Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus
Abstract
:1. Introduction
2. Literature Search Strategy
3. Serological Methods for PEDV Detection
3.1. Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies against PEDV
3.2. Fluorescent Microsphere Immunoassay
3.3. Virus Neutralization and Indirect Immunofluorescence Assays
3.4. Immunochromatography Assay
4. Methods for the Detection of PEDV Genome and/or Antigens
4.1. Antigen ELISA
4.2. RT-PCR and qPCR
PCR Type | Primer Name | Primer Sequences (5′-3′) | Target Region (Size) | Limit of Detection | Ref. |
---|---|---|---|---|---|
SYBR™ Green one-step qRT-PCR | mPEDNF PEDV-R | CGCAAAGACTGAACCCACTAA TTGCCTCTGTTGTTACTTGGAGAT | N (191 bp) | 0.5 × 100.01 TCID50/mL for the spiked feces and 100.01 TCID50/mL for spiked jejunum | [78] [79] |
Duplex qRT-PCR | PEDV S1-F PEDV S1-R Virulent PEDV S1-P Variant PEDV S1-P | AGGCGGTTCTTTTCAAAATTTAATG GAAATGCCAATCTCAAAGCC 5Cy5/TATTGGTGAAAACCAGGGTGTCAAT/3BHQ 2 56-FAM/TGGTTATCTACCTAGTATGAACTCCTCTAGC/3IABkFQ | S1 (191 bp for virulent PEDV; 179 bp for variant PEDV) | 1 DNA copy/µL | [80] |
PEDV M-F PEDV M-R PEDV M-P | CATGGGCTAGCTTTCAGGTC CGGCCCATCACAGAAGTAGT 56-FAM/CATTCTTGGTGGTCT TTCAATCCTGA/ZEN 3IABkFQ | M (181 bp for both virulent and variant PEDVs) | 1 DNA copy/µL | ||
Multiplex qRT-PCR (PEDV/TGEV) | PEDV-F PEDV-R PED-Cy5- P | CGCAAAGACTGAACCCACTAATTT TTGCCTCTGTTGTTACTTGGAGAT Cy5-TGTTGCCATTGCCACGACTCCTGC-BHQ3 | N (198 bp) | 1 TCID50/mL | [79] |
TGEV-F TGEV-R TGE-FAM- P | GCAGGTAAAGGTGATGTGACAA ACATTCAGCCAGTTGTGGGTAA 6FAM-TGGCACTGCTGGGATTGGCAACGA-BHQ1 | N (120bp) | 1 TCID50/mL | ||
qRT-PCR | PEDV S-F PEDV S-R PEDV S- P | ACGTCCCTTTACTTTCAATTCACA TATACTTGGTACACACATCCAGAGTCA FAM-TGAGTTGATTACTGGCACGCCTAAACCAC-BHQ | S (111 bp) | 10−0.2 TCID50/mL | [81] |
PEDV N-F PEDV N-R PEDV N-P | GAATTCCCAAGGGCGAAAAT TTTTCGACAAATTCCGCATCT FAM-CGTAGCAGCTTGCTTCGGACCCA-BHQ | N (87 bp) | 10−2.2 TCID50/mL | ||
Multiplex qRT-PCR | F-C R-C C-P | GTCGTTGTTTTGGGTGGTTA CCATGAACGCCACTATCAGT FAM-TAGCTGGTACTGTGGCACAGGCATTG-BHQ1 | S (89 bp for classical PEDV) | 5 × 102 DNA copies/reaction | [67] |
F-V R-V V-P | GTTGTACTGGGCGGTTATCT CCATGAACGCCACTAGCAGT VIC-TGGTACTGTGCTGGCCAACATCCA-BHQ1 | S (98 bp for variant PEDV) | 5 × 102 DNA copies/reaction | ||
Duplex qRT-PCR (PEDV/PDCoV) | PEDV rF PEDV rR PEDV rP | GGTTGTGGCGCAGGACA CGGCCCATCACAGAAGTAGT FAM-CATTCTTGG/ZEN/TGGTCTTTCAATCCTGA-IABkFQ | M (79 bp) | 7 RNA copies/reaction | [82] |
PDCoV rF PDCoV rR PDCoV rP | TGAGAGTAGACTCCTTGCAGGGA GAGAATTGGAGCCATGTGGT NED-TGTACCCATTGGATCCATAA-MGB | M (105 bp) | 7 RNA copies/reaction | ||
Multiplex qRT-PCR (PEDV/PDCoV/SADS-CoV/PToV) | PEDV-F PEDV-R PEDV-P | CTCCCTTGAATTTGAGTTCG ACCACCTGTAACCTTGATAC FAM-TTACCAACAGCCTTATTAAGCAC-MGB | ORF1a (85 bp) | 1 × 102 copies/µL | [83] |
PDCoV-F PDCoV-R PDCoV-P | AAAGCTTTCAAGACAATACCT TACGACAAACTCCTGAAAGCA Texas Red-TACGATACGACTGCATTGGCCTAC-BHQ2 | ORF1b (87 bp) | 1 × 102 copies/µL | ||
PToV-F PToV-R PToV-P | TCATCCACCCAGTTCAAAT TGCACAATTCTCTCTCCAAAT VIC-CCTCAGaTTTCGaAGATAGaACC-BHQ1 | ORF1a (73 bp) | 1 × 102 copies/µL | ||
SADS-CoV-F SADS-CoV-R SADS-CoV-P | CATTTGCCGTTCTTGACCAT AACCCAGCAATTGTTATCTGAA Cy5-CAAGTGCACGCTTACCATCAACTACT-BHQ3 | ORF1a (95 bp) | 1 × 102 copies/µL | ||
5-Plex qRT-PCR (PEDV/PDCoV/TGEV/SADS-CoV) | PEDV-N1195-F PEDV-N1269-R PEDV-N1221-P | GAAGAGGCCATCTACGATGATGT AACAGCTGTGTCCCATTCCAA JUN/TGTGCCATCTGATGTGACTCATGCCA/QSY | N (75 bp) | 8 genomic copies/reaction | [84] |
PDCoV-N-F2 PDCoV-N-R2 PDCoV-N-P | CCAGACATGTGCCTGGTGTT CCCYGCCTGAAAGTTGCT ABY/ARATGCTTTTCGCTGGCCACCTTG/QSY | N (68 bp) | 4 genomic copies/reaction | ||
TGEV-S-F2 TGEV-S-R2 TGEV-S-P | GTGGTAATATGYTRTATGGCYTACAA GCCAGACCATTGATTTTCAAAACT VIC/TTGCTTATTTACATGGTGCYAGT/MGB | S (101 bp) | 16 genomic copies/reaction | ||
SADS-N-F3 SADS-N-R3 SADS-N-P | CCAGGCCTCAAAGTGGTAAAAA TGCTTACGAGCCGGTTTAGG FAM/ACCCAAACC/ZEN/AAGAAGCAGAGCTGTCTCAC/QSY | N (85 bp) | 6.8 genomic copies/reaction | ||
Multiplex qRT-PCR (TGEV/PEDV/PDCoV/PEAV) | PEDV-F PEDV-R PEDV-P | GATACTTTGGCCTCTTGTGT CACAACCGAATGCTATTGACG FAM-TTCAGCATCCTTATGGCTTGCATC-TAMRA | M (150 bp) | 100 copies/reaction | [85] |
PDCoV-F PDCoV-R PDCoV-P | ATTTGGACCGCAGTTGACA GCCCAGGATATAAAGGTCAG Cy5-TAAGAAGGACGCAGTTTTCATTGTG-BHQ2 | M (92 bp) | 100 copies/reaction | ||
TGEV-F TGEV-R TGEV-P | TGCCATGAACAAACCAAC GGCACTTTACCATCGAAT HEX-TAGCACCACGACTACCAAGC-BHQ1 | N (81 bp) | 100 copies/reaction | ||
PEAV-F PEAV-R PEAV-P | TCTCGGCTTACTCTAAACCC CATCCACCATCTCAACCTC TexasRed-AAGACCTAAATGCTGATGCCCCA-BHQ2 | N (150 bp) | 100 copies/reaction | ||
Duplex SYBR Green qPCR (PEDV/ PBoV 3/4/5) | PEDV F PEDV R | GAGGGTGTTTTCTGGGTTG TGCCTCTGTTGTTACTTGG | N (226 bp) | 10 copies/μL | [86] |
PBoV F PBoV R | GGTGATCCTGTCAATAAA TGCAAAGAGTCGATAAAGT | VP1 (131 bp) | 10 copies/μL | ||
TaqMan probe-based qPCR | eU-ORF3 F eU-ORF3 R FP2 F RP2 R P | GCCGAATTCATGTTTCTTGGACTTTTTCAA ACGCTCGAGTCATTCACTAATTGTAGCATA CGTTTTGCTGTCATTGTTCTT AGACTAAACAAAGCCTGCCAATA FAM-ATTGCCCACTTTTATATTATTGTGGTGCATTTTTAGATG-TAMRA | ORF3 (675 bp for virulent strains and 626 bp for vaccine strains) | 37 copies/reaction | [87] |
ORF3 (106 bp for virulent strains and 57 bp for vaccine strains) | 37 copies/reaction | ||||
SYBR Green I-based duplex qRT-PCR (PEDV/PCV3) | PEDV-F PEDV-R | AAATGGGAAGTCGGCAGA GTTTTGTTGTGGCGGTAG | ORF1 (163 bp) | 3.46 × 101 copies/μL | [88] |
PCV3-F PCV3-R | CTACGAGTGTCCTGAAGA CCTCCACACTCCACAATA | Rep (136 bp) | 6.12 × 101 copies/μL | ||
Multiplex EvaGreen qPCR (TGEV/RVA/RVC/PEDV/PCV2) | PEDV- F PEDV- R | GGCGGATACTGGAATGAGCAA CGGTCGGCGTGAGGTCCTGTT | N (110 bp) | 5 copies/μL | [89] |
TGEV-F TGEV-R | ATGGTGTTAGGTGATTATTTTCC AATACAATGCTTTAAGATTTTCCA | S (106 bp) | 5 copies/μL | ||
RVA-F RVA-R | TGAAGTGAGGACCAGGCTAA ACGAAATCACACCCTTACTTG | VP6 (97 bp) | 5 copies/μL | ||
RVC-F RVC-R | TGTTGCATCCGTGAAGAGAATGGT GCATTAGCCCCTACGCAAGC | VP6 (126 bp) | 5 copies/μL | ||
PCV2-F PCV2-R | ATCCGAAGGTGCGGGAGA TGACGTATCCAAGGAGGCG | CP (162 bp) | 50 copies/μL | ||
Duplex qRT-PCR | F-C/V R-C/V C-Probe (classical PEDV) V-Probe (variant PEDV) | GCTAGTGGCGTTCATGG TGTAAATAAAGCTGGTAACCAC CY5-TACATCGATTCTGGTCAGGGCTTTGAG-BHQ2 FAM-CCATATTAGAGGTGGTCATGGCTTTGAG-BHQ1 | S1 (110 bp) | 4.8 × 102 DNA copies/reaction | [68] |
qRT-PCR | PEDV F PEDV R PEDV P | CAGGACACATTCTTGGTGGTCTT CAAGCAATGTACCACTAAGGAGTGT FAM-ACGCGCTTCTCACTAC-MGB | M (240 bp) | 10 copies/ml | [69] |
4.3. Loop-Mediated Isothermal Amplification Assay
4.4. Sequencing
4.5. CRISPR–Cas Technology
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, D.; Zhou, X.; Peng, Q.; Chen, Y.; Zhang, F.; Huang, T.; Zhang, T.; Li, A.; Huang, D.; Wu, Q.; et al. Newly Emerged Porcine Deltacoronavirus Associated With Diarrhoea in Swine in China: Identification, Prevalence and Full-Length Genome Sequence Analysis. Transbound. Emerg. Dis. 2015, 62, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Sarradell, J.; Morrison, R.; Perez, A. Impact of porcine epidemic diarrhea on performance of growing pigs. PLoS ONE 2015, 10, e0120532. [Google Scholar] [CrossRef] [PubMed]
- Pensaert, M.B.; de Bouck, P. A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol. 1978, 58, 243–247. [Google Scholar] [CrossRef]
- Diel, D.G.; Lawson, S.; Okda, F.; Singrey, A.; Clement, T.; Fernandes, M.H.V.; Christopher-Hennings, J.; Nelson, E.A. Porcine epidemic diarrhea virus: An overview of current virological and serological diagnostic methods. Virus Res. 2016, 226, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 2015, 12, 193. [Google Scholar] [CrossRef]
- Sekhon, S.S.; Nguyen, P.L.; Ahn, J.Y.; Lee, K.A.; Lee, L.; Kim, S.Y.; Yoon, H.; Park, J.; Ko, J.H.; Kim, Y.H. Porcine epidemic diarrhea (PED) infection, diagnosis and vaccination: A mini review. Toxicol. Environ. Health Sci. 2016, 8, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, W.; Lucio de Esesarte, E.; Guo, H.; van den Elzen, P.; Aarts, E.; van den Born, E.; Rottier, P.J.M.; Bosch, B.J. Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. J. Virol. 2017, 91, e00273-17. [Google Scholar] [CrossRef]
- Fan, B.; Jiao, D.; Zhao, X.; Pang, F.; Xiao, Q.; Yu, Z.; Mao, A.; Guo, R.; Yuan, W.; Zhao, P.; et al. Characterization of Chinese Porcine Epidemic Diarrhea Virus with Novel Insertions and Deletions in Genome. Sci. Rep. 2017, 7, 44209. [Google Scholar] [CrossRef]
- Wang, D.; Fang, L.; Xiao, S. Porcine epidemic diarrhea in China. Virus Res. 2016, 226, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Fang, L.; Ye, X.; Chen, J.; Xu, S.; Zhu, X.; Miao, Y.; Wang, D.; Xiao, S. Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains. Transbound. Emerg. Dis. 2019, 66, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Wang, X.; Wei, S.; Chen, J.; Feng, L. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: A mini-review. J. Vet. Med. Sci. 2016, 78, 355–363. [Google Scholar] [CrossRef]
- Oh, J.S.; Song, D.S.; Yang, J.S.; Song, J.Y.; Moon, H.J.; Kim, T.Y.; Park, B.K. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection. J. Vet. Sci. 2005, 6, 349–3529. [Google Scholar] [CrossRef]
- Gerber, P.F.; Gong, Q.; Huang, Y.-W.; Wang, C.; Holtkamp, D.; Opriessnig, T. Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA. Vet. J. 2014, 202, 33–36. [Google Scholar] [CrossRef]
- Chang, C.Y.; Peng, J.Y.; Cheng, Y.H.; Chang, Y.C.; Wu, Y.T.; Tsai, P.S.; Chiou, H.Y.; Jeng, C.R.; Chang, H.W. Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus. BMC Vet. Res. 2019, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Hsu, W.T.; Chao, Y.C.; Chang, H.W. Display of Porcine Epidemic Diarrhea Virus Spike Protein on Baculovirus to Improve Immunogenicity and Protective Efficacy. Viruses 2018, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Okda, F.; Liu, X.; Singrey, A.; Clement, T.; Nelson, J.; Christopher-Hennings, J.; Nelson, E.A.; Lawson, S. Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of Porcine Epidemic Diarrhea Virus. BMC Vet. Res. 2015, 11, 180. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, E.; Moreno, A.; Lelli, D.; Perulli, S.; Prosperi, A.; Brocchi, E.; Capucci, L.; Papetti, A.; Giacomini, E.; Alborali, G.L.; et al. Development and validation of a monoclonal antibody-based competitive ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV). Res. Vet. Sci. 2018, 121, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Park, B. Porcine epidemic diarrhoea virus: A comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 2012, 44, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xie, C.; Zhang, J.; Zhang, W.; Yang, D.; Yu, L.; Jiang, Y.; Yang, S.; Gao, F.; Yang, Z.; et al. The Identification and Characterization of Two Novel Epitopes on the Nucleocapsid Protein of the Porcine Epidemic Diarrhea. Virus Sci. Rep. 2016, 6, 39010. [Google Scholar]
- Hou, X.L.; Yu, L.Y.; Liu, J. Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies. Vet. Microbiol. 2007, 123, 86–92. [Google Scholar] [CrossRef]
- Gimenez-Lirola, L.G.; Zhang, J.; Carrillo-Avila, J.A.; Chen, Q.; Magtoto, R.; Poonsuk, K.; Baum, D.H.; Piñeyro, P.; Zimmerman, J. Reactivity of Porcine Epidemic Diarrhea Virus Structural Proteins to Antibodies against Porcine Enteric Coronaviruses: Diagnostic Implications. J. Clin. Microbiol. 2017, 55, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Gao, X.; Oka, T.; Vlasova, A.N.; Esseili, M.A.; Wang, Q.; Saif, L.J. Antigenic relationships among porcine epidemic diarrhea virus and transmissible gastroenteritis virus strains. J. Virol. 2015, 89, 3332–3342. [Google Scholar] [CrossRef]
- Paudel, S.; Park, J.E.; Jang, H.; Shin, H.J. Comparison of serum neutralization and enzyme-linked immunosorbent assay on sera from porcine epidemic diarrhea virus vaccinated pigs. Vet. Q. 2014, 34, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Srijangwad, A.; Tripipat, T.; Saeng-Chuto, K.; Jermsujarit, P.; Tantituvanont, A.; Okabayashi, T.; Nilubol, D. Development and validation of indirect ELISA for antibody detection against different protein antigens of porcine epidemic diarrhea virus in the colostrum and milk of sows. J. Immunol. Methods 2021, 494, 113045. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Bae, J.L.; Kang, T.J.; Kim, J.; Chung, G.H.; Lim, C.W.; Laude, H.; Yang, M.S.; Jang, Y.S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol. Cells 2002, 14, 295–299. [Google Scholar] [PubMed]
- Sun, D.B.; Feng, L.; Shi, H.Y.; Chen, J.F.; Liu, S.W.; Chen, H.Y.; Wang, Y.F. Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol. 2007, 51, 149–156. [Google Scholar] [PubMed]
- Cruz, D.J.; Kim, C.J.; Shin, H.J. The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus. Virus Res. 2008, 132, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Okda, F.A.; Lawson, S.; Singrey, A.; Nelson, J.; Hain, K.S.; Joshi, L.R.; Christopher-Hennings, J.; Nelson, E.A.; Diel, D.G. The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes. Virology 2017, 509, 185–194. [Google Scholar] [CrossRef]
- Sun, D.; Feng, L.; Shi, H.; Chen, J.; Cui, X.; Chen, H.; Liu, S.; Tong, Y.; Wang, Y.; Tong, G. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet. Microbiol. 2008, 131, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Kong, N.; Meng, Q.; Jiao, Y.; Wu, Y.; Zuo, Y.; Wang, H.; Sun, D.; Dong, S.; Zhai, H.; Tong, W.; et al. Identification of a novel B-cell epitope in the spike protein of porcine epidemic diarrhea virus. Virol. J. 2020, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Lee, K.W.; Choi, H.W.; Lee, C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch. Virol. 2014, 159, 2977–2987. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Shi, H.; Chen, X.; Shi, D.; Feng, L.; Yang, B. Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus. Virol. J. 2012, 9, 225. [Google Scholar] [CrossRef]
- Lei, X.M.; Yang, Y.L.; He, Y.Q.; Peng, L.; Zhao, P.; Xu, S.Y.; Cao, H.; Fang, P.; Qiu, W.; Qin, P.; et al. Specific recombinant proteins of porcine epidemic diarrhea virus are immunogenic, revealing their potential use as diagnostic markers. Vet. Microbiol. 2019, 236, 108387. [Google Scholar] [CrossRef]
- Gui, R.; Shi, H.Y.; Liu, W.; Feng, L.; Yang, K.L.; Guo, R.; Liang, W.; Yuan, F.Y.; Duan, Z.Y.; Liu, Z.W.; et al. Development of sandwich Enzyme-Linked Immunosorbent Assay for the detection of porcine epidemic diarrhea virus in fecal samples. Microb. Pathog. 2018, 122, 151–155. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, T.; Li, Z.; Guo, X.; Tian, Y.; Li, Y.; Xiao, S. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J. Nanobiotechnology 2019, 17, 96. [Google Scholar] [CrossRef]
- Bao, F.; Wang, L.; Zhao, X.; Lu, T.; Na, A.M.; Wang, X.; Cao, J.; Du, Y. Preparation and characterization of a single-domain antibody specific for the porcine epidemic diarrhea virus spike protein. AMB Express 2019, 9, 104. [Google Scholar] [CrossRef]
- Kimpston-Burkgren, K.; Mora-Díaz, J.C.; Roby, P.; Bjustrom-Kraft, J.; Main, R.; Bosse, R.; Giménez-Lirola, L.G. Characterization of the Humoral Immune Response to Porcine Epidemic Diarrhea Virus Infection under Experimental and Field Conditions Using an AlphaLISA Platform. Pathogens 2020, 9, 233. [Google Scholar] [CrossRef]
- Malbec, R.; Kimpston-Burkgren, K.; Vandenkoornhuyse, E.; Olivier, C.; Souplet, V.; Audebert, C.; Carrillo-Ávila, J.A.; Baum, D.; Giménez-Lirola, L. Agrodiag PorCoV: A multiplex immunoassay for the differential diagnosis of porcine enteric coronaviruses. J. Immunol. Methods 2020, 483, 112808. [Google Scholar] [CrossRef]
- Christopher-Hennings, J.; Araujo, K.P.; Souza, C.J.; Fang, Y.; Lawson, S.; Nelson, E.A.; Clement, T.; Dunn, M.; Lunney, J.K. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2013, 25, 671–691. [Google Scholar] [CrossRef]
- Thomas, J.T.; Chen, Q.; Gauger, P.C.; Giménez-Lirola, L.G.; Sinha, A.; Harmon, K.M.; Madson, D.M.; Burrough, E.R.; Magstadt, D.R.; Salzbrenner, H.M.; et al. Effect of Porcine Epidemic Diarrhea Virus Infectious Doses on Infection Outcomes in Naïve Conventional Neonatal and Weaned Pigs. PLoS ONE 2015, 10, e0139266. [Google Scholar] [CrossRef] [Green Version]
- Clement, T.; Singrey, A.; Lawson, S.; Okda, F.; Nelson, J.; Diel, D.; Nelson, E.A.; Christopher-Hennings, J. Measurement of neutralizing antibodies against porcine epidemic diarrhea virus in sow serum, colostrum, and milk samples and piglet serum samples after feedback. J. Swine Health Prod. 2016, 24, 1–10. [Google Scholar]
- Sarmento, L.V.; Poonsuk, K.; Tian, L.; Mora-Díaz, J.C.; Main, R.G.; Baum, D.H.; Zimmerman, J.J.; Giménez-Lirola, L.G. Detection of porcine epidemic diarrhea virus-neutralizing antibody using high-throughput imaging cytometry. J. Vet. Diagn. Investig. 2020, 32, 324–328. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, H.; Gao, L.; Li, B.; He, K.; Fan, H. Development and application of an indirect ELISA for the detection of antibodies to porcine epidemic diarrhea virus based on a recombinant spike protein. BMC Vet. Res. 2018, 14, 243. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Shi, D.; Shi, H.; Zhang, X.; Yuan, J.; Jiang, S.; Feng, L. Immunogenicity and antigenic relationships among spike proteins of porcine epidemic diarrhea virus subtypes G1 and G2. Arch. Virol. 2016, 161, 537–547. [Google Scholar] [CrossRef]
- Zhou, G.; Mao, X.; Juncker, D. Immunochromatographic assay on thread. Anal. Chem. 2012, 84, 7736–7743. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lim, S.I.; Cho, I.S.; Cheong, K.M.; Lee, E.J.; Lee, S.O.; Kim, J.B.; Kim, J.H.; Jeong, D.S.; An, B.H.; et al. A novel diagnostic approach to detecting porcine epidemic diarrhea virus: The lateral immunochromatography assay. J. Virol. Methods 2015, 225, 4–8. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Z.; Zou, S.; Chen, C.; Song, Q.; Deng, S.; Xiao, W.; Zhang, X.; Jia, A.; Tang, Y. EuNPs-mAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of porcine epidemic diarrhea virus. Talanta 2020, 214, 120865. [Google Scholar] [CrossRef]
- Bian, H.; Xu, F.; Jia, Y.; Wang, L.; Deng, S.; Jia, A.; Tang, Y. A new immunochromatographic assay for on-site detection of porcine epidemic diarrhea virus based on monoclonal antibodies prepared by using cell surface fluorescence immunosorbent assay. BMC Vet. Res. 2019, 15, 32. [Google Scholar] [CrossRef]
- Xiao, W.; Huang, C.; Xu, F.; Yan, J.; Bian, H.; Fu, Q.; Xie, K.; Wang, L.; Tang, Y. A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips. Sens. Actuators B Chem. 2018, 266, 63–70. [Google Scholar] [CrossRef]
- Zou, S.; Wu, L.; Li, G.; Wang, J.; Cao, D.; Xu, T.; Jia, A.; Tang, Y. Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. Anim. Dis. 2021, 1, 27. [Google Scholar] [CrossRef]
- Liu, J.; Gao, R.; Shi, H.; Cong, G.; Chen, J.; Zhang, X.; Shi, D.; Cao, L.; Wang, X.; Zhang, J.; et al. Development of a rapid immunochromatographic strip test for the detection of porcine epidemic diarrhea virus specific SIgA in colostrum. J. Virol. Methods 2020, 279, 113855. [Google Scholar] [CrossRef]
- Sozzi, E.; Luppi, A.; Lelli, D.; Martin, A.M.; Canelli, E.; Brocchi, E.; Lavazza, A.; Cordioli, P. Comparison of enzyme-linked immunosorbent assay and RT-PCR for the detection of porcine epidemic diarrhoea virus. Res. Vet. Sci. 2010, 88, 166–168. [Google Scholar] [CrossRef]
- Wang, Z.; Jiyuan, Y.; Su, C.; Xinyuan, Q.; Lijie, T.; Yijing, L. Development of an antigen capture enzyme-linked immunosorbent assay for virus detection based on porcine epidemic diarrhea virus monoclonal antibodies. Viral. Immunol. 2015, 28, 184–189. [Google Scholar] [CrossRef]
- Ren, X.; Suo, S.; Jang, Y.S. Development of a porcine epidemic diarrhea virus M protein-based ELISA for virus detection. Biotechnol. Lett. 2011, 33, 215–220. [Google Scholar] [CrossRef]
- Fan, B.; Sun, J.; Zhu, L.; Zhou, J.; Zhao, Y.; Yu, Z.; Sun, B.; Guo, R.; He, K.; Li, B. Development of a Novel Double Antibody Sandwich Quantitative Enzyme-Linked Immunosorbent Assay for Detection of Porcine Epidemic Diarrhea Virus Antigen. Front. Vet. Sci. 2020, 7, 540248. [Google Scholar] [CrossRef]
- Rodák, L.; Valícek, L.; Smíd, B.; Nevoránková, Z. An ELISA optimized for porcine epidemic diarrhoea virus detection in faeces. Vet. Microbiol. 2005, 105, 9–17. [Google Scholar] [CrossRef]
- Chen, Q.; Li, G.; Stasko, J.; Thomas, J.T.; Stensland, W.R.; Pillatzki, A.E.; Gauger, P.C.; Schwartz, K.J.; Madson, D.; Yoon, K.J.; et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J. Clin. Microbiol. 2014, 52, 234–243. [Google Scholar] [CrossRef]
- Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef]
- Bjustrom-Kraft, J.; Woodard, K.; Giménez-Lirola, L.; Rotolo, M.; Wang, C.; Sun, Y.; Lasley, P.; Zhang, J.; Baum, D.; Gauger, P.; et al. Porcine epidemic diarrhea virus (PEDV) detection and antibody response in commercial growing pigs. BMC Vet. Res. 2016, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Sekiguchi, H.; Ogino, T.; Suzuki, S. Direct and rapid detection of porcine epidemic diarrhea virus by RT-PCR. J. Virol. Methods 1997, 69, 191–195. [Google Scholar] [CrossRef]
- Kubota, S.; Sasaki, O.; Amimoto, K.; Okada, N.; Kitazima, T.; Yasuhara, H. Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus. J. Vet. Med. Sci. 1999, 61, 827–830. [Google Scholar] [CrossRef]
- Lee, C.; Park, C.K.; Lyoo, Y.S.; Lee du, S. Genetic differentiation of the nucleocapsid protein of Korean isolates of porcine epidemic diarrhoea virus by RT-PCR based restriction fragment length polymorphism analysis. Vet. J. 2008, 178, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Kweon, C.H.; Lee, J.G.; Han, M.G.; Kang, Y.B. Rapid diagnosis of porcine epidemic diarrhea virus infection by polymerase chain reaction. J. Vet. Med. Sci. 1997, 59, 231–232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, G.H.; Cui, Y.D.; Cui, S.J. Establishment of a nanoparticle-assisted RT-PCR assay to distinguish field strains and attenuated strains of porcine epidemic diarrhea virus. Arch. Virol. 2016, 161, 2543–2547. [Google Scholar] [CrossRef]
- Zhao, P.D.; Bai, J.; Jiang, P.; Tang, T.S.; Li, Y.; Tan, C.; Shi, X. Development of a multiplex TaqMan probe-based real-time PCR for discrimination of variant and classical porcine epidemic diarrhea virus. J. Virol. Methods 2014, 206, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, Y.; Chen, Y.; Xing, G.; Hao, H.; Wei, Q.; Liang, Y.; Xie, W.; Li, D.; Huang, H.; et al. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol. Cell. Probes 2018, 37, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, T.; Song, D.; Huang, T.; Peng, Q.; Chen, Y.; Li, A.; Zhang, F.; Wu, Q.; Ye, Y.; et al. Comparison and evaluation of conventional RT-PCR, SYBR green I and TaqMan real-time RT-PCR assays for the detection of porcine epidemic diarrhea virus. Mol. Cell. Probes 2017, 33, 36–41. [Google Scholar] [CrossRef]
- Song, D.S.; Kang, B.K.; Oh, J.S.; Ha, G.W.; Yang, J.S.; Moon, H.J.; Jang, Y.S.; Park, B.K. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. J. Vet. Diagn. Investig. 2006, 18, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shi, B.J.; Huang, X.G.; Peng, M.Y.; Zhang, X.M.; He, D.N.; Pang, R.; Zhou, B.; Chen, P.Y. A multiplex RT-PCR assay for rapid and differential diagnosis of four porcine diarrhea associated viruses in field samples from pig farms in East China from 2010 to 2012. J. Virol. Methods 2013, 194, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Fu, Y.; Li, B.; Chen, J.; Wang, J.; Yin, B.; Sha, W.; Liu, G. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound. Emerg. Dis. 2020, 67, 678–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, F.; Li, Q.; Wu, M.; Lei, L.; Pan, Z. A multiplex RT-PCR assay for rapid and simultaneous detection of four RNA viruses in swine. J. Virol. Methods. 2019, 269, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Ben Salem, A.N.; Chupin Sergei, A.; Bjadovskaya Olga, P.; Andreeva Olga, G.; Mahjoub, A.; Prokhvatilova Larissa, B. Multiplex nested RT-PCR for the detection of porcine enteric viruses. J. Virol. Methods 2010, 165, 283–293. [Google Scholar] [CrossRef]
- Jiang, C.; He, H.; Zhang, C.; Zhang, X.; Han, J.; Zhang, H.; Luo, Y.; Wu, Y.; Wang, Y.; Ge, B.; et al. One-step triplex reverse-transcription PCR detection of porcine epidemic diarrhea virus, porcine sapelovirus, and porcine sapovirus. J. Vet. Diagn. Investig. 2019, 31, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Song, D.S.; Park, B.K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. J. Vet. Diagn. Investig. 2001, 13, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.; Choi, C.; Kim, B.; Chae, C. Detection and differentiation of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus in clinical samples by multiplex RT-PCR. Vet. Rec. 2000, 146, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Bigault, L.; Brown, P.; Bernard, C.; Blanchard, Y.; Grasland, B. Porcine epidemic diarrhea virus: Viral RNA detection and quantification using a validated one-step real time RT-PCR. J. Virol. Methods 2020, 283, 113906. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, I.J.; Pyo, H.M.; Tark, D.S.; Song, J.Y.; Hyun, B.H. Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus. J. Virol. Methods 2007, 146, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Byrum, B. Development and evaluation of a duplex real-time RT-PCR for detection and differentiation of virulent and variant strains of porcine epidemic diarrhea viruses from the United States. J. Virol. Methods 2014, 207, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.C.; Crawford, K.K.; Lager, K.M.; Kellner, S.G.; Brockmeier, S.L. Evaluation of two real-time polymerase chain reaction assays for Porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs. J. Vet. Diagn. Investig. 2016, 28, 20–29. [Google Scholar] [CrossRef]
- Zhang, J.; Tsai, Y.L.; Lee, P.Y.; Chen, Q.; Zhang, Y.; Chiang, C.J.; Shen, Y.H.; Li, F.C.; Chang, H.F.; Gauger, P.C.; et al. Evaluation of two singleplex reverse transcription-Insulated isothermal PCR tests and a duplex real-time RT-PCR test for the detection of porcine epidemic diarrhea virus and porcine deltacoronavirus. J. Virol. Methods 2016, 234, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Lu, J.; Wang, N.; He, W.T.; Zhang, L.; Zhao, W.; Su, S. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence 2020, 11, 707–718. [Google Scholar] [CrossRef]
- Zhu, H.; Rawal, G.; Aljets, E.; Yim-Im, W.; Yang, Y.L.; Huang, Y.W.; Krueger, K.; Gauger, P.; Main, R.; Zhang, J. Development and Clinical Applications of a 5-Plex Real-Time RT-PCR for Swine Enteric Coronaviruses. Viruses 2022, 14, 1536. [Google Scholar] [CrossRef]
- Huang, X.; Chen, J.; Yao, G.; Guo, Q.; Wang, J.; Liu, G. A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl. Microbiol. Biotechnol. 2019, 103, 4943–4952. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Cui, J.T.; Han, H.Y.; Hou, H.L.; Wang, L.; Liu, F.; Chen, H.Y. Development of a duplex SYBR GreenI based real-time PCR assay for detection of porcine epidemic diarrhea virus and porcine bocavirus3/4/5. Mol. Cell. Probes 2020, 51, 101544. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.M.; Han, J.Q.; Sun, T.R.; Zhao, X.; Xu, R.T.; Song, Q.Y. A TaqMan probe-based real-time PCR to differentiate porcine epidemic diarrhea virus virulent strains from attenuated vaccine strains. Mol. Cell. Probes 2019, 45, 37–42. [Google Scholar] [CrossRef]
- Han, H.Y.; Zheng, H.H.; Zhao, Y.; Tian, R.B.; Xu, P.L.; Hou, H.L.; Chen, H.Y.; Yang, M.F. Development of a SYBR green I-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine epidemic diarrhea virus and porcine circovirus 3. Mol. Cell. Probes 2019, 44, 44–50. [Google Scholar] [CrossRef]
- Wen, D.; Liu, G.; Opriessnig, T.; Yang, Z.; Jiang, Y. Simultaneous detection of five pig viruses associated with enteric disease in pigs using EvaGreen real-time PCR combined with melting curve analysis. J. Virol. Methods 2019, 268, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Si, G.; Niu, J.; Zhou, X.; Xie, Y.; Chen, Z.; Li, G.; Chen, R.; He, D. Use of dual priming oligonucleotide system-based multiplex RT-PCR assay to detect five diarrhea viruses in pig herds in South China. AMB Express 2021, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Feng, B.; Wang, Z.; Ma, Y.; Gao, X.; Jiang, Y.; Cui, W.; Qiao, X.; Tang, L.; Li, Y.; et al. Dual priming oligonucleotide (DPO)-based real-time RT-PCR assay for accurate differentiation of four major viruses causing porcine viral diarrhea. Mol. Cell. Probes 2019, 47, 101435. [Google Scholar] [CrossRef]
- Toley, B.J.; Covelli, I.; Belousov, Y.; Ramachandran, S.; Kline, E.; Scarr, N.; Vermeulen, N.; Mahoney, W.; Lutz, B.R.; Yager, P. Isothermal strand displacement amplification (iSDA): A rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst 2015, 140, 7540–7549. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef]
- Xu, G.; Hu, L.; Zhong, H.; Wang, H.; Yusa, S.; Weiss, T.C.; Romaniuk, P.J.; Pickerill, S.; You, Q. Cross priming amplification: Mechanism and optimization for isothermal DNA amplification. Sci. Rep. 2012, 2, 246. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, P. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus. Virus Genes 2011, 42, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, H.R.; Kim, D.Y.; Kim, J.M.; Kwon, N.Y.; Park, J.H.; Park, J.Y.; Kim, S.H.; Lee, K.K.; Lee, C.; et al. A simple colorimetric detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification assay using hydroxynaphthol blue metal indicator. J. Virol. Methods 2021, 298, 114289. [Google Scholar] [CrossRef]
- Yu, X.; Shi, L.; Lv, X.; Yao, W.; Cao, M.; Yu, H.; Wang, X.; Zheng, S. Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol. J. 2015, 12, 76. [Google Scholar] [CrossRef]
- Mai, T.N.; Nguyen, V.D.; Yamazaki, W.; Okabayashi, T.; Mitoma, S.; Notsu, K.; Sakai, Y.; Yamaguchi, R.; Norimine, J.; Sekiguchi, S. Development of pooled testing system for porcine epidemic diarrhoea using real-time fluorescent reverse-transcription loop-mediated isothermal amplification assay. BMC Vet. Res. 2018, 14, 172. [Google Scholar] [CrossRef]
- Gou, H.; Deng, J.; Wang, J.; Pei, J.; Liu, W.; Zhao, M.; Chen, J. Rapid and sensitive detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip. Mol. Cell. Probes. 2015, 29, 48–53. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, Y.; Fang, X.; Liu, Y.; Du, M.; Lu, X.; Li, Q.; Sun, Y.; Ma, J.; Lan, T. Microfluidic-RT-LAMP chip for the point-of-care detection of emerging and re-emerging enteric coronaviruses in swine. Anal. Chim. Acta 2020, 1125, 57–65. [Google Scholar] [CrossRef]
- Madou, M.; Zoval, J.; Jia, G.; Kido, H.; Kim, J.; Kim, N. Lab on a CD. Annu. Rev. Biomed. Eng. 2006, 8, 601–628. [Google Scholar] [CrossRef] [PubMed]
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.K. Centrifugal microfluidics for biomedical applications. Lab Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antas, M.; Olech, M.; Szczotka-Bochniarz, A. Molecular characterization of porcine epidemic diarrhoea virus (PEDV) in Poland reveals the presence of swine enteric coronavirus (SeCoV) sequence in S gene. PLoS ONE 2021, 16, e0258318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, F.; Yan, X.; Liu, L.; Shu, X.; Hu, H. Prevalence and phylogenetic analysis of spike gene of porcine epidemic diarrhea virus in Henan province, China in 2015–2019. Infect. Genet. Evol. 2021, 88, 104709. [Google Scholar] [CrossRef] [PubMed]
- Than, V.T.; Choe, S.E.; Vu, T.T.H.; Do, T.D.; Nguyen, T.L.; Bui, T.T.N.; Mai, T.N.; Cha, R.M.; Song, D.; An, D.J.; et al. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Vet. Med. Sci. 2020, 6, 535–542. [Google Scholar] [CrossRef]
- Kim, S.J.; Nguyen, V.G.; Huynh, T.M.; Park, Y.H.; Park, B.K.; Chung, H.C. Molecular Characterization of Porcine Epidemic Diarrhea Virus and Its New Genetic Classification Based on the Nucleocapsid Gene. Viruses 2020, 12, 790. [Google Scholar] [CrossRef]
- Dong, B.; Dai, A.; Li, X.; Yang, X. The four of structural genes sequences of a porcine epidemic diarrhea virus from domestic piglet in Fujian, China. Virol. J. 2020, 17, 79. [Google Scholar] [CrossRef]
- Sun, P.; Gu, C.Y.; Ding, Y.Y.; Wei, J.H.; Yin, Z.J.; Geng, Z.Y.; Li, Y. Sequence and phylogenetic analyses of the M and N genes of porcine epidemic diarrhea virus (PEDV) strains in Anhui Province, China. Genet. Mol. Res. 2015, 14, 13403–13413. [Google Scholar] [CrossRef]
- Chen, J.F.; Sun, D.B.; Wang, C.B.; Shi, H.Y.; Cui, X.C.; Liu, S.W.; Qiu, H.J.; Feng, L. Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. Virus Genes 2008, 6, 355–364. [Google Scholar] [CrossRef]
- Sun, R.; Leng, Z.; Zhai, S.L.; Chen, D.; Song, C. Genetic variability and phylogeny of current Chinese porcine epidemic diarrhea virus strains based on spike, ORF3, and membrane genes. Sci. World J. 2014, 2014, 208439. [Google Scholar]
- Crossley, B.M.; Bai, J.; Glaser, A.; Maes, R.; Porter, E.; Killian, M.L.; Clement, T.; Toohey-Kurth, K. Guidelines for Sanger sequencing and molecular assay monitoring. J. Vet. Diagn. Investig. 2020, 32, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Boniotti, M.B.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Faccini, S.; Bonilauri, P.; Cordioli, P.; Marthaler, D. Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy. Emerg. Infect. Dis. 2016, 22, 83–87. [Google Scholar] [CrossRef]
- García-Hernández, M.E.; Trujillo-Ortega, M.E.; Alcaraz-Estrada, S.L.; Lozano-Aguirre-Beltrán, L.; Sandoval-Jaime, C.; Taboada-Ramírez, B.I.; Sarmiento-Silva, R.E. Molecular Detection and Characterization of Porcine Epidemic Diarrhea Virus and Porcine Aichivirus C Coinfection in México. Viruses 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Cassedy, A.; Parle-McDermott, A.; O’Kennedy, R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front. Mol. Biosci. 2021, 8, 637559. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Liang, Y.; Li, Y.; Liu, Q.; Zhang, W.; Yin, D.; Song, X.; Shao, Y.; Tu, J.; Qi, K. Reverse transcription-enzymatic recombinase amplification coupled with CRISPR-Cas12a for rapid detection and differentiation of PEDV wild-type strains and attenuated vaccine strains. Anal. Bioanal. Chem. 2021, 413, 7521–7529. [Google Scholar] [CrossRef]
- Liu, J.; Tao, D.; Chen, X.; Shen, L.; Zhu, L.; Xu, B.; Liu, H.; Zhao, S.; Li, X.; Liu, X.; et al. Detection of Four Porcine Enteric Coronaviruses Using CRISPR-Cas12a Combined with Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay. Viruses 2022, 14, 833. [Google Scholar] [CrossRef]
PCR Type | Primer Name | Primer Sequences (5′-3′) | Target Region (Size) | Limit of Detection | Ref. |
---|---|---|---|---|---|
RT-PCR | PEVD M-F PEDV M-R | ACACCTATAGGGCGCCTGTA AACCCTAAGAGGGGCATAGA | M (854 bp) | 100 TCID50/sample | [62] |
RT-nested PCR | PEDV/N-F PEDV/N-R PEDV/N-F2 PEDV/N-R2 | TTGGCATTTCTACTACCTCGGA AGATGAAAAGGTACTGCGTTCC AGGAACGTGACCTCAAAGACATCCC CCAGGATAAGCCGGTCTAACATTG | N (1327 bp) N (540 bp) | Not defined | [63] |
RT-PCR | PEDV Fwd PEDV Rev | ACAAGTCTCGTAACCAGTCC GTATCACCACCATCAA | N (691 bp) | Not defined | [64] |
RT-PCR | PEDV P1 PEDV P2 | GGACACATTCTTGGTGGTCT GTTTAGACTAAATGAAGCACTTTC | M (377 bp) | 104 TCID50/mL | [65] |
RT-PCR | PEDV E1 PEDV E2 | TAGACAAGCTTCAAATGTGAC GTATTAAAGATAATAAAGAGCGC | OFR3 (264 bp for field strains and 215 for attenuated strains) | 6.10 × 104 -7.30 copies/µL × 105 | [66] |
RT-PCR | F1-V R1 | CCAGGTGCTCAGCTAACACT TCATTATCCCATGTTATGCC | S (442 bp for variant PEDV) | 5 × 105 DNA copies/reaction | [67] |
F1-C R1 | TCTCAGTTACATCGATTCTGG TCATTATCCCATGTTATGCC | S (270 bp for classical PEDV) | 5 × 105 DNA copies/reaction | ||
RT-PCR | PEDV F PEDV R | TTTATTCTGTCACGCCAT AGATTTACAAACACCTATGTTA | S1 (197 bp) | Not defined | [68] |
RT-PCR | PEDV F PEDV R | GGTTCTATTCCCGTTGATGAGGT AACACAAGAGGCCAAAGTATCCAT | M (170 bp) | Not defined | [69] |
Multiplex RT-PCR (PEDV/TGEV/GAR) | PEDV P1 PEDV P2 | (TTCTGAGTCACGAACAGCCA (CATATGCAGCCTGCTCTGAA | S (651 bp) | 102 TCID50/mL | [70] |
TGEV T1 TGEV T2 | GTGGTTTTGGTYRTAAATGC CACTAACCAACGTGGARCTA | S (859 bp) | 101 TCID50/mL | ||
GAR rot3 GAR rot 5 | AAAGATGCTAGGGACAAAATTG TTCAGATTGTGGAGCTATTCCA | Segment 6 region (309 bp) | 101 TCID50/mL | ||
Multiplex RT-PCR (PCV2/TGEV/PEDV/GAR) | PCV2-F PCV2-R | CGGATATTGTAGTCCTGGTCG ACTGTCAAGGCTACCACAGTC | ORF2 (481 bp) | 2.17 × 103/reaction | [71] |
TGEV-F TGEV-R | GTGGTTTTGGTYRTAAATG ACTAACCAACGTGGARCTA | S (859 bp) | 1.74 × 104/reaction | ||
PEDV-F PEDV-R | TTCTGAGTCACGAACAGCCA CATATGCAGCCTGCTCTGAA | S (651 bp) | 2.1 × 103/reaction | ||
GAR-F GAR-R | AAAGATGCTAGGGACAAAATTG TTCAGATTGTGAGCTATTCCA | Segment 6 region (309 bp) | 1.26 × 104/reaction | ||
Multiplex RT-PCR (PEDV/TGEV/PRV-A/PSaV/PKoV/PDCoV) | PEDV-F PEDV-R | TAGGACTCGTACTGAGGGTGT CTATTTTCGCCCTTGGGAATT | N (600 bp) | 1 ng cDNA | [72] |
PKoV-F PKoV-R | GGCATTGACATGAATCAGGC GCGATCGTAGGTCTTCGG | Polyprotein (998 bp) | 10 ng cDNA | ||
TGEV-F TGEV-R | GGGCCAACGTAAAGAGCTTCC GCTCTGACCTTTCTGCAG | N (820 bp) | 1 ng cDNA | ||
PDCoV-F PDCoV-R | GCTGACACTTCTATTAAAC TTGACTGTGATTGAGTAG | N (497 bp) | 1 ng cDNA | ||
PRV-A-F PRV-A-R | GTATGGTATTGAATATACC TAGACTGATCCAGTTGGC | VP7 (350 bp) | 10 ng cDNA | ||
PSaV-F PSaV-R | TACAGCAAGTGGGAC ATGACACTGGTGAACGGCAT | Polyprotein (194 bp) | 1 ng cDNA | ||
Multiplex RT-PCR (PRRSV/PEDV/CSFV/TGEV) | PEDV M-F PEDV M-R | GGTGTCAAGATGGCTATTCTATGG TGAAGCATTGACTGAACGACCA | M (435 bp) | 1 × 103 copies/µL | [73] |
CSFV 5′UTR-F CSFV 5′UTR-R | GCTCCCTGGGTGGTCTAAGTC GGGTTAAGGTGTGTCTTGGGC | 5′UTR (116 bp) | 1 × 103 copies/µL | ||
PRRSV M-F PRRSV M-R | ACCTCCAGATGCCGTTTGTG GCTTTTCTGCCACCCAACAC | M (197 bp) | 1 × 103 copies/µL | ||
TGEV N-F TGEV N-R | GACAAACTCGCTATCGCATGG AGTGGTATTTGTGTGTGAACGTGA | N (720 bp) | 1 × 103 copies/µL | ||
Multiplex nested RT-PCR (PEDV/TGEV/PRV-A) | PEDV M1-FPEDV M2-RPEDV M3-FPEDV M4-R | GAATTTTACATGGAATATCATACTGACGATACTACTTGT CGCCAGTAGCAACCTTATAGCCCTCTA TGCTTCAGTATGGCCATTACAAGTACTCTG CCTGTCGGCCCATCACAGAAGTAGT | M (450 bp) M (291 bp) | 27.2 µg/µL RNA | [74] |
TGEV S1 TGEV S2 TGEV S3 TGEV S4 | AGGGTAAGTTGCTATTAGAAATAATGGTAAGTT CTAATTTACCACTAACCAACGTGGAGCTATTA AAAAATTATTTGTGGTTTTGGTTGTAATGCC GTGTAGTAAAAACATTAGCCACATAACTAGCACA | S (950 bp) S (792 bp) | 102 TCID50/mL | ||
PRV-A P1 PRV-A P2 PRV-A P3 PRV-A P4 | GGCTTTTAAAGCGCTACAGTGATGTCTCT GGTCGTGATTGTGTTGATGAATCCATAGA CTCAGCATTGACGTAACGAGTCTTCC TGAGTGGATCGTTTGAAGCAGAATCAGA | NSP5 (317 bp) NSP5 (208 bp) | 101 TCID50/mL | ||
One-step triplex RT-PCR (PEDV/PSV/PSaV) | PEDV-F PEDV-R | CTGCCAATGTATTTGCCAC GGAAGTTCCTTGAACCTCG | S1 (659 pb) | 104 copies/µL | [75] |
PSV-F PSV-R | TGCTTGAGGAGTCGGAGAG GCCCTGCACAACTGCTTTC | Conserved region (428 bp) | 104 copies/µL | ||
SaV-F SaV-R | TACGGGGGAATAGGTTT CAGCCACATCTGGGTAGT | VP1 (246 bp) | 104 copies/µL | ||
Duplex RT-PCR (TGEV/PEDV) | PEDV T1 PEDV T2 | GTGGTTTTGGTYRTAAATGC CACTAACCAACGTGGARCTA | S (651 bp) | 101 TCID50/mL | [76] |
TGEV P1 TGEV P2 | TTCTGAGTCACGAACAGCCA CATATGCAGCCTGCTCTGAA | S (859 bp) | 102 TCID50/mL | ||
Multiplex RT-PCR (PEDV/TGEV) | PEDV PA PEDV PB | GGGCGCCTGTATAGAGTTTA AGACCACCAAGAATGTGTCC | M (412 bp) | 10 TCID50/mL | [77] |
TGEV TA TGEV TB | GATGGCGACCAGATAGAAGT GCAATAGGGTTGCTTGTACC | N (612 bp) | 10 TCID50/mL |
Method | Advantages | Disadvantages | |
---|---|---|---|
Serological tests | ELISA | High sensitivity and specificity, multiple formats available, not very expensive, medium turnaround time, IgG or IgA antibody detection and amenable to high-volume testing | Needs infrastructure and qualified personnel, and nonspecific result can occur |
Antigen ELISA | High sensitivity and specificity, amenable to high-volume testing, not very expensive and medium turnaround time | Needs infrastructure and qualified personnel, nonspecific reaction can occur and fecal samples should be collected immediately after appearance of clinical symptoms | |
FMIA | Sensitive, specific, rapid, simultaneous detection of antibodies against multiple pathogens and amenable to high-volume testing | Expensive, and requires specialized equipment, reagents and qualified personnel | |
VN | High specificity, detected neutralizing antibodies and not very expensive | Time-consuming, requires well-trained technicians, subjective results, cytotoxic effects can occur and requires Vero cell culture | |
FFN | High specificity, cytopathic effect is not interpreted, shorter turnaround time than VN, can be quantitative or qualitative and detected neutralizing antibodies | Requires specialized equipment, reagents and qualified personnel, and requires Vero cell culture | |
IFA | High specificity and medium turnaround time | Requires specialized equipment, reagents and qualified personnel; lower diagnostic sensitivity than FFN; subjective results; and requires Vero cell culture | |
IC | No need for laboratory equipment and qualified personnel, portable, rapid turnaround, speedy results, simple test procedure and relatively inexpensive to produce | Low specificity and sensitivity, most IC assays are not quantitative and are not suitable for large-scale screening, one step assay and nonspecific results can occur | |
Nucleic acid tests | RT-PCR/nRT-PCR | Higher sensitivity and specificity, and can be multiplexed | Expensive; requires specialized equipment, reagents and qualified personnel; time-consuming; unable to quantify the target DNA; only qualitative test; and not suitable for large-scale screening |
qRT-PCR | Higher sensitivity and specificity, more sensitive than RT-PCR, quantitative application, medium turnaround time, can be multiplexed and amenable to high-volume testing | Expensive; requires specialized equipment, reagents and qualified personnel; and needs quality control | |
LAMP | Simple, fast, cheap, no special equipment, high sensitivity, can be quantitative or qualitative, results can be read by eye and the temperature stability of the reagents enables its use in field condition | Requires rather qualified personnel, primer design can be challenging, nonspecific binding of primers can cause false-positive results, and for qualitative results, specialized equipment is required | |
Sequencing | High accuracy, genotyping, provides the opportunity to detect recombination events, NGS has the ability to diagnose entire genome and discover novel, unknown PEDV strains, and using NGS, there is no need for target-specific primers | Expensive; requires specialized equipment; reagents and bioinformatics experts; and difficult for widespread testing | |
CRISPR | Higher specificity and sensitivity, accuracy, rapid, can be used alone or with established amplification methods and can be multiplexed | Generally, requires pre-amplification step and qualitative detection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olech, M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022, 11, 1074. https://doi.org/10.3390/pathogens11101074
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens. 2022; 11(10):1074. https://doi.org/10.3390/pathogens11101074
Chicago/Turabian StyleOlech, Monika. 2022. "Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus" Pathogens 11, no. 10: 1074. https://doi.org/10.3390/pathogens11101074
APA StyleOlech, M. (2022). Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens, 11(10), 1074. https://doi.org/10.3390/pathogens11101074