employing 16S rDNA PCR, gene sequencing and total antibiotic susceptibility techniques. Ecotoxicol. Environ. Saf. 2014, 108, 281–286. [Google Scholar] [CrossRef]
- Macé, S.; Joffraud, J.J.; Cardinal, M.; Malcheva, M.; Cornet, J.; Lalanne, V.; Chevalier, F.; Sérot, T.; Pilet, M.F.; Dousset, X. Evaluation of the spoilage potential of bacteria isolated from spoiled raw salmon (Salmo salar) fillets stored under modified atmosphere packaging. Int. J. Food Microbiol. 2013, 160, 227–238. [Google Scholar] [CrossRef]
Area | Conductivity (μS/cm) | pH (20 °C) | NO3− (mg/L) | NO2− (mg/L) | TP (mg/L) | TSS (mg/L) | Cl− (mg/L) | COD (mg/L) | BOD5 (mg/L) | Total NH3+ (mg/L) | Free NH3+ (mg/L) | TN (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1978 | 8.1 | 2.60 | 0.14 | 0.10 | 294 | 1240 | 30 | 9.3 | 0.12 | 0.09 | 3.60 |
A2 | 2458 | 8.2 | 2.75 | 0.14 | 0.10 | 234 | 1485 | 28 | 9.2 | 0.11 | 0.08 | 3.75 |
A3 | 3090 | 8.3 | 3.00 | 0.12 | 0.10 | 218 | 1995 | 28 | 9.2 | 0.11 | 0.07 | 3.80 |
Microorganism | Area | Water | Flesh | Gut |
---|---|---|---|---|
TVC | A1 | 3.79 ± 0.68 | 4.13 ± 0.69 | 8.83 ± 0.60 |
A2 | 3.94 ± 0.65 | 3.31 ± 0.72 | 8.99 ± 0.66 | |
A3 | 4.34 ± 0.43 | 4.71 ± 0.70 | 8.81 ± 0.46 | |
Pseudomonas spp. | A1 | 2.87 ± 0.18 | 3.07 ± 0.72 | 8.64 ± 0.79 |
A2 | 2.76 ± 0.26 | 2.12 ± 0.25 | 8.57 ± 0.41 | |
A3 | 2.54 ± 0.37 | 3.05 ± 0.75 | 8.33 ± 0.47 | |
H2S-producing bacteria | A1 | 2.05 ± 0.07 | 3.52 ± 0.63 | 8.68 ± 0.66 |
A2 | 2.14 ± 0.18 | 2.89 ± 0.58 | 8.35 ± 0.55 | |
A3 | 2.00 ± 0.00 | 4.00 ± 0.68 | 8.25 ± 0.50 | |
Enterobacteriaceae | A1 | 2.71 ± 0.53 | 2.00 ± 0.00 | 8.55 ± 0.53 |
A2 | 2.97 ± 0.19 | 2.00 ± 0.00 | 9.00 ± 0.51 | |
A3 | 2.74 ± 0.26 | 2.00 ± 0.00 | 8.18 ± 0.83 | |
E.coli/coliforms | A1 | 2.00 ± 0.00 | 2.00 ± 0.00 | 8.51 ± 0.78 |
A2 | 2.13 ± 0.18 | 2.00 ± 0.00 | 8.94 ± 0.49 | |
A3 | 2.27 ± 0.39 | 2.00 ± 0.00 | 6.42 ± 0.73 | |
E. coli | A1 | 2.00 ± 0.00 | 2.00 ± 0.00 | 5.53 ± 0.50 |
A2 | 2.05 ± 0.08 | 2.00 ± 0.00 | 5.60 ± 0.99 | |
A3 | 2.28 ± 0.39 | 2.00 ± 0.00 | 4.92 ± 0.78 | |
Lactic acid bacteria | A1 | 2.00 ± 0.00 | 2.26 ± 0.40 | 2.00 ± 0.00 |
A2 | 2.45 ± 0.40 | 2.00 ± 0.00 | 2.00 ± 0.00 | |
A3 | 2.00 ± 0.00 | 2.00 ± 0.00 | 2.00 ± 0.00 | |
Vibrio spp. | A1 | 2.00 ± 0.00 | 2.74 ± 0.76 | 7.42 ± 0.71 |
A2 | 2.00 ± 0.00 | 2.00 ± 0.00 | 7.16 ± 0.77 | |
A3 | 2.00 ± 0.00 | 2.00 ± 0.00 | 6.92 ± 0.86 |
A1 | Serratia fonticola | Yersinia ruckeri | Vibrio anguillarum | Aeromonas salmonicida | Aeromonas bestiarum | Aeromonas eucrenophila | Aeromonas veronii | Aeromonas ichthiosmia | Aeromonas hydrophila | Aeromonas encheleia | Aeromonas media |
---|---|---|---|---|---|---|---|---|---|---|---|
CAZ30 | W, F, G | F | NR | NR | NR | NR | NR | NR | NR | NR | NR |
DA2 | - | - | F, G | - | - | - | - | - | - | - | - |
K30 | NR | NR | NR | - | - | - | - | - | - | - | - |
E15 | - | - | NR | - | - | - | - | - | - | - | - |
SXT25 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
VA30 | - | - | F, G | - | - | - | - | - | - | - | - |
FOX30 | NR | NR | NR | - | - | - | - | - | - | - | - |
OT30 | - | - | NR | - | - | - | - | - | - | - | - |
CN10 | NR | NR | NR | - | - | - | - | - | - | - | - |
CIP5 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
AML25 | W, F, G | F | NR | - | - | - | - | - | - | - | - |
TE30 | - | - | NR | - | - | - | - | - | - | - | - |
KF30 | W *, G * | F | NR | - | - | - | - | - | - | - | - |
KZ30 | W, F, G * | F | NR | - | - | - | - | - | - | - | - |
NA30 | W *, F, G * | F* | NR | - | - | - | - | - | - | - | - |
S10 | NR | F* | NR | - | - | - | - | - | - | - | - |
P10 | - | - | F, G | - | - | - | - | - | - | - | - |
AZM15 | - | - | NR | - | - | - | - | - | - | - | - |
C30 | NR | NR | NR | - | - | - | - | - | - | - | - |
AMP10 | W, F, G | F | F | - | - | - | - | - | - | - | - |
S3 | G * | F | NR | - | - | - | - | - | - | - | - |
A2 | Serratia fonticola | Yersinia ruckeri | Vibrio anguillarum | Aeromonas salmonicida | Aeromonas bestiarum | Aeromonas eucrenophila | Aeromonas veronii | Aeromonas ichthiosmia | Aeromonas hydrophila | Aeromonas encheleia | Aeromonas media |
CAZ30 | W, F, G | F | NR | NR | NR | NR | NR | NR | NR | NR | NR |
DA2 | - | - | G | - | - | - | - | - | - | - | - |
K30 | NR | NR | NR | - | - | - | - | - | - | - | - |
E15 | - | - | NR | - | - | - | - | - | - | - | - |
SXT25 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
VA30 | - | - | G | - | - | - | - | - | - | - | - |
FOX30 | NR | NR | NR | - | - | - | - | - | - | - | - |
OT30 | - | - | NR | - | - | - | - | - | - | - | - |
CN10 | NR | NR | NR | - | - | - | - | - | - | - | - |
CIP5 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
AML25 | W, F, G | F | NR | - | - | - | - | - | - | - | - |
TE30 | - | - | NR | - | - | - | - | - | - | - | - |
KF30 | F, | F | NR | - | - | - | - | - | - | - | - |
KZ30 | W, F, G | F | NR | - | - | - | - | - | - | - | - |
NA30 | W, F, G * | F | NR | - | - | - | - | - | - | - | - |
S10 | NR | NR | NR | - | - | - | - | - | - | - | - |
P10 | - | - | G | - | - | - | - | - | - | - | - |
AZM15 | - | - | NR | - | - | - | - | - | - | - | - |
C30 | NR | NR | NR | - | - | - | - | - | - | - | - |
AMP10 | W, F, G | F | NR | - | - | - | - | - | - | - | - |
S3 | G * | F | NR | - | - | - | - | - | - | - | - |
A3 | Serratia fonticola | Yersinia ruckeri | Vibrio anguillarum | Aeromonas salmonicida | Aeromonas bestiarum | Aeromonas eucrenophila | Aeromonas veronii | Aeromonas molluscorum | Aeromonas hydrophila | Aeromonas encheleia | Aeromonas media |
CAZ30 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
DA2 | - | - | G | - | - | - | - | - | - | - | - |
K30 | NR | NR | NR | - | - | - | - | - | - | - | - |
E15 | - | - | NR | - | - | - | - | - | - | - | - |
SXT25 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
VA30 | - | - | G | - | - | - | - | - | - | - | - |
FOX30 | NR | NR | NR | - | - | - | - | - | - | - | - |
OT30 | - | - | NR | - | - | - | - | - | - | - | - |
CN10 | NR | NR | NR | - | - | - | - | - | - | - | - |
CIP5 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
AML25 | W | NR | NR | - | - | - | - | - | - | - | - |
TE30 | - | - | NR | - | - | - | - | - | - | - | - |
KF30 | NR | NR | NR | - | - | - | - | - | - | - | - |
KZ30 | W | NR | NR | - | - | - | - | - | - | - | - |
NA30 | W | NR | NR | - | - | - | - | - | - | - | - |
S10 | NR | NR | NR | - | - | - | - | - | - | - | - |
P10 | - | - | G | - | - | - | - | - | - | - | - |
AZM15 | - | - | NR | - | - | - | - | - | - | - | - |
C30 | NR | NR | NR | - | - | - | - | - | - | - | - |
AMP10 | W | NR | NR | - | - | - | - | - | - | - | - |
S3 | NR | NR | NR | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostopoulos, D.A.; Parlapani, F.F.; Natoudi, S.; Syropoulou, F.; Kyritsi, M.; Vergos, I.; Hadjichristodoulou, C.; Kagalou, I.; Boziaris, I.S. Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece. Pathogens 2022, 11, 1473. https://doi.org/10.3390/pathogens11121473
Anagnostopoulos DA, Parlapani FF, Natoudi S, Syropoulou F, Kyritsi M, Vergos I, Hadjichristodoulou C, Kagalou I, Boziaris IS. Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece. Pathogens. 2022; 11(12):1473. https://doi.org/10.3390/pathogens11121473
Chicago/Turabian StyleAnagnostopoulos, Dimitrios A., Foteini F. Parlapani, Stamatia Natoudi, Faidra Syropoulou, Maria Kyritsi, Ioannis Vergos, Christos Hadjichristodoulou, Ifigenia Kagalou, and Ioannis S. Boziaris. 2022. "Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece" Pathogens 11, no. 12: 1473. https://doi.org/10.3390/pathogens11121473