AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process
Abstract
:1. Introduction
2. Results
2.1. Relative Expression of Homologous Gene on AWA and ASH Neurons after RNA Interference
2.2. Motility of M. incognita after RNA Interference with the AWA and ASH Homologous Genes
2.3. Chemotaxis of M. incognita to Tomato Root after RNA Interference with the AWA and ASH Neurons’ Homologous Genes
2.4. Infectivity to Tomato Root of M. incognita after RNA Interference with AWA and ASH Neurons’ Homologous Genes
2.5. In Situ Hybridization of Receptor Genes in Neurons of M. incognita
3. Discussion
4. Materials and Methods
4.1. Culture and Collection of M. incognita
4.2. RNA Interference for Homologous Genes in AWA and ASH Neurons
4.3. Detection of Motility of M. incognita after RNA Interference
4.4. Detection of Chemotaxis and Infectivity of M. incognita for Tomato Roots after RNAi
4.5. In Situ Hybridization Experiment
4.6. Data Processing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferris, H.; Griffiths, B.S.; Porazinska, D.L.; Powers, T.O.; Wang, K.H.; Tenuta, M. Reflections on Plant and Soil Nematode Ecology: Past, Present and Future. J. Nematol. 2012, 44, 115–126. [Google Scholar]
- Tapia-Vázquez, I.; Montoya-Martínez, A.C.; los Santos-Villalobos, D.; Ek-Ramos, M.J.; Montesinos-Matías, R.; Martínez-Anaya, C. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives. World J. Microbiol. Biotechnol. 2022, 38, 18. [Google Scholar]
- Gheysen, G.; Fenoll, C. Gene expression in nematode feeding sites. Annu. Rev. Phytopathol. 2002, 40, 191–219. [Google Scholar] [CrossRef]
- Chitwood, D.J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture—Agricultural Research Service. Pest Manag. Sci. 2003, 59, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Coyne, D.L.; Cortada, L.; Dalzell, J.J.; Claudius-Cole, A.O.; Haukeland, S.; Luambano, N.; Talwana, H. Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. Annu. Rev. Phytopathol. 2018, 56, 381–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmann, S.; Ali, J.G.; Helder, J.; van der Putten, W.H. Ecology and Evolution of Soil Nematode Chemotaxis. J. Chem. Ecol. 2012, 38, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhou, X.; Lewis, E.E.; Yu, Y.; Wang, C. Study on host-seeking behavior and chemotaxis of entomopathogenic nematodes using Pluronic F-127 gel. J. Invertebr. Pathol. 2019, 161, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kirwa, H.K.; Murungi, L.K.; Beck, J.J.; Torto, B. Elicitation of Differential Responses in the Root-Knot Nematode Meloidogyne incognita to Tomato Root Exudate Cytokinin, Flavonoids, and Alkaloids. J. Agric. Food Chem. 2018, 66, 11291–11300. [Google Scholar] [CrossRef] [PubMed]
- Murungi, L.K.; Kirwa, H.; Coyne, D.; Teal, P.E.; Beck, J.J.; Torto, B. Identification of Key Root Volatiles Signaling Preference of Tomato over Spinach by the Root Knot Nematode Meloidogyne incognita. J. Agric. Food Chem. 2018, 66, 7328–7336. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Huang, L.; Gao, Y.; Zhong, L.; Zheng, Y.; Zuo, Y. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J. Exp. Bot. 2014, 65, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Wood, T.K.; Lee, J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends Microbiol. 2015, 23, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Kihika, R.; Murungi, L.K.; Coyne, D.; Ng’ang’a, M.; Hassanali, A.; Teal, P.E.; Torto, B. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory. Sci. Rep. 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. 1986, 314, 340. [Google Scholar]
- Mori, I.; Ohshima, Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays 1997, 19, 1055–1064. [Google Scholar] [CrossRef]
- Troemel, E.R. Chemosensory signaling in C. elegans. Bioessays 1999, 21, 1011–1020. [Google Scholar] [CrossRef]
- Ferkey, D.M.; Sengupta, P.; L’Etoile, N.D. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021, 217, iyab004. [Google Scholar] [CrossRef]
- Sengupta, P.; Chou, J.H.; Bargmann, C.I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 1996, 84, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, P.; Colbert, H.A.; Bargmann, C.I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 1994, 79, 971–980. [Google Scholar] [CrossRef]
- Chatzigeorgiou, M.; Bang, S.; Hwang, S.W.; Schafer, W.R. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 2013, 494, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.Y.; Komatsu, H.; Fukuto, H.S.; Dionne, H.M.; Hart, A.C. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc. Natl. Acad. Sci. USA 2004, 101, 15512–15517. [Google Scholar] [CrossRef] [Green Version]
- Kadamur, G.; Ross, E.M. Mammalian phospholipase C. Annu. Rev. Physiol. 2013, 75, 127–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.; Fearon, A.; Johnson, C.M. HLH-29 regulates ovulation in C. elegans by targeting genes in the inositol triphosphate signaling pathway. Biol. Open 2012, 1, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Yan, J.; Chen, Y.; Chen, C.; Zhang, K.; Huang, X. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol. Adv. 2014, 32, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Gees, M.; Owsianik, G.; Nilius, B.; Voets, T. TRP channels. Compr. Physiol. 2012, 2, 563–608. [Google Scholar] [CrossRef]
- Shivakumara, T.N.; Dutta, T.K.; Chaudhary, S.; von Reuss, S.H.; Williamson, V.M.; Rao, U. Homologs of Caenorhabditis elegans Chemosensory Genes Have Roles in Behavior and Chemotaxis in the Root-Knot Nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 2019, 32, 876–887. [Google Scholar] [CrossRef]
- Rengarajan, S.; Hallem, E.A. Olfactory circuits and behaviors of nematodes. Curr. Opinoin Neurobiol. 2016, 41, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, P. Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Arch. 2007, 454, 721–734. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Chen, Y.; Zhao, N.; Bai, H.; Zhang, K.; Huang, X. Multiple olfactory pathways contribute to the lure process of Caenorhabditis elegans by pathogenic bacteria. Sci. China Life Sci. 2021, 64, 1346–1354. [Google Scholar] [CrossRef]
- Noelle, D.L.; Bargmann, C.I. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron 2000, 25, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Roayaie, K.; Crump, J.G.; Sagasti, A.; Bargmann, C.I. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 1998, 20, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Coburn, C.M.; Bargmann, C.I. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 1996, 17, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, N.; Chen, Y.; Zhang, D.; Yan, J.; Zou, W.; Zhang, K.; Huang, X. The Signaling Pathway of Caenorhabditis elegans Mediates Chemotaxis Response to the Attractant 2-Heptanone in a Trojan Horse-like Pathogenesis. J. Biol. Chem. 2016, 291, 23618–23627. [Google Scholar] [CrossRef] [Green Version]
- Bargmann, C.I. Chemosensation in C. elegans. Wormbook Online Rev. C Elegans Biol. 2006, 25, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Lans, H.; Rademakers, S.; Jansen, G. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 2004, 167, 1677–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meidani, C.; Giannoutsou, E.; Telioglanidis, K.; Ntalli, N.G.; Adamakis, I.D.S. PIN1 auxin efflux carrier absence in Meloidogyne incognita-induced root-knots of tomato plants. Eur. J. Plant Pathol. 2021, 161, 987–992. [Google Scholar] [CrossRef]
- Gheysen, G.; Vanholme, B. RNAi from plants to nematodes. Trends Biotechnol. 2007, 25, 89–92. [Google Scholar] [CrossRef]
- Williamson, V.; Wang, C.; Lower, S. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematology 2009, 11, 453–464. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ren, Q.; Bo, T.; Mo, M.; Liu, Y. AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process. Pathogens 2022, 11, 1322. https://doi.org/10.3390/pathogens11111322
Li Y, Ren Q, Bo T, Mo M, Liu Y. AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process. Pathogens. 2022; 11(11):1322. https://doi.org/10.3390/pathogens11111322
Chicago/Turabian StyleLi, Yuxin, Qiaona Ren, Tingting Bo, Minghe Mo, and Yajun Liu. 2022. "AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process" Pathogens 11, no. 11: 1322. https://doi.org/10.3390/pathogens11111322
APA StyleLi, Y., Ren, Q., Bo, T., Mo, M., & Liu, Y. (2022). AWA and ASH Homologous Sensing Genes of Meloidogyne incognita Contribute to the Tomato Infection Process. Pathogens, 11(11), 1322. https://doi.org/10.3390/pathogens11111322