Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms
Abstract
:1. Introduction
2. Results
2.1. Antibiofilm Activity
2.2. Biofilm Acidogenicity
3. Discussion
4. Materials and Methods
4.1. Ethical Aspects
4.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.3. Mature Microcosm Biofilm Growth Conditions and Treatments
4.4. Statistical Analyses
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral Diseases: A Global Public Health Challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Berchier, C.; Slot, D.; Haps, S.; Van der Weijden, G. The Efficacy of Dental Floss in Addition to a Toothbrush on Plaque and Parameters of Gingival Inflammation: A Systematic Review. Int. J. Dent. Hyg. 2008, 6, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Milleman, K.R.; Levi, L.; Grahovac, T.L.; Milleman, J.L. Safety and Efficacy of a Novel Toothbrush Utilizing RF Energy for the Reduction of Plaque, Calculus and Gingivitis. Am. J. Dent. 2020, 33, 151–156. [Google Scholar] [PubMed]
- Fernandes, T.; Bhavsar, C.; Sawarkar, S.; D’souza, A. Current and Novel Approaches for Control of Dental Biofilm. Int. J. Pharm. 2018, 536, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Chen, V.; Xu, X. Novel Approaches to the Control of Oral Microbial Biofilms. Biomed Res. Int. 2018, 2018, 6498932. [Google Scholar] [CrossRef]
- Saleem, H.G.M.; Seers, C.A.; Sabri, A.N.; Reynolds, E.C. Dental Plaque Bacteria with Reduced Susceptibility to Chlorhexidine Are Multidrug Resistant. BMC Microbiol. 2016, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Worthington, H.V.; Parnell, C.; Harding, M.; Lamont, T.; Cheung, A.; Whelton, H.; Riley, P. Chlorhexidine Mouthrinse as an Adjunctive Treatment for Gingival Health. Cochrane Database Syst. Rev. 2017, 3, CD008676. [Google Scholar] [CrossRef]
- de Baat, C. Adverse Effects of medications and Over-the-Counter Drugs on Teeth. Ned. Tijdschr. Tandheelkd. 2017, 123, 485–491. [Google Scholar] [CrossRef]
- Sakaue, Y.; Takenaka, S.; Ohsumi, T.; Domon, H.; Terao, Y.; Noiri, Y. The Effect of Chlorhexidine on Dental Calculus Formation: An in Vitro Study. BMC Oral Health 2018, 18, 52. [Google Scholar] [CrossRef]
- Yin, J.; Chen, W.; Chao, E.S.; Soriano, S.; Wang, L.; Wang, W.; Cummock, S.E.; Tao, H.; Pang, K.; Liu, Z.; et al. Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome. Am. J. Hum. Genet. 2018, 102, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon Grass (Cymbopogon Citratus) Essential Oil as a Potent Anti-Inflammatory and Antifungal Drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Vargas-Arispuro, I.; Gonzalez-Aguilar, G.A.; Cruz-Valenzuela, M.R.; Nazzaro, F.; Ayala-Zavala, J.F. Combination of Cymbopogon Citrates and Allium Cepa Essential Oils Increased Antibacterial Activity in Leafy Vegetables. J. Sci. Food Agric. 2016, 97, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.M.A. Cymbopogon Citratus and Cymbopogon Giganteus Essential Oils Have Cytotoxic Effects on Tumor Cell Cultures. Biochimie 2018, 153, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.B.; Teixeira, M.A.; de Paiva, L.F.; de Oliveira, R.F.; Mendonça, A.R. dos A.; de Brito, M.J.A. In Vitro and in Vivo Antimicrobial Activity of Cymbopogon Citratus (DC.) Stapf. against Staphylococcus Spp. Isolated from Newborn Babies in an Intensive Care Unit. Microb. Drug Resist. 2019, 25, 1490–1496. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and Biofilm Inhibitory Effect of Cymbopogon Citratus (Lemongrass) Essential Oil on Biofilm Forming by Candida Tropicalis Isolates; an in Vitro Study. J. Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef]
- Guimarães, R.; Milho, C.; Liberal, Â.; Silva, J.; Fonseca, C.; Barbosa, A.; Ferreira, I.C.F.R.; Alves, M.J.; Barros, L. Antibiofilm Potential of Medicinal Plants against Candida Spp. Oral Biofilms: A Review. Antibiotics 2021, 10, 1142. [Google Scholar] [CrossRef]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon Citratus Leaves: Characterization of Flavonoids by HPLC–PDA–ESI/MS/MS and an Approach to Their Potential as a Source of Bioactive Polyphenols. Food Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Oliveira, M.A.C.; de Borges, A.C.; Brighenti, F.L.; Salvador, M.J.; Gontijo, A.V.L.; Koga-Ito, C.Y. Cymbopogon Citratus Essential Oil: Effect on Polymicrobial Caries-Related Biofilm with Low Cytotoxicity. Braz. Oral Res. 2017, 31, e89. [Google Scholar] [CrossRef]
- Mendes Hacke, A.C.; Miyoshi, E.; Marques, J.A.; Pereira, R.P. Anxiolytic Properties of Cymbopogon Citratus (DC.) Stapf Extract, Essential Oil and Its Constituents in Zebrafish (Danio Rerio). J. Ethnopharmacol. 2020, 260, 113036. [Google Scholar] [CrossRef]
- Perazzo, M.; Costa Neta, M.; Cavalcanti, Y.; Xavier, A.; Cavalcanti, A. Efeito Antimicrobiano Do Óleo Essencial Do Cymbopogon Citratus Sobre Bactérias Formadoras Do Biofilme Dentário. Rev. Bras. Ciências da Saúde 2012, 16, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Bersan, S.M.; Galvão, L.C.; Goes, V.F.; Sartoratto, A.; Figueira, G.M.; Rehder, V.L.; Alencar, S.M.; Duarte, R.M.; Rosalen, P.L.; Duarte, M.C. Action of Essential Oils from Brazilian Native and Exotic Medicinal Species on Oral Biofilms. BMC Complement. Altern. Med. 2014, 14, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Ocheng, F.; Bwanga, F.; Joloba, M.; Softrata, A.; Azeem, M.; Pütsep, K.; Borg-Karlson, A.K.; Obua, C.; Gustafsson, A. Essential Oils from Ugandan Aromatic Medicinal Plants: Chemical Composition and Growth Inhibitory Effects on Oral Pathogens. Evid.-Based Complement. Altern. Med. 2015, 2015, 230832. [Google Scholar] [CrossRef] [PubMed]
- Tofiño-Rivera, A.; Ortega-Cuadros, M.; Galvis-Pareja, D.; Jiménez-Rios, H.; Merini, L.J.; Martínez-Pabón, M.C. Effect of Lippia Alba and Cymbopogon Citratus Essential Oils on Biofilms of Streptococcus Mutans and Cytotoxicity in CHO Cells. J. Ethnopharmacol. 2016, 194, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Marinković, J.; Nikolić, B.; Marković, T.; Radunović, M.; Ilić, J.; Bošković, M.; Ćirić, A.; Marković, D. Cymbopogon Citratus Essential Oil: An Active Principle of Nanoemulsion against Enterococcus Faecalis Root Canal Biofilm. Future Microbiol. 2021, 16, 907–918. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.V.D.; Bonafé, F.S.S.; Spolidorio, D.M.P.; Koga-Ito, C.Y.; de Farias, A.L.; Kirker, K.R.; James, G.A.; Brighenti, F.L. Streptococcus Mutans and Actinomyces Naeslundii Interaction in Dual-Species Biofilm. Microorganisms 2020, 8, 194. [Google Scholar] [CrossRef]
- Maske, T.T.; van de Sande, F.H.; Arthur, R.A.; Huysmans, M.C.D.N.J.M.; Cenci, M.S. In Vitro Biofilm Models to Study Dental Caries: A Systematic Review. Biofouling 2017, 33, 661–675. [Google Scholar] [CrossRef]
- Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial Effects of Essential Oils in Combination with Chlorhexidine Digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Pan, P.C.; Harper, S.; Ricci-Nittel, D.; Lux, R.; Shi, W. In-Vitro Evidence for Efficacy of Antimicrobial Mouthrinses. J. Dent. 2010, 38, 16–20. [Google Scholar] [CrossRef]
- Lakade, L.S.; Shah, P.; Shirol, D. Comparison of Antimicrobial Efficacy of Chlorhexidine and Combination Mouth Rinse in Reducing the Mutans Streptococcus Count in Plaque. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 91–96. [Google Scholar] [CrossRef]
- Dias, A.P.; Paschoal, M.A.B.; Diniz, R.S.; Lage, L.M.; Gonçalves, L.M. Antimicrobial Action of Chlorhexidine Digluconate in Self-Ligating and Conventional Metal Brackets Infected with Streptococcus Mutans Biofilm. Clin. Cosmet. Investig. Dent. 2018, 10, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Petti, S.; Hausen, H. Caries-Preventive Effect of Chlorhexidine Gel Applications among High-Risk Children. Caries Res. 2006, 40, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial Efficacy of Chlorhexidine Digluconate Alone and in Combination with Eucalyptus Oil, Tea Tree Oil and Thymol against Planktonic and Biofilm Cultures of Staphylococcus Epidermidis. J. Antimicrob. Chemother. 2008, 62, 1031–1036. [Google Scholar] [CrossRef]
- Wongsariya, K.; Phanthong, P.; Bunyapraphatsara, N.; Srisukh, V.; Chomnawang, M.T. Synergistic Interaction and Mode of Action of Citrus Hystrix Essential Oil against Bacteria Causing Periodontal Diseases. Pharm. Biol. 2014, 52, 273–280. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Z.; Hwang, G.; Koo, H. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment. Adv. Dent. Res. 2018, 29, 86–92. [Google Scholar] [CrossRef]
- Albuquerque, Y.E.; Danelon, M.; Salvador, M.J.; Koga-Ito, C.Y.; Botazzo Delbem, A.C.; Ramirez-Rueda, R.Y.; Lacerda Gontijo, A.V.; Brighenti, F.L. Mouthwash Containing Croton Doctoris Essential Oil: In Vitro Study Using a Validated Model of Caries Induction. Future Microbiol. 2018, 13, 631–643. [Google Scholar] [CrossRef]
- Fernandez y Mostajo, M.; Exterkate, R.A.M.; Buijs, M.J.; Crielaard, W.; Zaura, E. Effect of Mouthwashes on the Composition and Metabolic Activity of Oral Biofilms Grown in Vitro. Clin. Oral Investig. 2017, 21, 1221–1230. [Google Scholar] [CrossRef]
- Exterkate, R.A.M.; Crielaard, W.; Ten Cate, J.M. Different Response to Amine Fluoride by Streptococcus Mutans and Polymicrobial Biofilms in a Novel High-Throughput Active Attachment Model. Caries Res. 2010, 44, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Nyvad, B. Caries Ecology Revisited: Microbial Dynamics and the Caries Process. Caries Res. 2008, 42, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Gutiérrez-Pacheco, M.M.; Vargas-Arispuro, I.; González-Aguilar, G.A.; Martínez-Téllez, M.A.; Fernando Ayala-Zavala, J. Inhibition of Glucosyltransferase Activity and Glucan Production as an Antibiofilm Mechanism of Lemongrass Essential Oil against Escherichia Coli O157:H7. Antibiotics 2020, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Arora, N.; Chatrath, A.; Gangwar, R.; Pruthi, V.; Poluri, K.M.; Prasad, R. Delineating the Biofilm Inhibition Mechanisms of Phenolic and Aldehydic Terpenes against Cryptococcus Neoformans. ACS Omega 2019, 4, 17634–17648. [Google Scholar] [CrossRef] [PubMed]
- Sonam, C.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar]
- Ramírez-Rueda, R.Y.; Marinho, J.; Salvador, M.J. Bioguided Identification of Antimicrobial Compounds from Chrysopogon Zizaniodes (L.) Roberty Root Essential Oil. Future Microbiol. 2019, 14, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Fejerskov, O.; Kidd, E. Cárie Dentária: A Doença E Seu Tratamento Clínico, 2nd ed.; Santos: São Paulo, Brazil, 2011. [Google Scholar]
- Brighenti, F.L.; Gaetti-Jardim, E.; Danelon, M.; Evangelista, G.V.; Delbem, A.C.B. Effect of Psidium Cattleianum Leaf Extract on Enamel Demineralisation and Dental Biofilm Composition in Situ. Arch. Oral Biol. 2012, 57, 1034–1040. [Google Scholar] [CrossRef]
- Sissons, C.H.; Anderson, S.A.; Wong, L.; Coleman, M.J.; White, D.C. Microbiota of Plaque Microcosm Biofilms: Effect of Three Times Daily Sucrose Pulses in Different Simulated Oral Environments. Caries Res. 2007, 41, 413–422. [Google Scholar] [CrossRef]
- Sissons, C.H. Artificial Dental Plaque Biofilm Model Systems. Adv. Dent. Res. 1997, 11, 110–126. [Google Scholar] [CrossRef]
- De Farias, A.L.; De Carvalho, L.P.F.; Méndez, D.A.C.; Cruvinel, T.; Brighenti, F.L. Characterization of Polymicrobial Biofilms Obtained From Carious Lesions in Dentin. Biofouling 2020, 36, 877–887. [Google Scholar] [CrossRef]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking Biofilm Formation and Development: Recent Progress in in Vitro and in Vivo Biofilm Models. Iscience 2021, 24, 102443. [Google Scholar] [CrossRef]
- Munson, M.A.; Banerjee, A.; Watson, T.F.; Wade, W.G. Molecular Analysis of the Microflora Associated with Dental Caries. J. Clin. Microbiol. 2004, 42, 3023–3029. [Google Scholar] [CrossRef]
- Munson, M.A.; Pitt-Ford, T.; Chong, B.; Weightman, A.; Wade, W.G. Molecular and Cultural Analysis of the Microflora Associated with Endodontic Infections. J. Dent. Res. 2002, 81, 761–766. [Google Scholar] [CrossRef]
- Tanner, A.C.R.; Kressirer, C.A.; Faller, L.L. Understanding Caries From the Oral Microbiome Perspective. J. Calif. Dent. Assoc. 2016, 44, 437–446. [Google Scholar] [PubMed]
- de Farias, A.L.; Arbeláez, M.I.A.; Meneguin, A.B.; Barud, H.d.S.; Brighenti, F.L. Mucoadhesive Controlled-Release Formulations Containing Morin for the Control of Oral Biofilms. Biofouling 2022, 38, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Gold, O.G.; Jordan, H.V.; van Houte, J. A Selective Medium for Streptococcus Mutans. Arch. Oral Biol. 1973, 18, 1357–1364. [Google Scholar] [CrossRef]
- Azevedo, M.S.; van de Sande, F.H.; Maske, T.T.; Signori, C.; Romano, A.R.; Cenci, M.S. Correlation between the Cariogenic Response in Biofilms Generated from Saliva of Mother/Child Pairs. Biofouling 2014, 30, 903–909. [Google Scholar] [CrossRef]
- Patel, J.B.; Cockerill, R.F.; Bradford, A.P.; Eliopoulos, M.G.; Hindler, A.J.; Jenkins, G.S.; Lewis, S.J.; Limbago, B.; Miller, A.L.; Nicolau, P.D.; et al. M07-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI (Clinical Lab. Stand. Inst.) 2015, 35. [Google Scholar] [CrossRef]
- Brighenti, F.L.; Salvador, M.J.; Delbem, A.C.B.; Delbem, Á.C.B.; Oliveira, M.A.C.; Soares, C.P.; Freitas, L.S.F.; Koga-Ito, C.Y. Systematic Screening of Plant Extracts from the Brazilian Pantanal with Antimicrobial Activity against Bacteria with Cariogenic Relevance. Caries Res. 2014, 48, 353–360. [Google Scholar] [CrossRef]
- McBain, A.J.; Sissons, C.; Ledder, R.G.; Sreenivasan, P.K.; De Vizio, W.; Gilbert, P. Development and Characterization of a Simple Perfused Oral Microcosm. J. Appl. Microbiol. 2005, 98, 624–634. [Google Scholar] [CrossRef]
- van de Sande, F.H.; Azevedo, M.S.; Lund, R.G.; Huysmans, M.C.D.N.J.M.; Cenci, M.S. An in Vitro Biofilm Model for Enamel Demineralization and Antimicrobial Dose-Response Studies. Biofouling 2011, 27, 1057–1063. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouta, L.F.G.L.; Marques, R.S.; Koga-Ito, C.Y.; Salvador, M.J.; Giro, E.M.A.; Brighenti, F.L. Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens 2022, 11, 1067. https://doi.org/10.3390/pathogens11101067
Mouta LFGL, Marques RS, Koga-Ito CY, Salvador MJ, Giro EMA, Brighenti FL. Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens. 2022; 11(10):1067. https://doi.org/10.3390/pathogens11101067
Chicago/Turabian StyleMouta, Luís Felipe Garcia Leal, Raquel Souza Marques, Cristiane Yumi Koga-Ito, Marcos José Salvador, Elisa Maria Aparecida Giro, and Fernanda Lourenção Brighenti. 2022. "Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms" Pathogens 11, no. 10: 1067. https://doi.org/10.3390/pathogens11101067
APA StyleMouta, L. F. G. L., Marques, R. S., Koga-Ito, C. Y., Salvador, M. J., Giro, E. M. A., & Brighenti, F. L. (2022). Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens, 11(10), 1067. https://doi.org/10.3390/pathogens11101067